
Manuscript submitted to Website: http://AIMsciences.org
AIMS’ Journals
Volume X, Number 0X, XX 200X pp. X–XX

MODELLING OF WHEAT-FLOUR DOUGH MIXING AS AN

OPEN-LOOP HYSTERETIC PROCESS

Robert S. Anderssen

CSIRO Mathematics, Informatics and Statistics
North Road, ANU Campus, Acton ACT

GPO Box 664, Canberra, ACT 2601, Australia

Martin Kruž́ık
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Abstract. Motivated by the fact that various experimental results yield strong

confirmatory support for the hypothesis that “the mixing of a wheat-flour

dough is essentially a rate-independent process”, this paper examines how the
mixing can be modelled using the rigorous mathematical framework developed

to model an incremental time evolving deformation of an elasto-plastic mate-

rial. Initially, for the time evolution of a rate-independent elastic process, the
concept is introduced of an “energetic solution” [24] as the characterization

for the rate-independent deformations occurring. The framework in which it
is defined is formulated in terms of a polyconvex stored energy density and

a multiplicative decomposition of large deformations into elastic and nonelas-

tic (plastic or viscous) components. The mixing of a dough to peak dough
development is then modelled as a sequence of incremental elasto-nonelastic

deformations. For such incremental processes, the existence of Sobolev solu-

tions is guaranteed. Finally, the limit passage to vanishing time increment
leads to the existence of an energetic solution to our problem.

1. Introduction. In the breeding of new varieties of crops, such as wheat, the
challenge is not only to maintain resistance against known pest and diseases but
also to guarantee the product quality for which the crop has been grown. For wheat,
the second aspect relates to guaranteeing that the new pest and disease resistant
varieties include ones that make good breads, cakes or pastas.

As well as understanding the molecular differences between the wheat which
make various types of breads, cakes or pastas, it is also important to study, in
terms of the underlying molecular dynamics, the rheological (flow and deformation)
behavior involved with the the various stages of their manufacture. For wheat, such
insight is important from a number if independent perspective - the growing and
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ripening; the milling to make the flour; the mixing of the wheat-flour dough; the
baking of the dough. In order to improve the energy efficiency of the processing and
maintaining the quality of the end-product, such information feeds back iteratively
on the breeding, the science and the technology.

It has already been hypothesized, on the basis of extensive experimental evidence
[4, 12], that “the mixing of a wheat-flour dough is essentially a rate-independent pro-
cess”. A detailed investigation and review of the possibility along with the results
of a detailed experimental study are given in Anderssen et al. [4]. The fact that the
rotational speed of the Mixograph slows as the elastic potential energy accumulates
and correlates positively with the size of the bandwidth of the mixogram recording
the dynamics of the mixing is highlighted in Anderssen et al. [3]. Such results were
used as motivation by Anderssen et al. [2] in their examination of the global behav-
ior of elastoplastic and viscoelastic materials with hysteresis-type state equations.
Verification of the hysteretic nature of the extension, rupture and relax occurring
during the mixing and recorded as a mixogram on a Mixograph was published by
Gras et al. [12, 1].

In this paper, a theoretical basis is developed to explain the rheology of the
apparent rate-independent dynamics of the mixing of a wheat-flour dough. The
approach taken is based on utilizing the concept of Mielke and Theil [23, 24] of “en-
ergetic solution” as the characterization for the time evolution of a rate-independent
deformation process. It is initially introduced for rate-independent elastic materi-
als and then extended for the characterization of rate-independent elasto-nonelastic
materials. The mixing of a dough is then modeled as a sequence of incremental
elasto-nonelastic deformations. Regularity conditions are then established which
guarantee the existence of energetic solutions for such incremental processes. The
essence of the required regularity can then be viewed as an indirect characterization
of the dynamics of the molecular interactions occurring within a wheat-flour dough
during its mixing.

Here, the material properties of the dough are modelled using a polyconvex stored
energy density while the mixing is modelled as a multiplicative decomposition of
the large deformations into elastic and nonelastic components.

The role of hysteresis as the basis for the dynamics of physical processes has been
studied by various authors including the study by Pokrovskii and colleagues [5] of
rate-independent processes in terrestrial hydrology.

1.1. The unifying thread and organization of the paper. The strain harden-
ing, which occurs in materials when subjected to repetitive (incremental) loading,
is an open loop hysteretic process which tracks how the stress (or, alternatively, the
strain) increases as a function of the repetitive loading. The associated mathemat-
ical modelling is quite different from that associated with closed loop hysteresis.
When the open loop dynamics is rate-independent, which occurs in many materi-
als, the associated mathematical modelling simplifies and is the focus of the current
paper.

The theory of Sections 3, 3.1 and 4 is initially motivated with a discussion in
Section 2 of the rate-independence of the mixing of a wheat-flour (bread) dough,
where the historical and experimental evidence is reviewed.

Even though parts of the dough are rupturing during the mixing, at any stage,
the dough is essentially experiencing a dominant extensional repetitive (incremen-
tal) loading like that applied to the strain hardening of steel. In both the steel
and the dough situations, it is the molecular structural changes that the repetitive
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loading engenders that is the source, for both, of the observed strain hardening. For
steel, the strain hardening occurs as a result of the formation of the dislocations
through plastic deformation with the associated ductility (extent to which plas-
tic deformation can occur) decreasing as the strain hardening increases. A similar
phenomenology occurs within a dough during its (repetitive loading) mixing. The
formation of the dislocations is replaced by the increasing alignment of the gluten
protein chains within the dough, and the decreasing ductility by the increasing
stress that must be applied in the extension of the dough as the mixing progresses
(up to peak dough development).

Consequently, though the molecular mechanisms are different, the essential stress-
strain dynamics are the same from a mathematical modelling perspective. The chal-
lenge becomes one of identifying how the structure of the mathematical modelling
is formalized is see the difference. The natural choice is the stored energy density
(functional), because it models how a system stores energy as repetitive loading is
applied. The subsequent stress-strained dynamics is determined by its structure, as
detailed in Sections 3, 3.1 and 4.

For the wheat-flour dough for hard wheats, various authors [9, 26] have concluded
that, on the basis of rheological oscillatory shear experimentation, the development
of the gluten network in the dough behaves in a hyperelastic manner and that
an appropriate model for the associated stored energy density is Mooney-Rivlin
(equation (1) in [9]). The Mooney-Rivlin stored energy density is a particular
representative of the class of stored energy densities examined in Sections 3, 3.1
and 4.

2. The rate-independence of wheat-flour (bread) dough mixing. Since the
1930, various instruments have been designed to measure the forces involved with
the mixing of wheat-flour (bread) dough. They include the Mixogram and the
Farinograph. Their initial importance related to them being able to assist with the
categorize wheat on the basis of its intended use and, thereby, its economic value.
Gradually, they played an increasingly important role in the development of cereal
science by assisting with plant breeding through the discovery the role of wheat
protein and starches in the making of good breads, cakes and pasta.

The first experimental proof of the dominant rate-independent behaviour of the
mixing of a wheat-flour (bread) dough is contained in a paper by Kilborn and
Tipples [14]. As shown in Fig. 6, 8 and 10 in their paper, the rate independence
was established for a number of the properties of the breads made from them - loaf
volume, crumb colour and crumb texture. Interestingly, in the bottom panels of
their figures, the mixing time (MT), to reach the desired outcome, is plotted as
a function of revolutions per minute (RPM). A plot of the number of revolutions,
the product of MT and RPM, as a function of RPM would have produced a similar
structure to that seen in the other panels of their figures. However, because the goal
of the paper was a study of mixing intensity and work input to reach peak dough
development, the fact that rate-independence had been established experimentally
was overlooked.

On very early commercial mixers, there was a counter which counted the number
of revolutions of the mixer and this was used by the operator to determine when a
dough was fully developed.

The advantage of the Mixogram is that it is a pin mixer and has an action
similar to that of commercial mixers. On a Mixogram, the force with which the
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dough being mixed resists its elongation between the moving and fixed pins is
measured as a mixogram. The resulting rheological flow is dominantly elongational.
The original scientific instruments, like the ones used by Kilborn and Tipples [14],
were mechanical devices with the forces with which the dough resisted elongation
recorded using a pen on moving paper device.

The invention of electronic versions of the Mixograph, recording the stress ev-
ery millisecond, allowed the high resolution structure within a mixogram to be
recorded electronically and examined in detail. Using such an instrument, the
rate-independence of dough mixing to achieve peak dough development was con-
firmed scientifically and reported in papers by Anderssen, Gras and MacRitchie
[3, 4]. It follows that, because of the rate-independence, dough is mixed once the
right amount of stress has been applied independent of the speed of the mixing.
This is easily visible from the positive one homogeneity of the dissipation potential.
This establishes that once the appropriate amount of extensional energy has been
accumulated by a dough, the molecular alignment of the gluten protein network
associated with peak dough development will have been achieved.

A possible contributing molecular factor to the rate-independence of the mixing
is that, in a hard (bread) wheat, there is strong cohesion between the gluten proteins
and the starch granules. The cohesion is known to be the key genetic nuance that
distinguishes a hard wheat from a soft one. Consequently, the molecular alignment
process occurring during the mixing may be assisted by the presence of the starch
granules since they make up about 60− 70% of a wheat-flour on a dry weight basis.

Much rheological wheat-flour dough research is not based on the direct record-
ing of the dynamics of the mixing of a dough but on oscillatory shear [26] and
extensional [25] experiments performed on samples of dough already mixed to peak
dough development. Consequently, the conclusions thereby derived, since they are
based on comparing different samples of the same wheat variety prepared on differ-
ent mixing devices, are implicitly assuming that the mixing performed to produce
the samples is rate-independent. To assume otherwise would required that compar-
isons could only be performed on samples which had been prepared using the same
preparation and mixing protocols.

This contribution proposes a mathematical model of dough mixing. It is inspired
by [4] where the authors observed that dough mixing to peak dough development can
be viewed as essentially rate-independent; i.e., with respect to specified outcomes,
the result of the dough mixing, which includes the quality of the bread made from
the dough, is independent of the mixer speed. On the other hand, because the
deformations occurring during the mixing are large, the associated mathematical
modelling should reflect injectivity and orientation preservation of deformations as
suggested in [10] as well as involving a multiplicative decomposition of the deforma-
tion into elastic and nonelastic contributions. If it is assumed that a dough behaves
like a hyperelastic material (e.g. as in [9]), it follows that the stored energy density
diverges to infinity whenever the deformation gradient tends to zero, which does
not agree with convexity holding for the stored energy density. Consequently, the
elasticity equations together with a flow rule governing the evolution of nonelastic
deformations are not appropriate to describe equilibrium states of the material. To
cope with this difficulty, we advantageously use the concept of energetic solution
developed by Mielke and his collaborators [23, 24] to define a notion of a solution
of rate-independent processes. In this way, we obtain a well-posed problem allow-
ing for rigorous analysis. Future research will involve checking on the extent to
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which experimental data validate the appropriateness of this new approach to the
modelling of the rate-independence of dough mixing.

This then represents justification for turning to the theory of energetic solutions
to model rate-independent processes. Though this theory was developed to model
elasto-plastic rate-independence process, like any mathematical theory, it can be
applied to any practical situation where the assumptions of the theory are valid.
This includes the modelling of rate-independence in a viscoelastic context. Here,
the link concepts that matches the theory with the application are the form of the
models for the stored energy density and the large deformations.

Comment. Though, through the viscosity, the dissipation of energy is involved,
one cannot argue that rate-independence does occur. Rate-independence is mea-
sured with respect to a specified goal; namely, the goal that is achieved with the
application of the same amount of energy independent of the speed with which
the energy is accumulated. This is the situation for the mixing of a wheat flour
dough to peak dough development. Here, the repetitive extensional elongation-
and-rupture process occurring in a Mixograph performs an alignment of the various
gluten proteins (and, in particular, the glutenins) which is recorded at an increas-
ing extensional stress with which the dough resists the same extension. This is
the essence of the open-loop hysteresis which characterizes the stress-strain process
occurring in the mixing of a dough - the stress with which the dough is resisting
elongation is increasing with the extensional strains remaining the same.

3. Preliminaries and notation. In what follows, Ω ⊂ Rn is an open bounded
Lipschitz domain representing the dough, Lβ(Ω;Rn), 1 ≤ β < +∞ denotes the usual
Lebesgue space of mappings Ω → Rn whose modulus is integrable with the power
β and L∞(Ω;Rn) is the space of measurable and essentially bounded mappings
Ω→ Rn. Further, W 1,β(Ω;Rn) standardly represents the space of mappings which

live in Lβ(Ω;Rn) and their gradients belong to Lβ(Ω;Rn×n). Finally, W 1,β
0 (Ω;Rn)

is a subspace of W 1,β(Ω;Rn) of maps with the zero trace on ∂Ω. Finally, C(Ω) or
C(Rn×n) denotes function spaces of functions continuous on Ω or Rn×n, respectively
and C1(Ω) denotes the spaces of continuously differentiable functions.

In the sequel, Ω ⊂ Rn represents the so-called reference configuration of our
material (dough), and ∂Ω ⊃ Γ0,Γ1 which are disjoint. The overall deformation
will be denoted y : Ω → Rn. The evolution of the system will be controlled by
external forces. Let f(t) : Ω→ Rn be the (volume) density of external body forces
and g(t) : Γ1 ⊂ ∂Ω → Rn be the (surface) density of surface forces. The work
of these forces done on the specimen models the action of mixing on the dough.
The (hyper)elastic behavior of our specimen is influenced by a multidimensional
internal variable z, which in the framework of elastoplasticity represents plastic
deformation and hardening variables. Typically, its values live in some set Z to be
specified later. In the present setting, we will also consider its gradient ∇z as e.g. in
[7, 27] to capture nonlocal effects. From the mathematical point of view, it also
provides us with additional compactness allowing for a passage to the limit, thus it is
often called “regularization”. Hence, the stored energy W of the material depends
on the internal variable z. We are interested in the rate-independent evolution
of the material. To this end, we assume the existence of a nonnegative convex
potential δ = δ(ż) of dissipative forces, where ż denotes the time derivative of z.
In order to ensure rate-independence, δ must be positively one-homogeneous, i.e.,
δ(αż) = αδ(ż) for all α ≥ 0.



6 ROBERT S. ANDERSSEN AND MARTIN KRUŽÍK

The potential energy of our system can be written as (ε > 0)

I(t, y(t), z(t)) :=

∫
Ω

W(∇y(t), z(t)) dx+ ε

∫
Ω

|∇z(t)|ω dx− L(t, y(t)) , (1)

where the work done by external forces is

L(t, y(t)) :=

∫
Ω

f(t) · y(t) dx+

∫
Γ1

g(t) · y(t) dS (2)

and the following energy balance is satisfied

d

dt
I(t, y(t), z(t)) = L̇(t, y(t))− d

dt
Diss(z; [0, t]) , (3)

where

Diss(z; [0, t]) :=

∫ t

0

∫
Ω

δ(ż(s)) dxds .

Hence, the integration with respect to time gives

I(t, y(t), z(t)) + Diss(z; [0, t]) = I(0, y(0), z(0)) +

∫ t

0

L̇(s, y(s)) ds .

We can also consider a more general form of δ which can also depend on (x, z),
i.e. δ := δ(x, z, ż).

Typically, however, we do not have enough smoothness in the internal variable
to compute the time derivative on the right-hand side of (3).

Following Mielke [19] we define a dissipation distance between two values of
internal variables z0, z1 ∈ Z as

D(x, z0, z1) := inf
z

{∫ 1

0

δ(x, z(s), ż(s)) ds; z(0) = z0 , z(1) = z1

}
, (4)

where z ∈ C1([0, 1];Z), and set

D(z1, z2) =

∫
Ω

D(x, z1(x), z2(x)) dx , (5)

where z1, z2 ∈ Z := {z : Ω → RM ; z(x) ∈ Z a.e. in Ω}. We assume that Z is
equipped with strong and weak topologies which define notions of convergence used
below.

Following [11, 18] we impose the following assumptions on D: (i) Weak lower
semicontinuity:

D(z, z̃) ≤ lim inf
k→∞

D(zk, z̃k) , (6)

whenever zk⇀z and z̃k⇀z̃.
(ii) Positivity: If {zk} ⊂ Z is bounded and min{D(zk, z),D(z, zk)} → 0 then

zk⇀z . (7)
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3.1. Energetic solution. Suppose that we look for the time evolution of y(t) ∈
Y ⊂ {y : Ω → Rn} and z(t) ∈ Z during the time interval [0, T ]. The following two
properties are the key ingredients of the so-called energetic solution due to Mielke
and Theil [23, 24].
(i) Stability inequality:
∀t ∈ [0, T ] , z̃ ∈ Z , y ∈ Y:

I(t, y(t), z(t)) ≤ I(t, ỹ, z̃) +D(z(t), z̃) (8)

(ii) Energy balance: ∀ 0 ≤ t ≤ T

I(t, y(t), z(t)) + Var(D, z; [0, t]) = I(s, y(0), z(0)) +

∫ t

0

L̇(ξ, y(ξ)) dξ , (9)

where

Var(D, z; [s, t]) := sup

{
N∑
i=1

D(z(ti), z(ti−1)); {ti} partition of [s, t]

}
Definition 3.1. The mapping t 7→ (y(t), z(t)) ∈ Y × Z is an energetic solution to
the problem (I, δ, L) if the stability inequality and the energy balance are satisfied.

Remark 1. For simplicity, we do not work with time-dependent Dirichlet boundary
conditions here. However, the approach can be easily modified to include them.

It is convenient to put Q := Y × Z and to set q := (y, z). We define the set of
stable states at time t as

S(t) := {q ∈ Q : ∀q̃ ∈ Q : I(t, q) ≤ I(t, q̃) +D(q, q̃)} (10)

4. Applications to elastic-nonelastic processes. Here, we discuss the applica-
tion of the energetic solution approach to an elasto-plastic situation.

4.1. Problem statement. In what follows y : Ω → Rn will be a deformation of
a body Ω ⊂ Rn (in a fixed reference configuration) with the deformation gradient
F = ∇y. In particular, y covers both elastic, as well as plastic deformation. We
define the multiplicative split, F = FeFp, into an elastic part Fe and an irreversible
plastic part Fp which belongs to SL(n) := {A ∈ Rn×n; det A = 1}. The so-called
plastic strain Fp and the vector p ∈ Rm of hardening variables are internal variables
influencing elasticity. In other words, z(x) = (Fp(x), p(x)) ∈ SL(n) × Rm =: Z for
almost all x ∈ Ω.

The energy functional I now takes the form

I(t, y(t), z(t) :=

∫
Ω

W(∇yF−1
p , Fp,∇Fp, p,∇p) dx− L(t, y(t)) , (11)

with L given by (2).
In order to ease the notation we omit the dependence of W on x, however, all

the statements in this paper may include nonhomogeneous W, too.
In what follows, we suppose that

y ∈ Y :=
{
y ∈W 1,d(Ω;Rn); y = y0 on Γ0 , det∇y > 0 a.e. ,∫

Ω

det∇y(x) dx ≤ |y(Ω)|
}
, (12)
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where Γ0 ⊂ ∂Ω with a positive surface measure. Moreover, we suppose that Γ0 ∩
Γ1 = ∅. The inequality condition

∫
Ω

det∇y(x) dx ≤ |y(Ω)| is the so-called injectivity
condition [10] ensuring that y restricted to Ω is one-to-one. Here, |y(Ω)| denotes
the three-dimensional Lebesgue measure of y(Ω), i.e.,

∫
y(Ω)

1 dx. Further,

Z := {(Fp, p) ∈W 1,β(Ω;Rn×n)×W 1,ω(Ω;Rm) : Fp(x) ∈ SL(n) for a.e. x ∈ Ω} .
As q = (y, z) it will be advantageous and will make no confusion to write D as

dependent on q, i.e.,
D(q1, q2) := D(z1, z2)

if q1 = (y1, z1) and q2 = (y2, z2). Similarly, we may write I in terms of q = (y, z) as

I(t, q(t)) =

∫
Ω

W(∇yF−1
p , Fp,∇Fp, p,∇p) dx− L(t, q(t)) ,

where, obviously, L(t, q(t) := L(t, y(t)).
In this situation, Q = (Q1, Q2) are conjugate plastic stress and conjugate hard-

ening forces, respectively, defined as

Q1 = div

(
∂W(∇yF−1

p , Fp,∇Fp, p,∇p)
∂∇Fp

)
−
∂W(∇yF−1

p , Fp,∇Fp, p,∇p)
∂Fp

(13)

and

Q2 = div

(
∂W(∇yF−1

p , Fp,∇Fp, p,∇p)
∂∇p

)
−
∂W(∇yF−1

p , Fp,∇Fp, p,∇p)
∂p

. (14)

The elastic domain is defined as

Q(x, z) = ∂sub
ż δ(x, z, 0) , (15)

where ∂sub denotes the subdifferential in the sense of convex analysis.

4.2. Assumptions on problem data. As in [13] we will consider so-called sepa-
rable materials, i.e., materials where the elasto-plastic energy density has the form

W(Fe, Fp,∇Fp, p,∇p) :=W1(Fe) +W2(Fp,∇Fp, p,∇p) , (16)

which represents a standard constitutive assumption in plasticity. Nevertheless, our
theory is not restricted only to separable materials. We start with assumptions on
W:
(i) W1,W2 ≥ 0 are continuous in all their arguments. Moreover, W1 is polyconvex
[6] which means that W1(F ) = h(F, cofF,detF ) where h : R19 → R ∪ {+∞} is
a convex function such that W1(F ) < +∞ if detF > 0 and W1(F ) → +∞ if
detF → 0+. Further, +∞ >W1(F ) ≥ 0 if detF > 0 and
(ii) Suppose that there are two constants C, c > 0 so that the following assumptions
hold for all arguments of involved functions: α, β > n, ω > n:

W1(F ) ≥ c|F |α ,

C(|Fp|β + |G|β + |p|ω + |π|ω) ≥ W2(Fp, G, p, π)

≥ c(|Fp|β + |G|β + |p|ω + |π|ω) , (17)

where | · | denotes the Euclidean norm;

(iii) W2(Fp, ·, p, ·) is convex for all (Fp, p) ∈ Rn×n × Rm.
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As an example we can consider the Mooney-Rivlin material of the form

W1(F ) :=

{
b|F |α + c|cofF |2 + Γ(detF ) if detF > 0,

+∞ otherwise.
(18)

Here b, c > 0 and Γ(δ) = dδ2 − e log δ, d, e > 0 and we recall that cofF :=
detF (F−>) if F is invertible.

A simple example of W2, the density of energy stored in defects, is (a1, b1 > 0)

W2(Fp,∇Fp, p,∇p) := a1|Fp|β + b1|∇Fp|β . (19)

We recall the following assumptions on D:
(i) Lower semicontinuity:

D(z, z̃) ≤ lim inf
k→∞

D(zk, z̃k) , (20)

whenever zk⇀z and z̃k⇀z̃.
(ii) Positivity: If {zk} ⊂ Z is bounded and min{D(zk, z),D(z, zk)} → 0 then zk⇀z.

In order to prove the existence of a solution to (25) we must impose some data
qualifications. In what follows, we assume that

f ∈ C1
(

[0, T ];Ld
∗

(Ω;Rn)
)
, (21)

g ∈ C1
(

[0, T ];Ld
#

(Γ1;Rn)
)
, (22)

where d∗ ≥ nd/(n− d) if 1 ≤ d < n or d∗ ≥ 1 otherwise. Similarly, we suppose that
d# ≥ (nd− d)/(n− d) if d < n or d# ≥ 1 otherwise.

If D : Q × Q → [0,+∞), i.e., no irreversibility constraint is imposed on plastic
processes as in the case of isotropic hardening, then it is sufficient if D from (4)
satisfies

D(x, z1, z2) ≤ c(x) + C(|Fp1
|β

∗−ε + |Fp2
|β

∗−ε + |p1|ω
∗−ε + |p2|ω

∗−ε) , (23)

where ε > 0 is small enough and β∗ := nβ/(n− β) if n > β and β∗ < +∞ if β ≥ n.
Similarly, ω∗ := nω/(n − ω) if n > ω and ω∗ < +∞ if ω ≥ n. Then the compact
embedding ensures continuity of D. We refer to [18, Ex. 3.4] for an example of
isotropic-hardening dissipation. Another example might simply be (a > 0)

D(x, z1, z2) = a|Fp1 − Fp2 | , (24)

which corresponds to δ(x, z, ż) = a|Ḟp|.
Remark. The above analysis also applied to irreversible rate-independent pro-

cesses, like that occurring in dough mixing, on assuming that D(x, z1, z2) = +∞,
since this condition guarantees the irreversibility. Fuller details can be found
in [18, 15].

In this way, through the introduction of a polyconvex stored energy functional
and a multiplicative decomposition of the large deformations into elastic and nonelas-
tic components, a rigorous mathematical framework has been constructed in which
to model rate-independent processes such as the mixing of a dough to peak dough
development and elasto-plastic strain hardening. The rigor is achieved through the
rate-independent dynamics being characterized as an energetic solution.

Consequently, the final step, which validates the appropriateness of this frame-
work, is to prove that energetic solutions exist.
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Theorem 4.1. Let α−1 + β−1 ≤ d−1 < n−1 < 1 and ω = β. Let q0 ∈ Q the initial
condition be a stable state at t = 0. Let the assumptions on W, D, f and g from
Section 4.2 hold. Let further (23) hold. Then there is a process q : [0, T ]→ Q with
q(t) = (y(t), z(t)) such that q is an energetic solution according to Definition 3.1.

Proof. The proof is partially constructive as it it based on semidiscretization in
time and a passage to the limit for a vanishing time increment. Thus, it also
suggests an algorithm for a numerical solution. We consider a stable initial condition
q0
τ := q0 ∈ Q.

Let us take τ > 0, a time step, chosen in the way that N = T/τ ∈ N. For
1 ≤ k ≤ N , tk := kτ , find qkτ ∈ Q such that qkτ solves

minimize I(tk, q) +D(qk−1
τ , q)

subject to qkτ ∈ Q .

}
(25)

Details of the proof can be found e.g. in [18].

5. Conclusions. The aim of this contribution has been to explain how the rate-
independence of mixing a bread (wheat flour) dough to peak dough development
can be modelled using the energetic solution formalism developed to model the
strain hardening of elasto-plastic materials when subjected to repetitive loading.
It is based on the mathematical theory of rate-independent processes developed
by Mielke and his collaborators [17, 18, 20, 21, 22, 23, 24], which has already been
successfully applied to elastoplasticity [8, 15, 16, 19], to mention a few papers in this
direction. Dough is modeled as an elatic-nonelastic (e.g. elastoplastic like) material
with isotropic hardening which allows for an open loop hysteresis loop observed in
experiments. The elastic behavior of dough is described by a polyconvex energy
density; e.g. (18) and [9]. Our model is restricted to injective and orientation-
preserving deformations. Our approach easily allows for the incorporation of the
volumetric constraint detF = 1 (incompressibility of the dough) if required.

Future research will involve checking on the extent to which experimental data
validate the appropriateness of this new approach to the modelling of the rate-
independence of dough mixing. For instance, one can try to fit constants in the
simple examples of energies and dissipations (18), (19), and (24), respectively. The
proof of the existence of a solution uses semidiscretization in time which directly
suggests a strategy for a possible numerical solution, using finite elements, for in-
stance. The existence of a solution then justifies questions about existence of dis-
crete approximates and their convergence as space-time mesh parameters tend to
zero.
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