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Abstract. We propose a sharp-interface model which describes rate-independ-
ent hysteresis in phase-transforming solids (such as shape memory alloys) by

resolving explicitly domain patterns and their dissipative evolution. We show

that the governing Gibbs’ energy functional is the Γ-limit of a family of reg-
ularized Gibbs’ energies obtained through a phase-field approximation. This

leads to the convergence of the solution of the quasistatic evolution problem

associated with the regularized energy to the one corresponding to the sharp
interface model. Based on this convergence result, we propose a numerical

scheme which allows us to simulate mechanical experiments for both spatially

homogeneous and heterogeneous samples. We use the latter to assess the role
that impurities and defects may have in determining the response exhibited by

real samples. In particular, our numerical results indicate that small hetero-

geneities are essential in order to obtain spatially localized nucleation of a new
martensitic variant from a pre-existing one in stress-controlled experiments.

1. Introduction. The understanding of hysteresis effects in materials undergoing
stress- and/or temperature-induced phase transformations is essential for many en-
gineering applications. Shape memory alloys provide a relevant example. In spite of
intense research in the last few decades, however, prediction of hysteresis from fun-
damental material properties is still a widely open problem. The reader is referred
to [26] for an inspiring overview.
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Shape memory materials have one high temperature, high symmetry phase called
austenite and a low temperature, lower symmetry phase called martensite. The
austenitic phase exists only in one variant while the martensitic phase exists in
several symmetry–related variants. Different variants represent different stress-free
states of the material and are described by different transformation strains from
the parent, high symmetry phase. We are interested in processes where the move-
ment of phase boundaries is rather slow and it is associated with small changes of
the external loading on the specimen. This is what typically happens during the
stress-induced transformation from austenite to martensite, or during processes in-
volving rearrangement of martensitic variants induced by changes of applied loads
or boundary conditions. In all these cases, hysteresis phenomena are pervasive.

There are many phenomenological models describing hysteresis behavior of shape
memory alloys, see e.g. [27, 29, 31, 32, 33, 35, 36, 37, 38, 39, 40]. Roughly speaking,
the origin of hysteresis in these models is either the nonconvexity of the energy
landscape, or a kinetic barrier for the phase transformation, or a combination of
these two mechanisms. Models with a “dry friction” type of dissipation provide
such a kinetic barrier. They were developed by Mielke and his collaborators in
[35, 36, 37] and applied to a wide range of physical phenomena, including wetting
on rough surfaces [1, 24, 19]. In dry friction models, the dissipative term, seen as
a function of the rate of change of the relevant internal variable, is homogeneous of
degree one. This results in rate–independent hysteresis even if the energy functional
is convex. These models allow for a realistic description of the stored energy of
the material (which takes into account its multiwell structure) and for rigorous
treatment of coherence and incoherence between various phases. Various numerical
aspects are discussed e.g. in [6, 28, 29]

In this paper, we propose a rate-independent model for the dissipative evolution
of domain patterns, and a numerical scheme for its solution. We restrict our at-
tention to the case in which only martensitic variants are present, since we have
explored only this scenario with our numerical experiments. While conceptually
straightforward, generalizations to the study of stress-induced martensite starting
from austenite are computationally demanding, and will be considered in future
work. In particular, we plan to address the interesting issue of whether kinematic
compatibility between austenite and a single variant of martensite is the key to
obtain low-hysteresis materials, as suggested in [17].

In our model, sharp interfaces between different phases are allowed and penal-
ized by surface energy. Moreover, within each phase, an elastic energy penalizes
deviations of the state of deformation from the stress-free state uniquely associated
with that phase. A dissipation term of dry-friction type penalizes phase changes
and motion of interfaces between phases.

Our model can be obtained as the sharp interface limit of a dissipative phase-
field model. This gives a natural approximation scheme which we use both to prove
existence of solutions for the quasi-static evolution problem, and to find them with
numerical simulations. A similar phase-field model for martensitic thin films is
studied numerically in [41] in the static situation. Phase field approaches to the
evolution of microstructures have already been considered in the literature, but
they are typically based on rate-dependent, viscous-type dissipative mechanisms
such as [17]. See also [30] for a related approach based on a gradient flow, and
[10, 13, 14, 15, 16] for studies of rate-independent models (arising in plasticity with
softening), their viscous regularization, and their vanishing viscosity limit. We plan
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to study the relative merits of rate-dependent versus rate-independent models in
future work.

We use our model, and the possibility of performing numerical simulations of
mechanical experiments to address the issue of spatially localized nucleation of a
martensitic variant from a different pre-existing one. We can reproduce this phe-
nomenon with our model. However, at least for the case of stress-controlled exper-
iments, this requires that we include some heterogeneity in the material properties
(random noise in the magnitude of the phase-change penalty term). Our tentative
conclusion is that imperfections play a crucial role in making spatial localization
possible. This phenomenon is reminiscent of the key role of defects in determining
the hysteretic behavior of small ferromagnetic particles [7, 18], and of imperfection
sensitivity in the buckling of elastic structures [5, 43]

The rest of the paper is organized as follows. First, we set up our model of a
rate-independent evolution with a surface energy assigned to sharp interfaces (Sec-
tion 2). Then we introduce a phase-field approximation (Section 3) for the governing
energy functional, and prove the existence of the so-called energetic solutions for
the quasistatic evolution problem. In Section 4, we prove Γ-convergence of the ap-
proximate phase-field energy functionals to the original one, and convergence of the
corresponding quasistatic evolutions. The construction used for the existence proof
and the convergence result suggest a natural numerical algorithm to find solutions of
our rate-independent dissipative model, based on solving incremental minimization
problems for its phase-field approximation. This is illustrated in Section 5, where
the algorithm is applied to some concrete boundary value problems that can be in-
terpreted as numerical simulations of relevant mechanical experiments. In spite of
the simplicity of the model used in the numerical simulations, we obtain results that
are both plausible and realistic, and closely reminiscent of the striking experimental
observations by Chu and James reported, e.g., in [26].

In what follows, W 1,2(Ω; IRn) will denote a standard Sobolev space of measurable
mappings defined on a bounded Lipschitz domain Ω ⊂ IRn which are together with
their gradients square integrable and take values in IRn. Further, we will denote
by Lp(Ω; IRm) standard Lebesgue spaces, by BV (X;Y ) a space of mappings with
bounded variation defined on X with the target in Y , and B(0, T ;W 1,2(Ω; IRn))
will stand for the space of bounded (not necessarily measurable) mappings defined
on interval (0, T ) with values in W 1,2(Ω; IRn). Finally, Cα(X,Y ) denotes the space
of mappings which are α ≥ 0 times continuously differentiable.

2. Model description. We study the quasistatic evolution of a phase-transforming
material by using the notion of energetic solution introduced by Mielke and his col-
laborators [35, 37, 36]. This approach requires the introduction of state variables
(in our case displacement u and the vector c describing concentrations of vari-
ous phases), of a Gibbs energy I and of a dissipation D. Energetic solutions are
processes t 7→ (u(t), c(t)) satisfying the global stability condition and the energy-
dissipation balance involving I and D given below, cf. (15) and (16). The notion of
energetic solution is made precise in Definition 2.1.

We denote by u : Ω → IRn the displacement of a body occupying the region
Ω ⊂ IRn in the reference configuration. The infinitesimal strain tensor is

e(u) :=
1

2
(∇u+ (∇u)>) .

Decomposing the overall strain into the elastic and transformation ones we have
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e := eel + etr

where eel is implicitly defined by the constitutive equation for the stress of linear
elasticity

σ(u) := C(e(u)− etr) , (1)

and C is the fourth–order tensor of elastic constants for which we assume the stan-
dard ellipticity condition, i.e., that

∃γ > 0 s.t. ∀A ∈ IRn×n :

n∑
i,j,k,l=1

CijklAijAkl ≥ γ|A|2 . (2)

The transformation strain is defined by

etr(c(x)) :=

m∑
i=1

ci(x)ei∗ , (3)

where the symmetric n× n matrices {ei∗}mi=1 are the given stress-free strains of m
martensite variants and c = (c1, . . . , cm) is the vector of the corresponding volume
fractions (concentrations) satisfying the obvious conditions

m∑
i=1

ci = 1 , ci ≥ 0 for all 1 ≤ i ≤ m. (4)

In the sharp interface model, only pure phases are allowed at each material point.
In other words, c(x) can have only one nonzero component at each x ∈ Ω.

The stored energy density associated with σ(u) is

W (e, c) :=
1

2
C(e− etr(c)) · (e− etr(c)) (5)

and the corresponding stored elastic energy functional is

E(u, c) :=

∫
Ω

W (e(u(x)), c(x)) dx . (6)

Small–strain, multi–well free–energies of a similar type, and their relation to the
corresponding models in the large strain regime are discussed, e.g., in [20].

Besides the elastic energy we also define a surface energy which is the energy
stored in the interface between two different phases. This energy is postulated to
be

S0(c) :=
1

2

m∑
k,l=1

ςklHn−1(∂∗{x ∈ Ω; c(x) = ck∗} ∩ ∂∗{x ∈ Ω; c(x) = cl∗}) , (7)

where ςkl = ςlk ≥ 0, k, l = 1, . . .m, is a surface tension coefficient, namely, the
energy per unit area of the interface between phases k and l. Clearly, ςkk = 0
for all admissible k. Further, Hn−1 denotes the (n − 1)-dimensional Haussdorff
measure, ∂∗A denotes the so-called reduced boundary of the set A, see e.g. [21],
and ck∗ ∈ IRm is the unit vector with only one nonzero component which is one
and is placed at the k-th position

(ck∗)i :=

{
1 if i = k,

0 else ,
(8)
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hence ‖c‖L1(Ω;IRm)+S0(c) is a norm of c in the space of mappings possesing bounded
variation (see e.g. [21]) which we denote BV(Ω; IRm). Altogether, the Helmholtz
free–energy reads

E(u, c) + S0(c) (9)

We assume, that a possibly time-dependent displacement u0 is prescribed on a por-
tion Γ0 of the boundary ∂Ω of the specimen. Extensions to cases in which only
some components of u0 are prescribed are straightforward. Evolution is driven by
slowly–varying imposed displacements or slowly–varying applied forces. Consider-
ing our process time being the interval [0, T ] for some T > 0, the work of surface
forces fs : [0, T ] × Γ1 → IRn applied on ∂Ω ⊃ Γ1 at a time t ∈ [0, T ] and the work
of body forces with density f : [0, T ]× Ω→ IRn can be expressed through

L(t, u) :=

∫
Γ1

fs(t, x) · u(x) dS +

∫
Ω

f(t, x) · u(x) dx . (10)

We assume that Γ0 ∩ Γ1 = ∅.
Thus, the total Gibbs energy of the specimen at t ∈ [0, T ] has the form

I(t, u, c) := E(u, c) + S0(c)− L(t, u) . (11)

As the system evolves it may also dissipate some energy. We associate the dis-
sipation with the magnitude of the time derivative of c. This makes the evolution
rate-independent and therefore independent of the loading rate. We define the
dissipation rate per unit volume as

%(x, ċ) := g(x)|ċ|m , (12)

where |c|m :=
∑m
i=1 αi|ci|, and αi > 0, and g ≥ 0. Then g(x)αi is the specific

energy which is dissipated if ci changes from either zero to one or from one to zero
at the material point x ∈ Ω. For this reason we refer to g as the magnitude of the
energy penalty for phase change, or penalty function for brevity. The possibility of
assuming a non-constant, randomly modulated function g(x) representing random
heterogeneities or defects will play an important role in the simulation of stress-
controlled experiments in Section 5.2.

The specific dissipated energy associated with a change of the volume fractions
from c to c̃ is therefore

D(x, c, c̃) := g(x)|c− c̃|m (13)

and the total dissipation reads

D(c, c̃) :=

∫
Ω

D(x, c(x), c̃(x)) dx .

We write (u, c) ∈ Q, where Q := U × C and U and C are specified below, to
indicate that a pair (u, c) is an admissible state for our system. As we expect

spatial jumps in c, we set C := {c ∈ BV (Ω; IRm); Φ̃(c) = 0} with

Φ̃(c) :=

{
0 if c = ck∗ for some k ∈ {1, . . . ,m}
> 0 otherwise.

(14)

In case of time-independent Dirichlet boundary conditions, we set U := {u ∈
W 1,2(Ω; IRn); u = u0 on Γ0} while if u0(t) ∈W 1,2(Ω; IRn) for all t ∈ [0, T ] we take
U := {v ∈ W 1,2(Ω; IRn); v = 0 on Γ0} and we work with the energy functional of
the form t 7→ I(t, v(t)+u0(t), c(t)) where v(t) ∈ U. This makes the set of admissible
states Q independent of time.
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The following two properties are the key ingredients in the definition of energetic
solution of a rate-independent dissipative process see [35, 37, 36].
(i) Global Stability Inequality:
We say that t 7→ (u(t), c(t)) ∈ Q is stable if, ∀t ∈ [0, T ] and ∀(ũ, c̃) ∈ Q, one has

I(t, u(t), c(t)) ≤ I(t, ũ, c̃) +D(c(t), c̃) . (15)

(ii) Energy-Dissipation Balance:
We say that t 7→ (u(t), c(t)) satisfies the energy–dissipation balance if ∀ 0 ≤ t ≤ T

I(t, u(t), c(t)) + Var(D, c; [0, t]) = I(0, u0, c0) +

∫ t

0

∂

∂t
I(ξ, u(ξ), c(ξ)) dξ , (16)

where

Var(D, c; [0, t]) := sup

{
N∑
i=1

D(c(ti), c(ti−1)); {ti} any partition of [0, t]

}
.

We denote the set of stable states at the time t by S(t), i.e.,

S(t) := {(u, c) ∈ Q; ∀(ũ, c̃) ∈ Q; I(t, u, c) ≤ I(t, ũ, c̃) +D(c, c̃)} . (17)

Definition 2.1. The mapping t 7→ (u(t), c(t)) ∈ Q is an energetic solution to
problem (I,D) with an initial condition (u(0), c(0)) = (u0, c0) ∈ S(0), namely,
the quasistatic evolution problem governed by energy I and dissipation D, if the
stability inequality (15) and the energy–dissipation balance (16) are satisfied for all
t ∈ [0, T ].

Following [25], we further assume that there are constants C0, C1 > 0 such that

|∂tI(t, u, c)| ≤ C0(C1 + I(t, u, c)) . (18)

As a consequence we have

I(t2, u, c) ≤ (C1 + I(t1, u, c)) exp(C0|t2 − t1|)− C1 . (19)

Further we assume uniform continuity of t 7→ ∂tI(t, u, c) in the sense that there
exists ω : [0, T ]→ [0,+∞) nondecreasing, such that for all t1, t2 ∈ [0, T ]

|∂tI(t1, u, c)− ∂tI(t2, u, c)| ≤ ω(|t1 − t2|) . (20)

We also suppose that (u, c) 7→ ∂tI(t, u, c) is weakly continuous for all t ∈ [0, T ].

Remark 1. In the case when t 7→ c(t) is smooth and the surface energy is neglected,
the notion of energetic solution given above generalizes the classical evolution laws
of generalized standard materials [23]. These are the equilibrium conditions

divσ = f in Ω , (21)

σν = fs on Γ1 , (22)

where ν is the outer unit normal to ∂Ω ⊃ Γ1 and the flow rule

− ∂W (e, c)

∂c
∈ ∂%(·, ċ) , (23)

see [25]. The notion of energetic solution generalizes this framework to processes
that may experience time discontinuities, and are governed by nonsmooth energies
such as S0.
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In order to prove the existence of an energetic solution to (I,D) we introduce
its phase-field approximation with smooth interfaces between various phases. Then
we show by a Γ-convergence argument that suitably defined energetic solutions to
these approximations converge to an energetic solution of (I,D).

3. The phase-field approximation. The main idea of the phase approximation
is to replace the term S0 in the definition of I in (11) by a more regular term,
namely by ∫

Ω

ε|∇c(x)|2 +
Φ(c(x))

ε
dx , (24)

where Φ : IRm → [0; +∞),

Φ(c) :=

(
m∑
i=1

ci − 1

)2

+ Φ̃(c)

and recall that

Φ̃(c) :=

{
0 if c = ck∗ for some k ∈ {1, . . . ,m}
> 0 otherwise.

(25)

Thus, we define the surface energy Sε : L1(Ω; IRm)→ [0; +∞] by

Sε(c) :=

{∫
Ω
ε|∇c(x)|2 + 1

εΦ(c(x)) dx if c ∈W 1,2(Ω; IRm) , c ∈ [0, 1]m ,

+∞ otherwise.
(26)

Moreover, we define for every ε > 0 the Gibbs energy as

Iε(t, u, c) := E(u, c) + Sε(c)− L(t, u) , (27)

Qapp := U× L1(Ω; IRm) .

Having a time interval [0, T ] for T > 0 we can define an energetic solution to
(Iε,D) as a mapping [0, T ] → Qapp : t 7→ (uε(t), cε(t)). This energetic solution is
again defined by means of stability and energy equality as in (15) and (16) with Iε,
and Qapp instead of I and Q, respectively.

Proposition 1. Let ε > 0 and assume that f ∈ C1([0, T ];Ld̃(Ω; IRn)) and fs ∈
C1([0, T ];Ld̂(Γ1; IRn)) where d̃ = 6/5 and d̂ = 4/3 if n = 3 and d̃, d̂ > 1 if 1 ≤ n ≤ 2.
Let the initial condition (u0, c0) ∈ Qapp be stable. Then there exists an energetic
solution (uε(t, ·), cε(t, ·)) ∈ Qapp to (Iε,D) with and cε(0, ·) = c0 such that uε ∈
B((0, T );W 1,2(Ω; IRn)), cε ∈ L∞((0, T );W 1,2(Ω; IRm)) ∩BV ((0, T );L1(Ω; IRm)).

Proof. The proof can be obtained following the one of [25, Th. 3.4]. Here we only
sketch it in a few steps for the reader’s convenience.
Step 1: Consider a partition 0 = t0τ < t1τ < . . . < tNτ = T , set τ = maxi(ti − ti−1)
and suppose that the partition for N+1 is a refinement of the partition with N time
steps. Take an initial condition (u0, c0) ∈ Qapp. we define the following sequence
of minimization problems For k = 1, . . . , N solve

min
(u,c)∈Qapp

Iε(tkτ , u, c) +D(ck−1
τ , c) (28)

and denote a solution by (ukτ , c
k
τ ). The existence of a solution is a standard appli-

cation of the direct method of the Calculus of Variations.
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Step 2: Solutions (28) are stable. Moreover, it holds that∫ tkτ

tk−1
τ

∂tIε(s, ukτ , ckτ ) ds ≤ Iε(tkτ , ukτ , ckτ ) +D(ck−1
τ , ckτ )− Iε(tk−1

τ , uk−1
τ , ck−1

τ ) (29)

≤
∫ tkτ

tk−1
τ

∂tIε(s, uk−1
τ , ck−1

τ ) ds .

Take (ũ, c̃) ∈ Qapp. We have Iε(tkτ , ukτ , ckτ )+D(ck−1
τ , ckτ ) ≤ Iε(tkτ , ũ, c̃)+D(c̃, ck−1

τ ).
We further estimate D(c̃, ck−1

τ )−D(ck−1
τ , ckτ ) ≤ D(c̃, ckτ ), which proves the stability.

The upper estimate in (29) follows by checking minimality of qkτ against qk−1
τ , i.e.

Iε(tkτ , ukτ , ckτ ) +D(ckτ , c
k−1
τ ) ≤ Iε(tkτ , uk−1

τ , ck−1
τ ) = Iε(tk−1

τ , uk−1
τ , ck−1

τ )

+

∫ tkτ

tk−1
τ

∂tIε(s, uk−1
τ , ck−1

τ ) ds . (30)

The lower estimate in (29) is implied by the stability of qk−1
τ , namely

Iε(tk−1
τ , uk−1

τ , ck−1
τ ) ≤ Iε(tk−1

τ , ukτ , c
k
τ ) +D(ck−1

τ , ckτ )

= Iε(tkτ , ukτ , ckτ ) +D(ck−1
τ , ckτ )−

∫ tkτ

tk−1
τ

∂tIε(s, ukτ , ckτ ) ds . (31)

Then define piecewise constant interpolants constructed from {(uk, ck)}k and
denote them by (uNτ , c

N
τ ). In particular, we define

(uNτ (t), cNτ (t)) := (uk−1
τ , ck−1

τ ) if t ∈ [tk−1
τ , tkτ ) , (uτ (T ), cτ (T )) := (uNτ , c

N
τ ) . (32)

Using (18), (20) and (29) which are also valid for Iε we get the following apriori
bounds which are independent of τ :

‖uNτ ‖L∞((0,T );W 1,2(Ω;IRn)) ≤ C ,

‖cNτ ‖L∞((0,T );W 1,2(Ω;IRm)) ≤ C ,

and

Var(D, cNτ ; [0, T ]) ≤ C .

Step 3: The existence of an energetic solution is now obtained by passing to the limit
for N →∞ (as the time discretization is refined) in the energy inequality proved in
Step 2 and checking the stability of the limit. Notice that the dissipation functional
D : C → IR is sequentially continuous with respect to the weak W 1,2(Ω; IRm)
topology.

If we look at the optimality conditions for problem (28) we get that

− ∂W (e, c)

∂ci
− 1

ε

∂Φ(c)

∂ci
− 2ε∆ci ∈ ∂ci%(x, c− ck−1

τ ) , i = 1, . . . ,m . (33)

So, in view of (12) a phase change ckτ 6= ck−1
τ occurs if

σ(u) · ei∗ +
1

ε

∂Φ(c)

∂ci
+ 2ε∆ci = ±gαi (34)

for some i ∈ {1, . . . ,m}, where σ(u) is given by (1).
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4. The sharp interface limit ε → 0. We showed in the previous section that
there is an energetic solution for every ε > 0. The aim of this section is to study the
limiting problem as ε → 0. We first find out the corresponding energy functional
and then show in what sense solutions for ε > 0 approximate the limit one. The
main tool of our analysis will be the notion of Γ-convergence [12].

Convergence of energetic solutions to problems (Iε,D) to an energetic solution
solving the problem (I,D), where I is the the Gamma-limit of the energy Iε follows
from the work of Mielke, Roub́ıček, and Stefanelli [34]. It is, however, important to
define the surface tension coefficients {ςkl} in the definition of S0 and to link them
to the function Φ. For this, we define the distance between two variants (vector
volume fractions) c1 and c2 of the material as

d(c1, c2) := inf
{

2

∫ 1

−1

√
Φ(γ(t))|γ′(t)|dt; γ ∈ C0,1([−1; 1]; IRm)

, γ(−1) = c1 , γ(1) = c2

}
,

where C0,1([−1, 1]; IRm) denotes the space of Lipschitz maps γ : [−1, 1] → IRm.
Hence, γ′ is defined almost everywhere in [−1, 1]. Then the surface tension coeffi-
cients are defined as ςkl := d(ck∗, cl∗) for all k, l ∈ {1, . . . ,M}. Thus, we see that
clearly, ςkl = ςlk and that ςkk = 0.

We will further assume that there are positive α, β ∈ IR such that

Φ(c) ≥ α|c|2 − β . (35)

Let us finally set the surface energy S : L1(Ω; IRm)→ [0,+∞]

S(c) :=

{
S0(c) if c ∈ BV(Ω; IRm) and Φ(c) = 0 a.e. in Ω

+∞ otherwise.
(36)

Proposition 2. Assume that (35) and (2) are satisfied. Then the following holds.
(i) Let {uε, cε}ε>0 ⊂ Qapp be such that E(uε, cε) + Sε(cε) < C for some C > 0.
Then there exists a subsequence {εk}k∈IN converging to zero as k →∞, u ∈ U and
c ∈ BV(Ω; IRm) ∩ L2(Ω; IRm) such that limk→∞ cεk = c in L2(Ω; IRm) and weak-
limk→∞ uεk = u in W 1,2(Ω; IRn). Moreover, c ∈ {c1∗, . . . cm∗} almost everywhere
in Ω.
(ii) For every (uεk , cεk)k ∈ Qapp such that uεk → u in L2(Ω; IRn) and cεk → c in
L1(Ω; IRm) strongly as k →∞ and u ∈ U it holds that

E(u, c) + S(c) ≤ lim inf
k→∞

E(uεk , cεk) + Sεk(cεk) . (37)

(iii) For every c ∈ L1(Ω; IRm) with nonnegative components and every u ∈ U there
is (ũεk , c̃εk)k ∈ W 1,2(Ω; IRm) such that ũεk → u in L2(Ω; IRn) and c̃εk → c in
L1(Ω; IRm) as k →∞ and

E(u, c) + S(c) ≥ lim sup
k→∞

Eεk(ũεk , c̃εk) + Sεk(c̃εk) . (38)

Proof. The proof follows the same lines as the proof of Th. 5.1. in [22], therefore
we only sketch it. Let us start with (i): As E(uε, cε) + Sε(cε) < C we have that

Sε(cε(x)) =

∫
Ω

1

ε
Φ(cε(x)) + ε|∇cε(x)|2 dx < C . (39)

We define for k = 1, . . . ,m φk(c) := d(c, ck∗). These are locally Lipschitz functions

[2] with |∇φk(c)| ≤ 2
√

Φ(c). Define hkε(x) := min(φk(cε(x)), 1). Applying Young’s
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inequality we estimate |∇hkε | ≤ ε|∇c|2 + 1
εΦ(c) a.e. in Ω. In view of (39) it shows

that {hkε}ε is bounded in BV(Ω) for all k = 1, . . . ,m. Hence, we can extract a
subsequence {εj} tending to zero if j →∞ such that for all 1 ≤ k ≤ m hkεj → hk in

L1(Ω) and almost everywhere in Ω as j → ∞. For all admissible k, the functions
hk are defined just by this limit.

We also see from (39) that Φ(cεj ) → 0 in L1(Ω) and therefore also almost ev-
erywhere in Ω for a (not relabeled) subsequence. This means that cεj → c, where

c only takes values in {c1∗, . . . , cm∗}. It follows from (39) that this convergence is
even strong in L2(Ω). We denote Ωk a part of Ω where c attains the value ck∗.
It holds that Ω = ∪mk=1Ωk ∪ N where N has the zero Lebesgue measure. Finally,
Korn’s inequality and (2) imply that {uεj}j is also bounded in W 1,2(Ω; IRn).

Proof of (ii): We can assume that lim infk→∞ E(uεk , cεk) + Sεk(cεk) < +∞ be-
cause otherwise the assertion is trivial. Moreover, assume that cε → c a.e. in Ω. The
coercivity implies that

∫
Ω

1
εΦ(cε(x))+ε|∇cε(x)|2 dx < C, hence

∫
Ω

Φ(cε(x)) dx→ 0

and Φ(cεj ) → 0 a.e. in Ω for a subsequence. So, c ∈ {c1∗, . . . , cm∗} almost every-
where in Ω. After some technical manipulation, one can show that for all 1 ≤ k ≤ m
sets Ωk := {x ∈ Ω; c = ck∗} has a finite perimeter. The growth conditions on
Φ and Korn’s inequality ensure that cεj → c in L2(Ω; IRm) and that uεj⇀u in

W 1,2(Ω; IRn) as j → ∞. Finally, it follows that E(u, c) ≤ lim infj→∞ E(uεj , cεj )
and that S(c) ≤ lim infk→∞ Sεk(cεk).

To prove (iii) we rely on the result of [3]; see. also [4, 42] for constructions of
the recovery sequence cε}ε ∈ W 1,2(Ω; IRm) converging to a given c ∈ BV(Ω; IRm).
Then (u, cε) is the sought sequence realizing the limsup condition.

Remark 2. Proposition 2 above shows that E + S is the Γ-limit of E + {Sε}
with respect to the weak W 1,2(Ω; IRm) convergence of displacements and strong
L1(Ω; IRm) convergence of compositions. Since L is a continuous perturbation with
respect to these topologies, we also have

Iε → I (40)

in the sense of Gamma-convergence.

Using Theorem 3.1 in [34], and in view of (40), we have that quasistatic evolutions
solving problem (Jε,D,L) converge to solutions of problem (J0,D,L) as ε→ 0. The
precise statement in the following proposition.

Proposition 3. Let f ∈ C1([0, T ];Ld̃(Ω; IRn)) fs ∈ C1([0, T ];Ld̂(Γ1; IRn)) where

d̃ = 6/5 and d̂ = 4/3 if n = 3 and d̃, d̂ > 1 if 1 ≤ n ≤ 2. Let uε, cε ∈ Qapp be an
energetic solution to problem (Iε,D)

Assume that for almost all t ∈ [0, T ] uε(t) → u(t) weakly in W 1,2(Ω; IRm) and
for all t ∈ [0, T ] cε(t)→ c(t) ∈ L1(Ω; IRm)) strongly. Let, moreover,

lim
ε→0
Iε(0, uε(0), cε(0))→ I(0, u(0), c(0)) .

Then (u, c) ∈ Q is an energetic solution to (I,D).

Proof. The result follows from [34, Thm. 3.1]. In view of [34, Lemma 2.1] we need
to show the so-called upper semicontinuity of stable sets. Notice that the only term
which depends on ε is the elastic energy functional. Hence, it is enough to verify
condition (2.19) in [34]. However, this condition follows from the continuity of the
dissipation with respect to the strong L1 topology.
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5. Numerical simulations. The constructive proof of existence of solutions for
the phase-field approximation (Proposition 1), together with the result showing
convergence of the phase-field to the sharp interface model (Proposition 3), suggest
a natural approximation scheme for our sharp interface model. This will be based
on solving an incremental minimization problems for the phase-field approximation,
in which the parameter ε will be fixed at some suitably small value.

We set ε = 10−6, T = 1, and perform numerical experiments using a finite
element approximation of the phase field problem. To this aim we take m =
2, a rectangular domain Ω = (0, 1) × (0, 2) ⊂ IR2, and discretize it into tri-
angular elements belonging to Th = {ω ⊂ Ω; diam ω ≤ h} such that Ω =
∪ω∈Thω. The displacement field u as well as the vector volume fraction c is
approximated by element-wise affine maps, i.e., we consider a displacement field
Uh ∈ {u ∈ C(Ω; IR2); u is affine on each ωi ∈ Th} and the volume fraction ch ∈
{c ∈ C(Ω; IR2); c is affine on each ωi ∈ Th}. The stored and dissipated energies
are approximated using a two-dimensional trapezoidal rule, see e.g. [11]. As to the
material properties we consider a very simple situation of a homogeneous isotropic
material with Young modulus of 14 GPa and Poisson ratio of 0.3. We assume that
m = 2 and take two tetragonal variants of martensite with e1∗ := diag(−0.05, 0.05)
and e2∗ := diag(0.05,−0.05). We refer to e1∗ as variant 1, or the white variant and
to e2∗ as variant 2, or the black variant. The two variants are mutually kinematically
compatible, i.e.,

2(e1∗ − e2∗) = (−0.1,−0.1)⊗ (1,−1) + (1,−1)⊗ (−0.1,−0.1)

= (0.1,−0, 1)⊗ (1, 1) + (1, 1)⊗ (0.1,−0, 1) .

Thus, strain discontinuities can be formed across interfaces between variants along
the lines x1 − x2 = 0 or x1 + x2 = 0. We call this a 45-degree interface. As to the
dissipation we set |c|2 := α1|c1|+ α2|c2| and allow for the possibility of a spatially
variable penalty function g(x) in (13).

The initial condition is such that always c1 = 1, i.e. the whole specimen is in
the variant e1∗. Spatially discretized incremental minimization problems (28) were
solved by the L-BFGS-B routine described in [8].

5.1. Strain-controlled experiments. Our first example is a strain-controlled ex-
periment, in which the magnitude of the phase-change penalty function is kept con-
stant over the whole specimen at the value g = 30 MPa. Zero Dirichlet boundary
conditions prescribed in the x2-direction on the boundary (0, 1) × {0} and time-
dependent Dirichlet boundary conditions on (0, 1)× {2}. In particular, the second
component of the Dirichlet datum reads

u02(t, x) =

{
0.2− 0.8t if 0 ≤ t ≤ 0.5,

0.2 + 0.8t− 0.8 if 0.5 ≤ t ≤ 1 .
(41)

We observe the formation of 45-degree interfaces across the specimen, as shown
in Figure 1. Similar simulations were performed in [9], where the authors used

a microscopic stored energy with a double well potential of the form W̃ (e) :=
min((e−e1∗)2, (e−e2∗)2) without any interfacial energy term. This leads to spatial
oscillations on the scale of the finite-element mesh.

In the next example, we consider a strain-controlled experiment with the same
prescribed Dirichlet boundary conditions (41) as in the previous case, but with a
phase-change penalty function g : Ω→ (0,+∞) in (13) given by a randomly varying
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Figure 1. Nucleation of variant 2 (black) from variant 1 (white)
in a specimen subject to cyclic Dirichlet boundary conditions (41)
and spatially constant phase change penalty function g = 30 MPa.
The displacement is 2x magnified and time increases from left to
right in both rows.

distribution with values in the range between 18 MPa and 42 MPa, and average
equal to 30 MPa. The results are shown in Fig. 2, and clearly suggest a competition
between two effects. First, the transformation from e1∗ to e2∗ should start at x ∈ Ω
whenever there is enough energy to overcome the penalty for phase change g(x).
Secondly, to keep the elastic energy E as small as possible the development of a
45-degree interface is necessary. A compromise between the two effects is achieved
by a delayed nucleation of islands of black variant, with approximate 45-degree
interfaces. This is clearly visible in Figure 2 which shows the evolution of the
variants in the specimen. The upper row shows a few snapshots of the compression
part, i.e. t ∈ [0, 0.5], while the lower row shows the unloading program. The white
color identifies variant 1 (c1 = 1) and the black one variant 2 (c1 = 0).

5.2. Stress-controlled experiments. A feature of our model is that it leads to
a sudden transformation of the entire specimen in typical stress-controlled exper-
iments if g and the initial volume fractions are spatially homogeneous. Indeed,
consider the case f = 0 and fs = Σν in (10) , where Σ is a second-order sym-
metric constant stress tensor and boundary conditions allowing for a homogeneous
deformation. For example, consider an experiment where one presses the specimen
against a lubricated support, along which the specimen can move “without” fric-
tion. Since we only consider two variants, i.e., m = 2 it is convenient to introduce
a new variable 1− c1 =: c̃ ∈ [0, 1] and put

c1e
1∗ + c2e

2∗ = c1e
1∗ + (1− c1)e2∗ = e∗1 + c̃(e2∗ − e1∗).

Moreover, the dissipation associated with a phase change from c (equal to either
(1, 0) for variant 1 or to (0, 1) for variant 2) to c′ (which is then equal to either
(0, 1) or to (1, 0), respectively), is

g (α1|c′1 − c1|+ α2|c′2 − c2|) = g(α1 + α2) = g , (42)

where we have set α1 + α2 = 1 without loss of generality.
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Figure 2. Nucleation of variant 2 (black) from variant 1 (white) in
a specimen subject to cyclic Dirichlet boundary conditions (41) and
heterogeneous, randomly varying phase change penalty function
g = 30 ± 12 MPa. The displacement is 2x magnified and time
increases from left to right in both rows.

From (34) we have that, for a specimen which is initially in a homogeneous state,
the transformation proceeds if

Σ · (e2∗ − e1∗) +
1

ε

∂Φ(c̃)

∂c̃
+ 2ε∆c̃ = ±g , (43)

with the + sign holding for the transformation from variant 1 to 2, and − sign for
the reverse transformation. Hence, if no interfacial energy is considered, i.e., ε = 0
and Φ = 0, then the specimen transforms if |Σ · (e2∗ − e1∗)| = g. However, the
same happens if we consider the interfacial energy. Indeed, ∇c̃ = 0 for a spatially
constant c̃. Moreover, c̃ ∈ {0, 1} is always energetically favorable because this does
not increase the bulk elastic energy but decreases the energy coming from the Φ-
term. This shows that, in the case of stress-controlled experiments on perfectly
homogeneous samples, there will always be a sudden transformation of the entire
specimen at

Σ · (e2∗ − e1∗) = ±g . (44)

In a plot of volume fraction versus applied stresses, such as the one given in
Figure 5 below, the width of the resulting hysteresis loop would be proportional to
2g, with sudden transformations at the critical loads.

The following example shows that, when a spatially varying phase change penalty
is present, there can be nucleation of islands of a new phase in a stress-controlled ex-
periment, with approximate 45 degree interfaces separating the pre-existing marte-
nsitic variant and the newly formed domains containing a different variant. This ex-
ample is modeled after an experiment reported in [26] on biaxial loading of a CuAlNi
specimen. We take a square specimen which is loaded by the stress Σ = diag(σ1, σ2)
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such that σ1 + σ2 = −60MPa and

σ2(t) =

{
−120t if 0 ≤ t ≤ 1/2

120t− 120 if 1/2 ≤ t ≤ 1.
(45)

2

σ

1
σ−σ1

2

−σ

Figure 3. The square specimen, its discretization, and the applied
surface forces, see (45).

The specimen and the loading conditions are depicted in Figure 3. The phase-
change penalty function g is given by a randomly varying distribution with values
in the range between 18 MPa and 42 MPa, and average equal to 30 MPa. Figure 4
shows the deformation of the specimen for t ∈ [0, 0.5] (the first row) and for t ∈
[0.5, 1] in the second one. Black color denotes variant 2 (i.e., e2∗), while the white
one denotes variant 1 (i.e., e1∗). We see that the interfacial energy term favors
45 degree interfaces which are clearly visible during the creation and annihilation
of black and white variants. Figure 5 shows a plot of the evolution of the volume
fraction of variant 2 (i.e., e2∗) versus loading parameter σ1−σ2

σ1+σ2
. The presence of

defects and heterogeneities (described trough the random fluctuations of the phase-
change penalty function g) reduces substantially the width of the hysteresis loop
with respect to the case of constant g = 30 MPa, when this width would be 2g/(σ1+
σ2) = 1, see (44).

In a final example we consider an elongated specimen, which is initially in a
uniform state corresponding to variant 1, under a purely uniaxial loading acting
along the long axis varying in the range ±60 MPa, and favoring a transformation to
variant 2. The phase-change penalty function g is given again by a randomly varying
distribution with values in the range between 18 MPa and 42 MPa, and average
equal to 30 MPa. This results in the fact that the specimen does not transform at
once from a uniform state in pure variant 1 (white) to pure variant 2 (black), see
Figure 6. Instead, we observe two competing trends. The first one is that the parts
where the phase-change penalty is lower prefer to transform earlier, the second one is
that the interfacial energy contribution favors 45 degree interfaces between variants.
This results in a behavior similar to the one that is experimentally observed: starting
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Figure 4. Nucleation of variant 2 (black) from variant 1 (white)
in a stress-controlled experiment with a heterogeneous, randomly
varying phase change penalty function g = 30 ± 12 MPa. Surface
tractions are σ1(t) + σ2(t) = −60MPa, and σ2(t) as in (45). The
loading increases from left to right in the first row of snapshots and
decreases in the second row.
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Figure 5. Volume fraction of variant 2 (i.e., e2∗) versus loading
parameter σ1−σ2

σ1+σ2
in a stress-controlled experiment with a heteroge-

neous, randomly varying phase change penalty function g = 30±12
MPa. Surface tractions are σ1(t) + σ2(t) = −60MPa, and σ2(t) as
in (45), i.e., the process starts at one on the horizontal axis and
follows the loop clockwise.
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from one variant (white) we observe an increasing number of black islands, with
growing 45 degree interfaces between the black and white domains.

Figure 6. Nucleation of variant 2 (black) from variant 1 (white)
under vertical uniaxial loading with a heterogeneous, randomly
varying phase change penalty function g = 30 ± 12 MPa. Sur-
face tractions are σ1(t) = 0 and σ2(t) varying in the range ±60
MPa. The loading increases from left to right in the first row of
snapshots and decreases in the second row.



DOMAIN PATTERNS AND HYSTERESIS 497

-1

-0.5

 0

 0.5

 1

-0.03 -0.02 -0.01  0  0.01  0.02  0.03

n
o

rm
a
li

z
e
d

 s
u

rf
a
c
e
 f

o
rc

e

strain_22

Figure 7. Stress–strain diagram for the uniaxial loading with a
heterogeneous, randomly varying phase change penalty function
g = 30 ± 12 MPa, and σ1(t) = 0 and σ2(t) varying in the range
±60 MPa. The normalized surface force σ2(t)/60 in the vertical
axis is plotted against the 22 component of the average strain in
the specimen.

Acknowledgments. This work was conceived and completed during visits of M.K.
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