
Chapter 1
Modeling of thin martensitic films with nonpolynomial stored
energies

Martin Kružı́k and Johannes Zimmer

Abstract A study of the thin film limit of martensitic materials is presented, with the film height tending to zero. The
behaviour of the material is modeled by a stored elastic energy which grows to infinity if the normal to the deformed
film tends to zero. We show that the macroscopic behavior of the material can be described by gradient Young measures
if Dirichlet boundary conditions are prescribed at the boundary of the film. In this situation, we also formulate a rate-
independent problem describing evolution of the material. A second approach, perhaps useful in case of non-Dirichlet
loading, is presented as well, relying on suitable generalized Young measures.

1.1 Introduction

In this article, we consider the thin film limit of a model for shape-memory alloys. Shape-memory alloys have been
the focus of many investigations in the last decade. This interest can partially be attributed to the shape-memory effect
itself (see Subsection 1.1.1), but even more the nonconvexity of the Helmholtz energy density due to the co-existence
of several variants, which poses a significant mathematical challenge.

Here, our motivation is to address one typical difficulty of modelling shape memory alloys. Namely, a common
framework for such models is three-dimensional elasticity, and more specifically hyperelasticity, which means that the
first Piola-Kirchhoff stress tensor has a potential W . Static equilibria are minimisers of the elastic energy; one is thus
led to solve

minimise J(y) :=
∫

Ω

W (∇y(x))dx , (1.1)

where Ω ⊂ IRn denotes the reference configuration of the material, ∇ the is gradient operator, y ∈W 1,p(Ω ; IRn) is the
deformation, with 1 < p <+∞, y = y0 on ∂Ω , and W : IRn×n→ IR is the stored energy density.

A central point of interest of this paper is to incorporate the important physical assumption

W (F)→+∞ whenever det(F)↘ 0 (1.2)

(this is related to the physical constraint that an elastic deformation of a body has to be orientation-preserving, which
means det(∇y(x))> 0 almost everywhere).

One class of materials where this constraint can be included is that of polyconvex W , i.e., W (F) can be written as
a convex function of all minors of F . The existence of minimisers to (1.1) was proved by J. M. Ball in his pioneering
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paper [Bal77]. The existence theory for polyconvex energy densities can deal with the growth behaviour (1.2). We
refer, e.g., to [Cia88, Dac89] for various results in this direction.

However, materials cannot be modelled by polyconvex stored energies. Prominent examples are materials with
microstructure, such as shape-memory materials [BJ87, Mül99], and we see this analysis as a prototype of modelling
materials whose stored energy is not polyconvex (or quasiconvex, see below). We develop a framework in which
the constraint (1.2) can be included, even in the presence of oscillations and concentrations of minimising functions.
Other than the theory for polyconvex functions, there are few results. For a limit leading to a one-dimensional equation
(where it is not a significant constraint to be a gradient), Freddi and Paroni develop a comprehensive Young measure
approach [FP04], building on earlier work by Acerbi, Buttazzo and Percivale [ABP91]. The requirement (1.2) also
appears in the relaxation result by Ben Belgacem [BB00], which is also inspired by [ABP91]. For the full vectorial
case, we refer to recent results in this direction by one of the authors and coworkers [BKP11]. Here, we pursue a
different line of thought, by considering a thin-film equivalent of (1.2) (see (1.10) below). We exploit the fact that the
related quasiconvex envelope has polynomial growth; this allows us to study both the static case and a rate-independent
evolution.

1.1.1 Shape memory alloys

Some materials can, after a deformation, recover their original shape upon heating, and this is called the shape memory
effect. We summarise key properties of this effect here; see [KZ11] for a more extensive discussion. It is based on the
ability of the shape-memory alloy to rearrange atoms in different crystallographic configurations (in particular, with
different symmetry groups). Such materials have a high-temperature phase called austenite and a low-temperature
phase called martensite. Since austenite is more symmetric, the martensitic phase exists in several variants, with
the number of variants M, say, being the quotient of the order of the austenitic symmetry group and the order of
the martensitic group. So for a cubic high-symmetry phase, M = 3, 6, 12, or 4 for the tetragonal, orthorhombic,
monoclinic, respectively triclinic martensites. We denote the stress-free strains of the variants U`, ` = 1,2, . . . ,M,
and U0 stands for the stress-free strain of the austenite. Since the martensitic phase exists in several symmetry related
variants, it can form a microstructure by mixing those variants (possibly also with the austenitic variant) on a fine scale.
Examples of these coherent combinations are twins of two variants, which is often called a laminate. This ability to
form microstructures is one reason why shape memory alloys, as for example Ni-Ti, Cu-Al-Ni or In-Th, have various
technological applications.

1.1.2 Variational models for shape memory alloys

Variational models for microstructures assume that formed structure has some optimality property. The reason for the
formation of microstructures is that no exact optimum can be achieved and optimising sequences have to develop finer
and finer oscillations. A typical example is a microstructure in a shape memory alloy.

We confine ourselves to the case of negligible hysteretic behaviour. This leads to a multidimensional vectorial vari-
ational problem, whose relaxation (i.e., suitable extension) is not yet satisfactorily understood. We study microstruc-
tures on mesoscopical level, which means that we do not only take care of some macroscopic effective response of
the material but also provide some information on optimising sequences. In the last decade, similar mesoscopical
models equipped with suitable dissipative potentials have been developed to treat materials with significant hystere-
sis; see [KMR05, MR03]. For a review of various mathematical problems related to martensitic crystals, we refer the
reader to [Mül99].

For shape memory alloys, W is not quasiconvex [Mor08]. We recall that quasiconvexity means that for all ϕ ∈
W 1,∞

0 (Ω ; IRn) and all F ∈ IRn×n

|Ω |W (F)≤
∫

Ω

W (F +∇ϕ(x))dx ; (1.3)
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we introduce for later use the notation Qv : IRm×n→ IR for the quasiconvex envelope of v : IRm×n→ IR. That is,

Qv(F) |Ω | := inf
ϕ∈W 1,∞

0 (Ω ;IRm)

∫
Ω

v(F +∇ϕ(x))dx .

For energies which are not quasiconvex, minimisers to J in (1.1) do not necessarily exist. However, if we give
up (1.2) and suppose that W has polynomial growth at infinity, so that for c,C > 0

c(−1+ |F |p)≤W (F)≤C (1+ |F |p) , (1.4)

the existence of a solution to (1.1) is guaranteed if W is quasiconvex. Here and below, |F | :=
√

tr(F>F) denotes the
Frobenius norm of the matrix F .

Yet, quasiconvexity is a complicated property and difficult to verify in most concrete cases. Moreover, as mentioned
above, the stored energy densities of materials with microstructure are not quasiconvex. As a result, solutions to (1.1)
might not exist. Various relaxation techniques were developed [Dac89, Mül99, Rou97] to overcome this drawback. One
is to extend the notion of solutions from Sobolev mappings to parametrised measures called Young measures [Bal89,
Rou97, Val94, Tay97]. The idea is to describe limit behaviour of {J(yk)}k∈IN along a minimising sequence {yk}k∈IN.
Nevertheless, the growth condition (1.4) is still a key ingredient in these considerations. We sketch in this article a new
approach to deal with more general growth conditions, allowing to incorporate (1.2).

1.2 Thin films

1.2.1 Static problems

Bhattacharya and James [BJ99] considered the following problem of a thin film limit. Let ω ⊂ IR2 be an open, bounded
domain with Lipschitz boundary. We write I := (0,1) and define Ωε := ω × εI as the reference state for the space
occupied by a specimen. Let {e1,e2,e3} be an orthonormal basis in IR3; we suppose that e3 is perpendicular to the
plane of the film, whereas e1,e2 lie in the film plane.

The plane gradient ∇1,2 of a (weakly differentiable) map y : ω → IR3 denoting deformation is defined as

∇1,2y = y,1⊗ e1 + y,2⊗ e2 ,

where y,i denotes the vector of derivatives of y with respect to xi, i = 1,2. Moreover, having a matrix F ∈ IR3×3, we
write F := ( f1| f2| f3) if F = f1⊗ e1 + f2⊗ e2 + f3⊗ e3, where fi ∈ IR3 for i = 1,2,3.

Bhattacharya and James study the problem

minimise Jκ
ε (y) =

1
ε

∫
Ωε

[
W (∇y(x))+κ

∣∣∇2y(x)
∣∣2] dx , (1.5)

where κ > 0 is a constant describing the surface energy and

y ∈ {u ∈W 2,2(Ωε ; IR3)
∣∣ y(x) = Ax if x ∈ ∂Ωε} ,

with A ∈ IR3×3 fixed. It is shown that (up to a subsequence), minimisers yε , say, of Jκ
ε satisfy for ε → 0

∇
2
1,2yε → ∇

2
1,2ȳ in L2(Ω1) ,

1
ε

∇yε
,3→ ∇,3b̄ in L2(Ω1) ,

1
ε2 yε

,33→ 0 in L2(Ω1) .
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Moreover, (ȳ, b̄) ∈W 2,2(ω; IR3)×W 1,2(ω; IR3) minimise the energy

Jκ
0 (y,b) :=

∫
ω

[
W (y,1(x)|y,2(x)|b(x))+κ

(∣∣∇2
1,2y(x)

∣∣2 + |∇1,2b|2
)]

dS (1.6)

subject to the boundary conditions y(x1,x2)= (a1|a2)x and b(x1,x2)= a3 if (x1,x2)∈ ∂ω . The coefficients (a1|a2|a3)∈
IR3×3 are fixed. Physically, y : ω→ IR3 describes the the average deformation of the film, while b : ω→ IR3 describes
the shear of the cross-section of the film. Since κ is small, we may consider the model without the surface energy, i.e.,
the elastic energy stored in the film is now

J0(y,b) :=
∫

ω

W (y,1(x)|y,2(x)|b(x)) dS . (1.7)

The functional J̄0 is nonconvex and minimiser does not have to exists in the set W 1,2(ω; IR3)×L2(ω; IR3) equipped
with affine boundary conditions.

There is a central difference to the analogous model for the bulk material. Namely, let us consider the situation
where ω = ω1 ∪ω2 ∪L, with ω1 and ω2 being disjoint subsets of ω , and L being a line interface between them, and
that

(y,1|y,2|b) =

{
RiFi in ω1

R jFj in ω2 ,

where Ri,R j ∈ SO(3) and Fi,Fj are zero energy deformation gradients. One further requires that y is continuous in ω ,
while y,1, y,2 as well as b may suffer jumps across the interface L. It is shown in [BJ99] that in order to satisfy these
requirements, the following thin-film twinning equation must be satisfied

RiFi−R jFj = a⊗n+ c⊗ e3 , (1.8)

where a,n ∈ IR3, n · e3 = 0 and c ∈ IR3 denotes the jump of b across the interface. The vector n is normal to the line
interface. Thus, we say that martensitic variants i and j can form a linear thin-film interface if there are rotations Ri,R j
and vectors a,n,c as above that (1.8) holds. We note that this condition is much weaker than the bulk situation, where
rank(RiFi−R jFj) = 1 has to hold. Namely, it is a necessary and sufficient condition that one can construct a piecewise
affine but continuous map whose gradient only takes values RiFi and R jFj, i 6= j. As a consequence, there are interfaces
between martensitic variants in the thin film which cannot exist in the bulk material.

Since the surface energy of the film is not considered here, the model includes only b, but not its gradient. Therefore
we can eliminate b from the theory by setting

W̄ ( f1| f2) := min
b∈IR3

W ( f1| f2|b) . (1.9)

The continuity, coercivity an boundedness of W in the form of (1.4) ensure that a minimum exists. Hence, we can
rewrite (1.7) as

J(y) :=
∫

ω

W̄ (y,1(x)|y,2(x)) dS ,

because then the minima of J and J0 are the same.
If we want to include a condition analogous to (1.2) in the thin-film model, we immediately see that f1, f2 in (1.9)

should not be parallel, since otherwise det(| f1| f2|b) = 0. Namely, f1× f2 is the normal vector to the thin-film surface
in the deformed configuration y(ω) and | f1× f2| measures area changes. More precisely, if y : ω → IR3 is invertible,
then for O⊂ ω measurable

meas(y(O)) =
∫

O
|y,1× y,2| dS .

Thus, taking r > 1, we define the following modified thin-film energy density Ŵ : IR3×2→ IR∪{+∞}

Ŵ ( f1| f2) := W̄ ( f1| f2)+
1

| f1× f2|r
. (1.10)
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Consider y0 : ω̄ → IR3, a continuous and piecewise affine affine mapping, and set

W 1,p
y0

(ω; IR3) := {z ∈W 1,p(ω; IR3); z = y0 on ∂ω} .

Moreover, let us define I : W 1,p
y0 (ω; IR3)→ IR∪{+∞},

I(y) :=
∫

ω

Ŵ (y,1(x)|y,2(x)) dS

and IQ : W 1,p
y0 (ω; IR3)→ IR∪{+∞},

IQ(y) :=
∫

ω

QŴ (y,1(x)|y,2(x)) dS .

We immediately see that Ŵ does not satisfy polynomial growth assumptions and standard coercivity conditions.
Nevertheless, we have the following relaxation result due to Anza Hafsa and Mandallena [AHM08, Th. 1.2].

Proposition 1. Assume that (1.10) holds, and let +∞ > p > 1. Then inf{I(u); u ∈W 1,p
y0 (ω; IR3)} = min{IQ(u); u ∈

W 1,p
y0 (ω; IR3)}. Moreover, if {uk} ⊂W 1,p

y0 (ω; IR3) is a minimising sequence for I and uk ⇀ u in W 1,p(ω; IR3), then u is
a minimiser to IQ. On the other hand, if ū ∈W 1,p

y0 (ω; IR3) is a minimiser to IQ, then there is a a minimising sequence
{ūk} ⊂W 1,p

y0 (ω; IR3) of I which weakly converges to ū in W 1,p(ω; IR3).

The proof of the proposition relies on the fact that QŴ has a polynomial growth at infinity, i.e., for all F ∈ IR3×2,∣∣QŴ (F)
∣∣≤C(1+ |F |p), with some C > 0.

In general, it is not possible to determine the quasiconvex envelope in closed form. There is, however, its represen-
tation in terms of gradient Young measures. While finding such a representation is an equally difficult problem, there
are known subsets and supsets of gradient Young measures which can be exploited efficiently in numerical calculations
[BK11, Kru98].

Let us denote by G p,r
y0 (ω; IR3×2) the set of gradient Young measures µ = {µx}x∈ω generated by sequences of

gradients of mappings from W 1,p
y0 (ω; IR3)} such that for F = ( f1| f2) ∈ IR3×2,∫

ω

∫
IR3×2

(|F |p + | f1× f2|−r)µx(dF)dx <+∞ .

Then we can define the integral functional J : G p,r(ω; IR3×2)→ IR as

J (ν) =
∫

ω

∫
IR3×2

Ŵ (F)νx(dF)dx .

Proposition 2. Let (1.10) hold and let p > 1 be finite. Then

min{IQ(u); u ∈W 1,p
y0

(ω; IR3)}= inf{I(u); u ∈W 1,p
y0

(ω; IR3)}= min{J (µ); µ ∈ G p,r
y0

(ω; IR3×2)} .

Moreover, if ν minimises J and ∇u(x) =
∫

IR3×2 F̂νx(dF) for almost all x ∈ ω and some u ∈W 1,p
y0 (ω; IR3), then u

minimises IQ. On the other hand, if y ∈W 1,p
y0 (ω; IR3) minimises IQ and QŴ (∇y(x)) =

∫
IR3×2 Ŵ (F)µx(dF) for some

µ ∈ G p,r
y0 (ω; IR3×2), then µ minimises J .

Proof. We use the fact that if {yk} ⊂ Lp(Ω ; IRm×n) and ν is the associated Young measure, then for every normal
integrand ψ : Ω × IRm×n→ (−∞;∞] bounded from below it holds that [FL07, Theorem 8.2]

liminf
k→∞

∫
Ω

ψ(x,yk(x))dx≥
∫

Ω

∫
IRm×n

ψ(x,s)νx(ds)dx . (1.11)

The first equality in the proposition then follows from Proposition 1. Indeed, combining Proposition 1 with (1.11), we
obtain for a minimising sequence {uk} ⊂W 1,p

y0 (ω; IR3) of I converging weakly to u, a minimiser of IQ, and generating
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a Young measure ν such that∫
Ω

QŴ (∇u(x))dx = lim
k→∞

I(uk)≥
∫

ω

∫
IR3×2

Ŵ (F)νx(dF)dx . (1.12)

At the same time, ∇u(x) =
∫

IR3×2 Fνx(dF) for almost all x ∈Ω and [KP94]

QŴ (∇u(x))≤
∫

IR3×2
QŴ (F)νx(dF)dx≤

∫
IR3×2

Ŵ (F)νx(dF) . (1.13)

By combining (1.12) and (1.13), we get that for almost all x ∈Ω

QŴ (∇u(x)) =
∫

IR3×2
Ŵ (F)νx(dF) (1.14)

and that νx is supported on the set {F ∈ IR3×2; QŴ (F) = Ŵ (F)} for a.a. x ∈Ω . Thus we showed that min IQ ≥ infJ .
Assume that there is µ ∈ G p,r

y0 (ω; IR3×2) such that J (µ)< min IQ. Then there is {yk} ∈W 1,p
y0 (ω; IR3) such that {∇yk}

generates µ and yk ⇀ y. Since Ŵ ≥ QŴ , it follows that

lim
k→∞

I(yk)≥J (µ) =
∫

ω

∫
IR3×2

Ŵ (F)µx(dF)≥
∫

ω

∫
IR3×2

QŴ (F)µx(dF) (1.15)

≥
∫

ω

QŴ (∇y(x))dx≥min IQ ,

hence J (µ)≥min IQ in contradiction to our assumption that J (µ)<min IQ. The second but last inequality in (1.15)
follows from Jensen’s inequality (for quasiconvex functions, as in the characterisation of gradient Young measures
given by Kinderlehrer and Pedregal [KP94]) since

∣∣QŴ (F)
∣∣≤C(1+ |F |p), as proved in [AHM08]. ut

1.2.2 Evolutionary problems

Changes of external conditions typically lead to evolution of material deformation and may initiate phase transforma-
tions. This phenomenon is usually connected with energy dissipation. Hence, we enrich our static relaxed model, i.e.,
the one defined on Young measures ν by a suitable dissipation mechanism and time dependent loading via Dirichlet
boundary conditions.

1.2.2.1 Dissipation related to phase transitions

The dissipation mechanism we describe to model phase transition is a two-dimensional version of a common one,
for example described in [KZ11]. For completeness, we give a summary, following the presentation in [KZ11]. In
order to describe dissipation due to transformations we adopt, as, e.g., [MR03], the standpoint that the amount of
dissipated energy associated with a particular phase transition between austenite and a martensitic variant or between
two martensitic variants can be described by a specific energy (of the dimension J/m2). For an explicit definition of the
transformation dissipation, we need to identify the particular phases or phase variants. To do so, we define a continuous
mapping L : IR3×2→4, where

4 :=
{

ζ ∈ IR1+M ∣∣ ζ` ≥ 0 for `= 1, . . . ,M+1, and
M+1

∑
`=1

ζ` = 1
}

is a simplex with M+1 vertices, with M being the number of martensitic variants. Here L is related with the material
itself and thus has to be frame indifferent. We assume, beside ζ` ≥ 0 and ∑

M+1
`=1 ζ` = 1, that the coordinate ζ` of L (F)

takes the value 1 if there is b ∈ IR3 such that (F |b) is in the `th (phase) variant, that is, (F |b) is in a vicinity of the
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`th well SO(n)U` of W , which can be identified by the stretch tensor (F |b)>(F |b) being close to U>` U`. Here, U>` U`

denotes the right Cauchy-Green strain tensors of the stress-free strain states. They represent particular martensitic
variants and the austenite. If L (F) is not in any vertex of 4, then it means that F is in the spinodal region where
no definite phase or variant is specified. We assume, however, that the wells are sufficiently deep and the phases and
variants are geometrically sufficiently far from each other that the tendency for minimisation of the stored energy will
essentially prevent F to range into the spinodal region. Thus, the concrete form of L is not important as long as L
enjoys the properties listed above. We remark that L plays the rôle of what is often called a vector of order parameters
or a vector-valued internal variable.

For two states q1 and q2, with q j = (y j,ν j,λ j) (deformation, Young measure, and volume fraction) for j = 1,2,
we now define the dissipation due to martensitic transformation which “measures” changes in the volume fraction
λ ∈ L∞

(
Ω ; IRM+1). Although λ j is given by ν j, it is convenient to consider them here as a pair of independent

variables and put their relationship as a constraint to the set of admissible states. This dissipation is given by

D (q1,q2) :=
∫

ω

|λ1(x)−λ2(x)|IRM+1dx , (1.16)

where
λ j(x) :=

∫
IR3×2

L (F)ν j,x(dF) (1.17)

and |·|IRM+1 is a norm on IRM+1. As λ j(x) represents the volume fraction of the jth phase in the material point x we
inevitably get ∑

M+1
j=1 λ j = 1 and we call λ the vector-valued volume fraction as it gives us relative portions of variants

at almost every x ∈ Ω . In what follows, we will assume that the norm on IRM+1 defining the dissipation in (1.16) is
given as

|X |IRM+1 :=
M+1

∑
i=1

ci ∣∣X i∣∣ , X = (X1, . . . ,XM+1) (1.18)

where |·| is the absolute value and ci > 0 for all i. The physical meaning of ci is the specific energy dissipated if X i

changes from zero to one (or vice versa).

1.2.2.2 Energetic solution

Combining the previous considerations, we arrive at the energy functional I of the form

I (t,q) :=
∫

ω

∫
IR3×2

Ŵ (F +∇y0(t,x))νx(dF)dx+ ε ‖∇λ‖L2(ω;IR(1+M)×2) , (1.19)

where the term ∇λ is included to regularise the problem. It penalises spatial jumps of the volume fraction λ and
introduces a length scale to the problem, depending on the parameter ε > 0. In particular, it allows us to pass to the
limit in the dissipation term. In order to define an admissible set where we look for a solution triple q = (y,ν ,λ ), we
put

y ∈W 1,p
y0

(ω; IR3) (1.20)

Here y0(t) ∈W 1,p(ω; IR3) with piecewise affine boundary conditions and t ∈ [0;T] ranges within the process time
interval, with T> 0 being the final time.

Then we look for q ∈ Q := W 1,p(ω; IRm)×G p,r
0

(
ω; IRm×n)×W 1,2(ω; IRM+1) and restrict the space further by

imposing the admissibility condition

Q :=
{

q ∈Q
∣∣ λ = L •ν and ∇y = I•ν

}
, (1.21)

where, for almost all x ∈Ω , [L •ν ](x) :=
∫

IRm×n L (F)νx(dF).
Following [FM06], we assume that there are constants C0,C1 > 0 such that
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|∂tI (t,q)| ≤C0(C1 +I (t,q)) . (1.22)

We also assume uniform continuity of t 7→ ∂tI (t,q) in the sense that there is ω : [0,T]→ [0,+∞) nondecreasing
such that for all t1, t2 ∈ [0,T]

|∂tI (t1,q)−∂tI (t2,q)| ≤ ω(|t1− t2|) . (1.23)

Finally, we suppose that q 7→ ∂tI (t,q) is weakly continuous for all t ∈ [0,T].
We seek to analyse the time evolution of a process q(t) ∈ Q during the time interval [0,T]. The following two

properties are key ingredients of the so-called energetic solution [MTL02].
(i) Stability inequality: for every t ∈ [0,T] and every q̃ ∈Q, it holds that

I (t,q(t))≤I (t, q̃)+D (q(t), q̃) . (1.24)

(ii) Energy balance: For every 0≤ t ≤ T,

I (t,q(t))+diss(D ,q; [0, t]) = I (0,q(0))+
∫ t

0
∂tI (ξ ,q(ξ ))dξ , (1.25)

where

diss(D ,q; [s, t]) := sup

{
N

∑
j=1

D
(
q
(
t j−1

)
,q(t j)

) ∣∣ {t j}N
j=0 is a partition of [s, t]

}
is the variation of the dissipation.

Definition 1. The mapping q : [0,T]→ Q is an energetic solution to the problem (I ,D) with the energy functional
I as in (1.19) and the dissipation D if the stability inequality (1.24) and energy balance (1.25) are satisfied for every
t ∈ [0,T].

Further, we define the set of stable states at time t ∈ [0,T] as

S(t) := {q ∈Q; ∀q̃ ∈Q : I (t,q)≤I (t, q̃)+D (q, q̃)} .

In particular, we will always assume that the initial condition is stable, i.e., q0 ∈ S(0). The following theorem regarding
the existence of an energetic solution can be proved using a general strategy described in [FM06].

Theorem 1. Let p > 2, and let assumptions (1.4), (1.22), and (1.23) hold. Then there is a process q : [0,T]→Q with
q(t) = (y(t),ν(t),λ (t)) such that q is an energetic solution according to Definition 1 for a given stable initial condition
q0 ∈Q.

Proof. The proof of this theorem follows a now well-established route and we thus omit any details [MR03]. The
argument proceeds via semidiscretisations in time for decreasing time steps, by a limit passage in the stability inequal-
ity (1.24) and in the energy equality (1.25); cf. also [FM06] for a general strategy how to prove existence of energetic
solutions. ut

1.3 Problems involving concentration

The previous result relies on the specific form (1.10) of the thin film energy and on applied Dirichlet boundary condi-
tions. An advantage of this approach is that the analysis remains in the realm of Young measures, and established tools
from analysis can be applied to the quasiconvexified problem. This is just possible because minimizing sequences {yk}
to J J are such that {W (∇yk}k∈IN is weakly relatively compact in L1(ω). Sometimes it is desirable to study problems
where concentration effects may appear as well; then Young measures prove to be insufficient and DiPerna-Majda
measures are an appropriate tool. This might perhaps happen for energies satisfying (1.26) if we require addition-
ally that det∇y > 0 in Ω . We sketch a corresponding framework and give a simple application. It is worth pointing
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out that while in spirit the approach is the same as the one taken in Subsection 1.2.1, we there start with a specific
two-dimensional energy. Here, we consider a class of three-dimensional energy densities satisfying some growth con-
ditions, and then pass to a two-dimensional setting by considering scaled versions.

Our goal is to tailor the relaxation to functions satisfying (1.2) in the situation of a thin film. The key new idea is
that we allow W to depend on the inverse of its argument. Specifically, we suppose that W is continuous on regular
matrices and that there exist positive constants c,C > 0 such that

c
(
−1+ |F |p +

∣∣F−1∣∣p)≤W (F)≤C
(

1+ |F |p +
∣∣F−1∣∣p) . (1.26)

We point out that (1.26) implies (1.2) and that W has polynomial growth in |F | and
∣∣F−1

∣∣ at infinity. Hence, in our
setting we have an Lp bound not only on the deformation gradient but also on its inverse. Different and even negative
powers of F (called the Seth-Hill family of strain measures) are frequently used to describe deformation strain, see,
e.g., the survey [CR91]. Notice that if y : Ω → IR3 is a deformation map and its inverse, y−1 : y(Ω)→ IR3 is smooth,
then (∇y(x))−1 = ∇y−1(y(x)). Hence, exchanging the role of the reference and the deformed configuration, the growth
condition on F−1 just expresses that the gradient of the inverse deformation has the same integrability as the gradient
of the original deformation.

A simple example of a function satisfying (1.26) is, e.g., a stored energy density describing martensitic materials:

W (F) := min
i=1,...,M

(∣∣∣F>F−F>i Fi

∣∣∣2 + ∣∣∣F−1F−>−F−1
i F−>i

∣∣∣2) ,

where Fi ∈ IR3×3, i = 1, . . . ,M, are positions of the minima of the multiwell energy. Due to the lack of convexity of W ,
the existence of a minimiser is typically not guaranteed in the Sobolev space W 1,p(Ω ; IR3); we only trace the behaviour
of minimising sequences of J. We describe the necessary tools in the next subsection.

1.3.1 DiPerna-Majda measures

Prior to developing the new framework, we sketch the established theory, which is described in greater detail in, for
example, [KZ10]. Unless stated otherwise, Ω is an open domain in IRn. The definition of DiPerna-Majda measures
involves a compactification; so let us take a separable completely regular algebra R of continuous bounded functions
IRn×n→ IR. We recall that an algebra is completely regular if it contains the constants, separates points from closed
subsets and is closed with respect to the maximum (Chebyshev) norm. It is known [Eng77, Sect. 3.12.21] that there is a
one-to-one correspondence R 7→ βRIRn×n between such subalgebras of bounded continuous functions and metrisable
compactifications of IRn×n; by a compactification we mean here a compact set, denoted by βRIRn×n, into which IRn×n

is homeomorphically and densely embedded. For simplicity, we shall not distinguish between IRn×n and its image in
βRIRn×n. Similarly, we do not distinguish between elements of R and their unique continuous extensions on βRIRn×n.
The reader can, for instance, think about a one point compactification corresponding to the algebra of functions which
have limits if the norm of its argument diverges to infinity. The other example is a compactification by the sphere
generated by functions which have limits along rays arising from the origin.

Let σ be a positive Radon measure on Ω̄ , σ ∈M(Ω̄). We consider a map ν̂ mapping x ∈ Ω̄ to a Radon measure
νx ∈ M(βRIRn×n). We recall that such a map ν̂ : x 7→ ν̂x is weakly* σ -measurable if for any v0 ∈ C0(IRn×n), the
mapping Ω̄ → IR,x 7→

∫
βR IRn×n v0(s)ν̂x(ds) is σ -measurable in the usual sense; the space of weakly* measurable

functions is denoted L∞
w(Ω̄ ,σ ;M(βRIRn×n)). If additionally ν̂x is a probability measure, νx ∈ Prob(βRIRn×n) for σ -

a.a. x∈ Ω̄ , then the collection {ν̂x}x∈Ω̄
is a Young measure on (Ω̄ ,σ) [You37]; see also [Bal89, Rou97, Val94, Tay97].

Young measures can record oscillations in minimising sequences but not concentration effects; an extension developed
by DiPerna and Majda is capable of describing concentration effects as well.

Specifically, DiPerna and Majda [DM87] have shown that for a bounded sequence {yk}k∈IN in Lp(Ω ; IRn×n) with
1 ≤ p <+∞, there exists a subsequence (not relabelled), a positive Radon measure σ ∈M(Ω̄) and a Young measure
ν̂ : x→ ν̂x on (Ω̄ ,σ) such that (σ , ν̂) is attainable by {yk}k∈IN in the sense that for every g ∈ C(Ω̄) and for every
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v0 ∈R

lim
k→∞

∫
Ω

g(x)v(yk(x))dx =
∫

Ω̄

∫
βR IRn×n

g(x)v0(s)ν̂x(ds)σ(dx) , (1.27)

where
v ∈ϒ

p
R(IRm×n) :=

{
v0(1+ |·|p)

∣∣ v0 ∈R
}
. (1.28)

We remark that it is easy to see that (1.27) can be also written in the form

lim
k→∞

∫
Ω

h(x,yk(x))dx =
∫

Ω̄

∫
βR IRn×n

h0(x,s)ν̂x(ds)σ(dx) , (1.29)

where h(x,s) := h0(x,s)(1+ |s|p) and h0 ∈C(Ω̄ ⊗βRIRn×n).
In particular, setting v0 = 1 ∈R in (1.27), we can see that

lim
k→∞

(1+ |yk|p) = σ weakly* in M(Ω̄) . (1.30)

We say that {yk}∈IN generates (σ , ν̂) if (1.27) holds. Let us write DM p
R(Ω ; IRm×n) for the set of all DiPerna-

Majda measures, that is, the set of all pairs (σ , ν̂) ∈ M(Ω̄)×L∞
w(Ω̄ ,σ ;M(βRIRn×n)) attainable by sequences from

Lp(Ω ; IRn×n). Note that, taking v0 = 1 in (1.27), one can see that these sequences must inevitably be bounded in
Lp(Ω ; IRn×n). The explicit description of the elements from DM p

R(Ω ; IRm×n) for unconstrained sequences is given
in [KR97, Theorem 2] or in [KR99].

Here the energy depends on the deformation gradient and its inverse. We first ignore the latter dependence and return
to this central point at the end of this section. We thus consider the subset of DM p

R(Ω ; IRm×n) which are generated by
{∇yk}k∈IN for some bounded {yk}k∈IN⊂W 1,p(Ω ; IRm); this subset is here denoted as G DM p

R(Ω ; IRm×n). Elements of
G DM p

R(Ω ; IRm×n) generated by gradients of mappings with the same trace on ∂Ω are characterised in the following
theorem, which is proved in [KK08]. To formulate the statement, we introduce the notation dσ ∈ L1(Ω) for the
absolutely continuous part of σ in the Lebesgue decomposition of σ , with respect to the Lebesgue measure. We
recall that Qv denotes the quasiconvex envelope of a function v.

Theorem 2. Let Ω ⊂ IRn be a bounded Lipschitz domain , 1 < p < +∞ and (σ , ν̂) ∈ DM p
R(Ω ; IRm×n). Then then

there is a bounded sequence {yk}k∈IN ⊂W 1,p(Ω ; IRm) such that yk− y j ∈W 1,p
0 (Ω ; IRm) for any j,k ∈ IN (i.e. all have

the same trace) and {∇yk}k∈IN generates (σ , ν̂) if and only if the following three conditions hold:

1. There exists y ∈W 1,p(Ω ; IRm) such that for Lebesgue-almost every x ∈Ω

∇y(x) = dσ (x)
∫

βR IRn×n

s
1+ |s|p

ν̂x(ds) . (1.31)

2. For all v ∈ϒ
p

R(IRm×n) as defined in (1.28), it holds that Lebesgue-almost everywhere

Qv(∇y(x))≤ dσ (x)
∫

βR IRn×n

v(s)
1+ |s|p

ν̂x(ds) . (1.32)

3. For σ -almost all x ∈ Ω̄ and all v ∈ϒ
p

R(IRm×n) with Qv >−∞ it holds that

0≤
∫

βR IRn×n\IRn×n

v(s)
1+ |s|p

ν̂x(ds) . (1.33)

1.3.2 DiPerna-Majda measures depending on the inverse

We now consider the case where the energy depends on the deformation gradient and its inverse. An existence result for
the DiPerna-Majda measures generated by functions with this dependence is required; we state the equivalent to (1.27)
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for this case. In what follows, IRn×n
inv denotes the set of invertible matrices. The proof of the following theorem is exactly

the same as the proof of [Rou97, Theorem 3.2.12].

Theorem 3. Let Ω ⊂ IRn be open and bounded, and let {Yk}k∈IN, {Y−1
k }k∈IN ⊂ Lp(Ω ; IRn×n) be bounded, for some p

with 1≤ p<+∞. Then there are a subsequence of {Yk}k∈IN (not relabeled), π ∈M(Ω̄) and µ̂ ∈L∞
w(Ω̄ ,π;M(βRIRn×n))

such that for every g ∈C(Ω̄) and every v(s) = v1(s)(1+ |s|p+
∣∣s−1

∣∣p) with v1 : IRn×n
inv → IR which can be continuously

extended to v0 ∈R, it holds that

lim
k→∞

∫
Ω

g(x)v(Yk(x))dx =
∫

Ω̄

∫
βR IRn×n

g(x)v0(s)µ̂x(ds)π(dx) . (1.34)

Moreover, π = w∗− limk→∞ 1+ |Yk|p +
∣∣Y−1

k

∣∣p in M(Ω̄).

We will denote the set of pairs (π, µ̂) defined in Theorem 3 by DM p,−p
R (Ω ; IRn×n) and its subset generated by

gradients of functions from W 1,p(Ω ; IRn), i.e., if Yk := ∇yk, by G DM p,−p
R (Ω ; IRn×n).

The classic DiPerna-Majda measures are fully characterised, as stated in Theorem 2. For measures depending on
the inverse as defined in Theorem 3, there is no full characterisation available; this is since the nonlinearity introduced
by the inverse rules out the application of existing tools for the characterisation of DiPerna-Majda measures. We now
give a partial characterisation. Taking v(s) := 1+ |s|p, we have v0(s) = 1 in (1.27); we claim that

v0(s) :=


1+|s|p

1+|s|p+|s−1|p if s ∈ IRn×n
inv

0 otherwise
(1.35)

in (1.34). To see this, we set

v1(s) =
1+ |s|p

1+ |s|p + |s−1|p

and notice that
lim
|s−1 |→∞

|s| bounded

v1(s) = 0

exists; thus we can first extend v1 by continuity to the set of non-invertible matrices and obtain v0 as in (1.35). Com-
paring (1.27) and (1.34), we then find for π-almost all x ∈ Ω̄

dσ

dπ
(x) =

∫
βR IRn×n

1+ |s|p

1+ |s|p + |s−1|p
µ̂x(ds) . (1.36)

Using this and choosing arbitrary v0 ∈R we obtain

∫
βR IRn×n

v0(s)ν̂x(ds) =
(∫

βR IRn×n

1+ |s|p

1+ |s|p + |s−1|p
µ̂x(ds)

)−1 ∫
βR IRn×n

v0(s)(1+ |s|p)
1+ |s|p + |s−1|p

µ̂x(ds) . (1.37)

To ensure that the DiPerna-Majda measure is generated by a sequence of gradients (and their inverses), we
use this characterisation in terms of (σ , ν̂). Namely, we require that the DiPerna-Majda measure (σ , ν̂) defined
by (1.36), (1.37) must belong to G DM p

R(Ω ; IRm×n); that is, the conditions in Theorem 2 must be fulfilled. We remark
that then the gradient of the macroscopic deformation ∇y can be expressed for almost all x ∈Ω as

∇y(x) = dπ(x)
∫

βT IRn×n
inv

s
1+ |s|p + |s−1|p

µ̂x(ds) , (1.38)

where dπ is the density of the absolutely continuous part of π with respect to the Lebesgue measure.
Then the relaxation of J reads

minimise
∫

Ω̄

∫
βR IRn×n

inv

W (s)
1+ |s|p + |s−1|p

µ̂x(ds)π(dx) , (1.39)
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where (π, µ̂) ∈ G DM p,−p
R (Ω ; IRn×n), where µ̂x is supported on the set of matrices with positive determinant for

π-almost all x ∈ Ω̄ .

1.3.3 Application to a thin film model

We now describe a setting for the analysis of thin martensitic films. A similar framework has been analysed by Bo-
cea [Boc08]; while the description of the thin film bears many resemblances, there are two crucial differences. We
allow the energy to depend on the inverse, with the growth condition as in (1.26). This has the benefit that the impor-
tant physical constraint (1.2) is satisfied. However, a price to pay is we cannot apply a decomposition lemma as used
by Bocea [Boc08]; it is an open problem whether a decomposition lemma holds for measures generated by gradients
and their inverses. We recall the standard decomposition lemma which can be found in [FMP98].

Lemma 1. Let 1 < p <+∞ and Ω ⊂ IRn be an open bounded set and let {uk}k∈IN ⊂W 1,p(Ω ; IRm) be bounded. Then
there is a subsequence {u j} j∈IN and a sequence {z j} j∈IN ⊂W 1,p(Ω ; IRm) such that

lim
j→∞

∣∣{x ∈Ω ; z j(x) 6= u j(x) or ∇z j(x) 6= ∇u j(x)}
∣∣= 0 (1.40)

and {|∇z j|p} j∈IN is relatively weakly compact in L1(Ω). In particular, {∇u j} and {∇z j} generate the same Young
measure.

It is, however, not known if an analogous lemma hold if we require also a bound on the gradient inverse. Thus
we cannot rule out concentration effects and have to resort to a variant of DiPerna-Majda measures as described
in Subsection 1.3.2. (The special case discussed in Subsection 1.2.1, with the specific energy given in (1.10), is an
example where we have shown that no concentrations occur, so there the framework of Young measures is suitable).

We recall that ω ⊂ IR2 is an open, bounded domain with Lipschitz boundary, and that we set I := (0,1) and
Ωε := ω × εI as the reference state for the space occupied by a specimen. Further, yε : Ωε → IR3 is the deformation
and uε : Ωε → IR3 is the displacement, which are related to each other via the identity yε(xε) = xε + uε(xε), where
xε ∈Ωε . Hence the deformation gradient is Fε := ∇yε = I+∇uε . Here, I ∈ IR3×3 is the identity matrix.

The total stored energy in the bulk occupying, in its reference configuration, the domain Ωε , is then

V (yε) :=
∫

Ωε

W (∇yε(xε))dxε . (1.41)

Here the bulk free energy density W is a function W : IRn×n
inv+→ IR, taking the deformation gradient as its argument. In

reality, W also depends on the temperature, but we restrict here the analysis to the isothermal case of a temperature
below the critical temperature, since the difficulty of non-convexity appears here as isolated as possible from other
effects. Then several martensitic variants coexist, and this is what we want to capture.

The usual symmetry requirements will be made, namely frame indifference

W (QF) =W (F) for every Q ∈ SO(3) and F ∈ IRn×n
inv+ (1.42)

and crystalline symmetry

W (FP) =W (F) for every P ∈P and F ∈ IRn×n
inv+ , (1.43)

here P denotes the point group of the austenitic phase. The set of minimisers of W is given by the martensitic variants
U1, . . . ,UM . The frame indifference (1.42) then implies that W is minimised on ∪M

j=1SO(3)U j, the union of the orbits
of U j under the operation of SO(3) from the left.

It is convenient to consider Ω := ω × I which originates from Ωε via dilatation by 1
ε

in the direction of the third
component. So, if the coordinates in Ωε are (xε

1,x
ε
2,x

ε
3), then the coordinates in Ω are (x1,x2,x3) with
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x1 = xε
1, x2 = xε

2, x3 =
1
ε

xε
3 .

The deformation yε : Ωε → IR3 then gives in a natural way rise to the rescaled deformation y : Ω → IR3 via y(x) =
yε(xε(x)). A rescaling of the energy (1.41) by a factor 1

ε
yields then

Vε(y) :=
∫

Ω

W
(
∇1,2y(x)

∣∣ 1
ε

∇3y(x)
)

dx ; (1.44)

we recall that ∇1,2 is the 3×2 matrix of partial derivatives y j,k =
∂y j
∂xk

with j ∈ {1,2,3} and k ∈ {1,2} and ∇3y = y,3
is the (column) vector containing the derivatives of y with respect to x3 and (F | f ) denotes the 3×3 matrix formed of
the 3×2 matrix F as the first two columns and the vector f as the third column.

We assume that W satisfies (1.26), that is,

c(−1+ |F |p +
∣∣F−1∣∣p)≤W (F)≤C(1+ |F |p +

∣∣F−1∣∣p)
for some p ∈ IN. This is a central difference to the work in [Boc08], where the growth condition is in terms of F alone
rather than both F and F−1.

Definition 2 (Scaled DiPerna-Majda measures). Let A = (a1|a2|a3) ∈ IR3×3 be given. Let {yk}k∈IN be a sequence
of functions with affine boundary data in the sense that yk(x) = Aεk x := (a1|a2|εka3)x for x ∈ ∂ω× I. Suppose further
that

(
∇1,2yk(x)

∣∣ 1
ε

∇3yk(x)
)

and
(
∇1,2yk(x)

∣∣ 1
ε

∇3yk(x)
)−1

are both uniformly bounded in Lp(Ω ; IRn×n), for some p
with 1≤ p <+∞. Then there is a subsequence which generates a measure (π, µ̂) ∈DM p,−p

R (Ω ; IRn×n); this measure
is called a scaled DiPerna-Majda measure.

The existence of a scaled DiPerna-Majda measure follows directly from Theorem 3 .
As an application of the theory developed, we formulate the following result. A related result was given in [Boc08].

Proposition 3. Let W satisfy the growth condition (1.26). Let {εk}k∈IN be a sequence of real numbers with εk→ 0 as
k→∞ and {yk}k∈IN be a sequence of functions with affine boundary data, yk(x) =Aεk x := (a1|a2|εka3)x for x∈ ∂ω×I.
Suppose that {yk}k∈IN is a minimising sequence for (1.44), in the sense that

Vε(yk) =
∫

Ω

W
(

∇1,2yk(x)
∣∣ 1

εk
∇3yk(x)

)
dx < Ik + εk ,

where
Ik := inf

{
Vεk(y)

∣∣ y ∈W 1,p(Ω , IR3),y(x) = Aεk x for x ∈ ∂ω× I
}
.

Then a subsequence of {yk}k∈IN (not relabeled) generates a scaled DiPerna-Majda measure (π, µ̂)∈DM p,−p
R (Ω ; IRn×n),

and (π, µ̂) minimises the effective film energy∫
Ω̄

∫
βR IRn×n

inv

W (s)
1+ |s|p + |s−1|p

µ̂x(ds)π(dx) , (1.45)

among all scaled gradient measures in DM p,−p
R (Ω ; IRn×n).

Proof. The growth assumption (1.26) yields that
(
∇1,2yk(x)

∣∣ 1
ε

∇3yk(x)
)

and
(
∇1,2yk(x)

∣∣ 1
ε

∇3yk(x)
)−1

are both uni-
formly bounded in Lp(Ω ; IRn×n). The existence of a scaled DiPerna-Majda measure follows then from Theorem 3,
and it is a standard fact that minimising sequences {yk}k∈IN generate a minimiser of the relaxed functional, which is
here (1.45).
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1.4 Open problems

The analysis of problems satisfying the physically natural growth assumption (1.2) is currently not well developed; we
highlight some avenues of possible future research.

For the full vectorial case (i.e. m,n > 1), in [BKP11], a relaxation theory in terms of Young measures is given. One
challenge is the characterisation of the measures involved; a second one is the inclusion of possible concentrations. This
would lead to a description of DiPerna-Majda measures depending on the inverse, as introduced in Section 1.3. There
again, the characterisation of the measures obtained is a mathematical problem in its own right. A further problem is
that at present, we do not know under which conditions a decomposition lemma holds (see Subsection 1.3.3).

From the point of view of applications, the existence theory for models with energies satisfying the growth as-
sumption (1.2) is a natural source of problems. In addition, the analysis of limits is open; for example, which thin-film
energies of type (1.2) can be obtained from three-dimensional equations, in the limit of vanishing film thickness?
Similarly as in bulk materials positivity of the determinant plays a crucial role, not only the length of the normal but
also its orientation is important in thin films. We refer to [CGM11] for a recent result in this direction using the notion
of surface polyconvexity.
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