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1 Introduction

In this article, we examine regularity properties of the following constraint system:

C = {x ∈ R
n| fi (x) = 0, i ∈ I1; fi (x) ≤ 0, i ∈ I2}, (1)

where I1 and I2 are finite index sets: I1 = {1, . . . , l} and I2 = {l + 1, . . . , m}; l and
m are nonnegative integers, 0 ≤ l ≤ m. If either l = 0 or l = m, then, respectively,
either I1 or I2 is empty.

System (1) can represent, e.g., the set of admissible points (feasible set) in the
general nonlinear programming problem:

Minimize f0(x) subject to x ∈ C. (2)

The functions fi : R
n → R, i = 0, . . . , m, are assumed continuously differentiable

near some x̄ ∈ C .
The Lagrange function for problem (1)–(2) is defined in the usual way:

L(x, λ) := f0(x) +
m∑

i=1

λi fi (x), x ∈ R
n, λ = (λ1, . . . , λm) ∈ R

m .

Given an x ∈ C , one can define the corresponding set of Lagrange multipliers:

�(x) := {λ = (λ1, . . . λm) ∈ R
m |∇x L(x, λ) = 0, λi ≥ 0, λi fi (x) = 0, i ∈ I2}.

The main set of necessary optimality conditions for problem (1)–(2)—Karush–Kuhn–
Tucker (KKT) conditions—consist in the existence of Lagrange multipliers: if x̄ is a
local minimizer in problem (1)–(2), then �(x̄) �= ∅, provided certain regularity condi-
tions, usually referred to as constraint qualifications (CQ), are satisfied. The most well
known and widely used one is the Mangasarian–Fromovitz constraint qualification
(MFCQ) [21].

Given an x ∈ C , it is typical to define the subset

I2(x) := {i ∈ I2| fi (x) = 0}

of active (at x) inequality constraints’ indices.

Definition 1 MFCQ is satisfied at x̄ ∈ C if

(i) the vectors ∇ fi (x̄), i ∈ I1, are linearly independent;
(ii) there exists a z ∈ R

n such that

〈∇ fi (x̄), z〉 = 0, i ∈ I1, 〈∇ fi (x̄), z〉 < 0, i ∈ I2(x̄).

Unfortunately, MFCQ fails for many important problems like, e.g., mathematical
programs with complementarity constraints [30].
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A much weaker constraint qualification still guaranteeing the fulfillment of the
KKT conditions at a local minimizer is credited to Abadie [1] (see, e.g. [6,5]). Let
x̄ ∈ C . Recall the definition of the tangent (also known as Bouligand or contingent)
cone [5] to C at x̄ :

TC (x̄) := Lim sup
α→+∞

α(C − x̄)

:= {z ∈ R
n|∃{xk} ⊂ C, ∃{αk} → +∞ such that αk(xk − x̄) → z}.

This is a general definition applicable to any set C . If this set is given by smooth
equalities and inequalities (1), one can consider the linearized cone to C at x̄ :

�C (x̄) := {z ∈ R
n|〈∇ fi (x̄), z〉 = 0, i ∈ I1, 〈∇ fi (x̄), z〉 ≤ 0, i ∈ I2(x̄)}. (3)

Definition 2 The Abadie constraint qualification (ACQ) is satisfied at x̄ ∈ C if

TC (x̄) = �C (x̄). (4)

ACQ can be weakened further if the cones TC (x̄) and �C (x̄) in (4) are replaced by
their polar cones. This condition is known as Guignard constraint qualification [10].

The main drawback of the Abadie and Guignard CQs is that they are difficult to
verify.

Several other CQs are known within the range between MFCQ and ACQ, like the
Constant positive linear dependence condition [4,33] and the series of its relaxations
due to Andreani et al.: the Relaxed constant positive linear dependence condition [2],
the Constant rank of the subspace component (CRSC) condition [3] and the Constant
positive generator condition [3] as well as the Constant rank Mangasarian–Fromovitz
constraint qualification (CRMFCQ) and the Relaxed Mangasarian–Fromovitz con-
straint qualification (RMFCQ) defined in [23].

The last two conditions will be discussed in more detail in the next section. Partic-
ularly, we are going to show that conditions CRSC and RMFCQ are equivalent.

There exist also conditions which are independent of MFCQ, like Constant rank
constraint qualification introduced by Janin [16] and later studied by many authors
(see, e.g. [19]).

Definition 3 The Constant rank constraint qualification (CRCQ) is satisfied at x̄ ∈ C
if there exists a neighbourhood V (x̄) of x̄ such that, for any index set J ⊂ I1 ∪ I2(x̄),
the system of vectors {∇ fi (x), i ∈ J } has constant rank in V (x̄).

The last condition is also difficult to verify. Besides, it can be too restrictive in many
important situations. A relaxation of CRCQ was introduced in [22,24].

Definition 4 The Relaxed constant rank constraint qualification (RCRCQ) is satisfied
at x̄ ∈ C if there exists a neighbourhood V (x̄) of x̄ such that, for any index set
J ⊂ I2(x̄), the system of vectors {∇ fi (x), i ∈ I1 ∪ J } has constant rank in V (x̄).
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Some examples of application of RCRCQ can be found in [24]. However, when
I2(x̄) is large, verifying this condition can still be a challenging job. Similar to CRCQ,
condition RCRCQ is independent of MFCQ and implies RMFCQ.

For the relationships among various CQs we refer the reader to [5, Chapter 5] (see
also [3]). The relationships between MFCQ, CRCQ and RCRCQ and some applica-
tions of these conditions are presented in [19,20].

The question of validity of KKT conditions at local minimizers is closely connected
with stability properties of canonically perturbed constraint systems which, a fortiori,
play an important role in generalized differential calculus (cf., e.g. [11,19]). It follows
that some qualification conditions are needed also in problems of second order analysis
when one analyzes, for instance, solution maps to parameterized generalized equations
or, in particular, parameterized KKT systems [34,28,14]. Also the notion of amenable
set [38, Definition 10.23], very useful in second order analysis, relies on (a generalized
version of) MFCQ. It seems, however, that even in this area the standardly used CQs
could be replaced by suitable relaxations. In Sect. 5 we attempt to develop this idea
on the basis of RMFCQ.

The structure of the paper is as follows. In the next section, we discuss two suc-
cessive relaxations of MFCQ, the second one being also a relaxation of CRCQ while
still implying ACQ. Its relationship with (in fact, equivalence to) CRSC is also dis-
cussed. Well-posedness and robustness properties of CQs (particularly, CRMFCQ and
RMFCQ) are discussed in Sect. 3. In Sect. 4, we show that RMFCQ implies the error
bound property under the assumption that the gradients of the functions involved in
(1) are locally Lipschitz continuous. Section 5 is devoted to an application of RMFCQ
in second order analysis.

2 Relaxed Mangasarian–Fromovitz constraint qualifications

The most straightforward way of relaxing MFCQ is to replace the linear independence
condition in Definition 1 by the constant rank one.

Definition 5 The CRMFCQ is satisfied at x̄ ∈ C if

(i) the system of vectors {∇ fi (x), i ∈ I1} has constant rank in a neighbourhood of
x̄ ;

(ii) there exists a z ∈ R
n such that

〈∇ fi (x̄), z〉 = 0, i ∈ I1, 〈∇ fi (x̄), z〉 < 0, i ∈ I2(x̄).

Definition 5 was introduced in [23] where the term Extended Mangasarian–
Fromovitz condition was used.

For further relaxation of MFCQ, one needs to have a closer look at the structure of
the set of active indices I2(x̄). Denote

I 0
2 (x̄) := {i ∈ I2(x̄)|〈∇ fi (x̄), z〉 = 0 for all z ∈ �C (x̄)},

I −
2 (x̄) := {i ∈ I2(x̄)|〈∇ fi (x̄), z〉 < 0 for some z ∈ �C (x̄)}. (5)



On relaxing the MFCQ

Obviously I 0
2 (x̄) ∩ I −

2 (x̄) = ∅ and I2(x̄) = I 0
2 (x̄) ∪ I −

2 (x̄).
The next property was also introduced in [23] under the name Generalized

Mangasarian–Fromovitz condition.

Definition 6 The RMFCQ is satisfied at x̄ ∈ C if

(i) the system of vectors {∇ fi (x), i ∈ I1 ∪ I 0
2 (x̄)} has constant rank in a neighbour-

hood of x̄ ;
(ii) there exists a z ∈ R

n such that

〈∇ fi (x̄), z〉 = 0, i ∈ I1 ∪ I 0
2 (x̄), 〈∇ fi (x̄), z〉 < 0, i ∈ I −

2 (x̄). (6)

The second condition in the above definition is always satisfied, thanks to the
definitions of the sets I 0

2 (x̄) and I −
2 (x̄), and can be dropped. Indeed, if I −

2 (x̄) = ∅, the
condition holds trivially. If i ∈ I −

2 (x̄), then, for any z ∈ �C (x̄), it holds 〈∇ fi (x̄), z〉 ≤
0 and there exists a zi ∈ �C (x̄) such that 〈∇ fi (x̄), zi 〉 < 0. Set z◦ := ∑

i∈I −
2 (x̄) zi .

Then z◦ ∈ �C (x̄) and consequently 〈∇ fi (x̄), z◦〉 = 0 for i ∈ I1 ∪ I 0
2 (x̄). At the same

time, for i ∈ I −
2 (x̄), we have

〈∇ fi (x̄), z◦〉 =
∑

j∈I −
2 (x̄)

〈∇ fi (x̄), z j 〉 =
∑

j∈I −
2 (x̄)\{i}

〈∇ fi (x̄), z j 〉 + 〈∇ fi (x̄), zi 〉 < 0.

In the rest of the paper we use the following shortened version of Definition 6.

Definition 6′ The RMFCQ is satisfied at x̄ ∈ C if the system of vectors {∇ fi (x), i ∈
I1 ∪ I 0

2 (x̄)} has constant rank in a neighbourhood of x̄ .

All implications in the following diagram, except the last one, are straightforward.
The last implication is justified by Theorem 1 below.

M FC Q

��

C RC Q

��
C RM FC Q

������������� RC RC Q

������������

RM FC Q

��
AC Q

The next theorem shows that RMFCQ, being weaker than both MFCQ and
CRMFCQ, is still stronger than ACQ and, hence, sufficient to guarantee the valid-
ity of the KKT conditions for problem (1)–(2).
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Theorem 1 If RMFCQ is satisfied at x̄ ∈ C, then TC (x̄) = �C (x̄).

Proof The inclusion TC (x̄) ⊂ �C (x̄) is always true by the definition of the tangent
cone. We only need to prove the opposite inclusion.

Let RMFCQ be satisfied at x̄ ∈ C . Then

ri �C (x̄) = {z ∈ R
n|〈∇ fi (x̄), z〉 = 0, i ∈ I1 ∪ I 0

2 (x̄),

〈∇ fi (x̄), z〉 < 0, i ∈ I −
2 (x̄)}. (7)

Indeed, if I −
2 (x̄) = ∅, the equality is trivial. Suppose I −

2 (x̄) �= ∅. The following
representation for the affine hull of �C (x̄) is straightforward:

aff �C (x̄) = {z ∈ R
n|〈∇ fi (x̄), z〉 = 0, i ∈ I1 ∪ I 0

2 (x̄)}.

Define a convex (sublinear) function h : R
n → R∞ := R ∪ {+∞}:

h(z) :=
{

max
i∈I −

2 (x̄)

〈∇ fi (x̄), z〉, z ∈ aff �C (x̄),

+∞, otherwise.

Then �C (x̄) = {z ∈ R
n|h(z) ≤ 0} and there exists a z ∈ R

n such that h(z) < 0.
Hence, by [37, Corollary 7.6.1],

ri �C (x̄) = {z ∈ R
n|h(z) < 0},

which implies (7).
Next we are going to show that ri �C (x̄) ⊂ TC (x̄). Let z ∈ ri �C (x̄). Then for any

sequences {xk} ⊂ R
n and {αk} ⊂ R such that αk → ∞ and αk(xk − x̄) → z as

k → ∞, it holds fi (xk) < 0 for all i ∈ I2 \ I 0
2 (x̄) = (I2 \ I2(x̄)) ∪ I −

2 (x̄) and all
sufficiently large k. Indeed, we obviously have xk → x̄ as k → ∞, and consequently,
for all sufficiently large k, it holds fi (xk) < 0 for all i ∈ I2 \ I2(x̄). If i ∈ I −

2 (x̄), then
〈∇ fi (x̄), z〉 < 0 and denoting zk := αk(xk − x̄), we have

fi (xk) = fi (x̄) + 〈∇ fi (x̄), xk − x̄〉 + o(α−1
k )

= α−1
k (〈∇ fi (x̄), zk〉 + αko(α−1

k )) < 0

for all sufficiently large k.
Let r > 0 denote the rank of the system of vectors {∇ fi (x̄), i ∈ I1 ∪ I 0

2 (x̄)}.
Due to Definition 6′, it remains the same if we consider instead the system of vectors
{∇ fi (x), i ∈ I1 ∪ I 0

2 (x̄)} for x in a neighbourhood of x̄ . We can assume without
loss of generality that I1 ∪ I 0

2 (x̄) = {i ∈ N|1 ≤ i ≤ r + q} for some integer
q ≥ 0, and the vectors {∇ fi (x̄), i = 1, . . . , r} are linearly independent. Then, using
the inverse function theorem, it is not difficult to establish (cf. [4, Lemma 3.2]) the
existence of continuously differentiable functions φi : R

r → R, i = 1, . . . , q, such
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that fr+i (x) = φi ( f1(x), . . . , fr (x)), i = 1, . . . , q, for all x near x̄ . Since x̄ ∈ C , it
follows immediately that φi (0Rr ) = 0, i = 1, . . . , q.

Now consider the system of equations

fi (x̄ + t z + x) = 0, i = 1, 2, . . . , r, (8)

with respect to t ∈ R and x ∈ R
n . Obviously (0, 0) ∈ R×R

n is a solution. The system
has full rank r ≤ n. Let x = (x1, . . . , xn) and suppose without loss of generality that
the above system is of rank r with respect to the first r components of x . Denote
u = (x1, . . . , xr ) ∈ R

r and v = (xr+1, . . . , xn) ∈ R
n−r . Then x = (u, v) with the

convention that x = u if r = n. By the implicit function theorem (see, e.g. [8]),
system (8) defines in a neighbourhood of (0, 0, 0) ∈ R × R

r × R
n−r a continuously

differentiable function (t, v) → u(t, v) such that fi (x̄ + t z + (u(t, v), v)) = 0 for all
i = 1, 2, . . . , r and all (t, v) near (0, 0) ∈ R×R

n, u(0, 0) = 0, and ∂u(0, 0)/∂t = 0.
Then x := x(t) := (u(t, 0), 0) satisfies system (8) for all t near 0 and x(t)/t → 0 as
t ↓ 0. Besides, for all t near 0, one has

fi (x̄ + t z + x(t)) = φi−r (0Rr ) = 0, i = r + 1, . . . , r + q.

Taking αk := k and xk := x̄ + k−1z + x(k−1), k = 1, 2, . . ., we see that

αk(xk − x̄) = z + kx(k−1) → z

as k → ∞ and

fi (xk) = 0, i ∈ I1 ∪ I 0
2 (x̄), fi (xk) < 0, i ∈ I2 \ I 0

2 (x̄),

that is, xk ∈ C for all sufficiently large k. Hence, z ∈ TC (x̄), and consequently
ri �C (x̄) ⊂ TC (x̄) which implies �C (x̄) ⊂ TC (x̄) by [37, Theorem 6.3]. ��

Condition RMFCQ can be strictly weaker than MFCQ.

Example 1 Let

C := {x = (x1, x2) ∈ R
2| − x2

1 + x2 ≤ 0,−x2
1 − x2 ≤ 0,

−x1 + x2 ≤ 0, x1 − x2 ≤ 0, x1 − 1 ≤ 0}.

It is easy to check that x̄ = (0, 0) is an isolated point of C . Define

f1(x) := −x2
1 + x2, f2(x) := −x2

1 − x2,

f3(x) := −x1 + x2, f4(x) := x1 − x2, f5(x) := x1 − 1.

Then I1 = ∅, I2 = {1, 2, 3, 4, 5}, I2(x̄) = {1, 2, 3, 4},

∇ f1(x)=
(−2x1

1

)
, ∇ f2(x)=

(−2x1
−1

)
, ∇ f3(x)=

(−1
1

)
, ∇ f4(x)=

(
1

−1

)
,
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�C (x̄) = {(0, 0)}, I 0
2 (x̄) = I2(x̄), I −

2 (x̄) = ∅, the system of vectors {∇ fi (x), i ∈
I 0
2 (x̄)} has rank 2 in a neighbourhood of x̄ and of course 〈∇ fi (x̄), 0R2〉 = 0, i ∈ I 0

2 (x̄).
Thus RMFCQ is satisfied at x̄ . On the other hand, MFCQ is not satisfied at x̄ : there is
no z ∈ R

2 such that 〈∇ fi (x̄), z〉 < 0, i ∈ I2(x̄).
CRCQ [16], RCRCQ [25,24], CPLD [4,33], and RCPLD [2] are not satisfied in

this example either. �
A new CQ introduced recently by Andreani et al. [3] uses the following set of

indices:

I ∗
2 (x̄) := {i ∈ I2(x̄)| − ∇ fi (x̄) ∈ (�C (x̄))◦}, (9)

where (�C (x̄))◦ denotes the (negative) polar cone to �C (x̄).

Definition 7 [3] The Constant rank of the subspace component (CRSC) condition is
satisfied at x̄ ∈ C if the system of vectors {∇ fi (x), i ∈ I1 ∪ I ∗

2 (x̄)} has constant rank
in a neighbourhood of x̄ .

Observe that 〈∇ fi (x̄), z〉 ≤ 0 for any z ∈ �C (x̄) and i ∈ I2(x̄) by definition of �C (x̄).
Hence, for any i ∈ I2(x̄), inclusion −∇ fi (x̄) ∈ (�C (x̄))◦ is equivalent to the equality
〈∇ fi (x̄), z〉 = 0 being valid for all z ∈ �C (x̄), that is, i ∈ I 0

2 (x̄). Thus I ∗
2 (x̄) = I 0

2 (x̄),
and consequently condition CRSC coincides with RMFCQ.

Since (�C (x̄))◦ admits the following representation:

(�C (x̄))◦ =
⎧
⎨

⎩
∑

i∈I1∪I2(x̄)

αi∇ fi (x̄)

∣∣∣∣αi ≥ 0, i ∈ I2(x̄)

⎫
⎬

⎭ ,

formula (9) can be slightly simplified:

I 0
2 (x̄) = I ∗

2 (x̄)

=
⎧
⎨

⎩ j ∈ I2(x̄)

∣∣∣∣−∇ f j (x̄) ∈
⎧
⎨

⎩
∑

i∈I1∪I2(x̄)\{ j}
αi∇ fi (x̄)

∣∣∣αi ≥ 0, i ∈ I2(x̄)

⎫
⎬

⎭

⎫
⎬

⎭ .

It is possible to show that RMFCQ is a particular case of a more general CQ due
to Penot [32].

Definition 8 The Penot constraint qualification is satisfied at x̄ ∈ C if for any z̄ ∈
�C (x̄) there exists a z ∈ R

n and a subset J2 ⊂ I2(x̄) such that, with J = I1 ∪ J2,

(i) 〈∇ fi (x̄), z̄〉 = 0, i ∈ J ;
(ii) 〈∇ fi (x̄), z〉 = 0, i ∈ J, 〈∇ fi (x̄), z〉 < 0, i ∈ I2(x̄) \ J2;

(iii) TC0(x̄) = {y ∈ R
n|〈∇ fi (x̄), y〉 = 0, i ∈ J } where

C0 := {y ∈ R
n| fi (x̄) = 0, i ∈ J }.

Unfortunately, the Penot constraint qualification is difficult to verify.



On relaxing the MFCQ

3 Well-posedness and robustness

From the point of view of applications, it is important to have regularity/qualification
conditions possessing certain robustness.

Definition 9 A CQ at x̄ ∈ C is

(i) well-posed [26] if, once it is satisfied at x̄ , it is also satisfied at any x ∈ C near x̄ .
(ii) robust if, once it is satisfied at x̄ , it implies that �(x) �= ∅ for any objective

function f0 and any local minimizer x of problem (1)–(2) in a neighbourhood of
x̄ .

MFCQ, the constant positive linear dependence condition, CRCQ and RCRCQ, as
well as the general quasi-normality condition from [31] are well-posed. At the same
time, the Abadie and Guignard CQs are neither well-posed nor robust.

Example 2 Let

C := {x = (x1, x2, x3) ∈ R
3| − x3

1 − x2 ≤ 0,−x3
1 + x2 ≤ 0,−x1 − x2

3 ≤ 0}.

Obviously, x̄ = (0, 0, 0) ∈ C . Define

f1(x) := −x3
1 − x2, f2(x) := −x3

1 + x2, f3(x) := −x1 − x2
3 .

Then I1 = ∅, I2 = I2(x̄) = {1, 2, 3}, and ACQ is satisfied at x̄ :

TC (x̄) = �C (x̄) = {z = (z1, z2, z3) ∈ R
3|z1 ≥ 0, z2 = 0}.

For any ε > 0, one can take xε = (0, 0, ε) ∈ R
3 which obviously belongs to C .

The tangent cone remains the same: TC (xε) = TC (x̄). However, I2(xε) = {1, 2} and
�C (xε) = {z = (z1, z2, z3) ∈ R

3|z2 = 0}. ACQ is not satisfied at xε.
Moreover, xε is obviously a minimizer of the function x �→ f0(x) := x1 subject

to x ∈ C while the KKT conditions at xε produce the following inconsistent system
with respect to (λ1, λ2, λ3) ∈ R

3:

⎛

⎝
1
0
0

⎞

⎠ + λ1

⎛

⎝
0

−1
0

⎞

⎠ + λ2

⎛

⎝
0
1
0

⎞

⎠ + λ3

⎛

⎝
−1
0

−2ε

⎞

⎠ =
⎛

⎝
0
0
0

⎞

⎠ ,

λ1 ≥ 0, λ2 ≥ 0, λ3 = 0.

�
Theorem 2 CRMFCQ is robust at any x̄ ∈ C.

Proof Let CRMFCQ be satisfied at some x̄ ∈ C . Then I −
2 (x̄) = I2(x̄). Choose

I 0
1 ⊂ I1 such that {∇ fi (x̄), i ∈ I 0

1 } is a maximal linear independent subsystem of
the system of vectors {∇ fi (x̄), i ∈ I1}. Then {∇ fi (x), i ∈ I 0

1 } is a maximal linear
independent subsystem of {∇ fi (x), i ∈ I1} for all x ∈ R

n near x̄ . Denote by r the rank
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of the system {∇ fi (x̄), i ∈ I1} and assume for simplicity that I 0
1 = {i = 1, 2, . . . , r}.

Then, as in the proof of Theorem 1, there exist continuously differentiable functions
φi : R

r → R, i ∈ I1 \ I 0
1 , such that fi (x) = φi ( f1(x), . . . , fr (x)) for all x near x̄ and

φi (0Rr ) = 0. Hence, there exists a neighbourhood U of x̄ such that C ∩ U = C0 ∩ U ,
where

C0 = {x ∈ R
n| fi (x) = 0, i ∈ I 0

1 ; fi (x) ≤ 0, i ∈ I2}.

With C0 replacing C , CRMFCQ becomes the standard MFCQ which is well defined
and holds true in a neighbourhood of x̄ . We will keep denotation U for this possibly
smaller neighbourhood. Hence, for any objective function f0 and any its local mini-
mizer on C ∩ U , there exist Lagrange multipliers λi , i ∈ I 0

1 ∪ I2. Now it is sufficient
to define additionally λi = 0, i ∈ I1 \ I 0

1 . ��

The following important lemma proved in [3, Lemma 5.3] is the key tool in estab-
lishing the well-posedness of RMFCQ. It is also used in the proof of Theorem 4 in the
next section.

Lemma 1 If RMFCQ is satisfied at x̄ , then I 0
2 (x) = I 0

2 (x̄) for all x ∈ C near x̄ .

The next theorem is a direct consequence of Lemma 1.

Theorem 3 RMFCQ is well-posed at any x̄ ∈ C.

4 RMFCQ and error bounds

In this section, we show that RMFCQ implies the error bounds property.

Definition 10 The constraint system C defined by (1) satisfies the error bound prop-
erty at x̄ ∈ C if there exists an α > 0 such that

d(x, C) ≤ α max{| fi (x)|, i ∈ I1; fi (x), i ∈ I2}

for all x near x̄ .

The concept of error bounds in mathematical programming goes back to Robinson
[35]. This property is also known as R-regularity [22,25].

Theorem 4 Let the gradients ∇ fi (x), i = 1, 2, . . . , m, be Lipschitz continuous in a
neighbourhood of x̄ ∈ C. If RMFCQ is satisfied at x̄ , then C satisfies the error bound
property at x̄ .

Given a y ∈ X , let 	C (y) denote its (possibly multivalued) projection on C cor-
responding to the Euclidean norm ‖ · ‖ on R

n , i.e., x ∈ 	C (y) if and only if x is a
minimizer of the function u → fy(u) := ‖u − y‖ on C . fy is differentiable at any
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u �= y with ∇ fy(u) �= 0. Assuming that y /∈ C , denote by �y(x) the corresponding
set of Lagrange multipliers at x ∈ 	C (y):

�y(x) :=
{

λ = (λ1, . . . λm) ∈ R
m |∇ fy(x) +

m∑

i=1

λi∇ fi (x) = 0,

λi ≥ 0, λi fi (x) = 0, i ∈ I2

}
. (10)

For an r > 0, denote

�r
y(x) := �y(x) ∩ (rBm)

where Bm is the unit ball in R
m .

The next lemma which is a direct consequence of [25, Theorem 2] plays a crucial
role in the proof of Theorem 4.

Lemma 2 Let the gradients ∇ fi (x), i = 1, 2, . . . , m, be Lipschitz continuous in a
neighbourhood of x̄ ∈ bd C (the boundary of C) and there exists an r > 0 such that
�r

y(x) �= ∅ for any y /∈ C in a neighbourhood of x̄ and any x ∈ 	C (y). Then C
satisfies the error bound property at x̄ .

Proof of Theorem 4 If x̄ lies in the interior of C , the error bound property holds
trivially. Suppose x̄ ∈ bd C , RMFCQ is satisfied at x̄ while the error bound prop-
erty does not hold at x̄ . By Lemma 2, there exist sequences {yk} and {xk} such that
yk /∈ C, xk ∈ 	C (yk) (k = 1, 2, . . .), yk → x̄ , and

d(0,�yk (xk)) → ∞ as k → ∞. (11)

We obviously have xk → x̄ . Passing to a subsequence if necessary, we can suppose
that I2(xk) = I ∗

2 (⊂ I2(x̄)) is constant and, making use of Theorem 3, RMFCQ is
satisfied at xk for all k = 1, 2, . . .. Hence, for all k,

�yk (xk) �= ∅; fi (xk) = 0, i ∈ I1 ∪ I ∗
2 ; fi (xk) < 0, i ∈ I2 \ I ∗

2 .

By Lemma 1, we can also assume that I 0
2 (xk) = I 0

2 (x̄) ⊂ I ∗
2 for all k.

Choose a subset J ⊂ I1 ∪ I 0
2 (x̄) such that {∇ fi (x̄), i ∈ J } is a maximal linear

independent subsystem of the system of vectors {∇ fi (x̄), i ∈ I1 ∪ I 0
2 (x̄)}. Thanks

to RMFCQ, we can assume that, for any k, {∇ fi (xk), i ∈ J } is a maximal linearly
independent subsystem of the system {∇ fi (xk), i ∈ I1 ∪ I 0

2 (x̄)}. Now choose a subset
J− ⊂ I ∗

2 \ I 0
2 (x̄) such that {∇ fi (xk), i ∈ J ∪ J−} is a maximal linearly independent

subsystem of the system of vectors {∇ fi (xk), i ∈ I1 ∪ I ∗
2 }. There exists an i ∈ I1 ∪ I ∗

2
such that ∇ fi (xk) �= 0, because otherwise, it would follow from definition (10) that
∇ fyk (xk) = 0 which is impossible. Hence, J ∪ J− �= ∅.



A. Y. Kruger et al.

There exists a vector λk = (λk
1, . . . λ

k
m) ∈ �yk (xk) such that

∇ fy(xk) +
m∑

i=1

λk
i ∇ fi (xk) = 0; λk

i ≥ 0, i ∈ I2; λk
i = 0, i /∈ J ∪ J−. (12)

By (11), ‖λk‖ → ∞ as k → ∞. Without loss of generality, λk/‖λk‖ → λ =
(λ1, . . . , λm). Then ‖λ‖ = 1 and it follows from (12) that

m∑

i=1

λi∇ fi (x̄) = 0; λi ≥ 0, i ∈ I2; λi = 0, i /∈ J ∪ J−. (13)

Since J− ⊂ I ∗
2 \ I 0

2 (x̄) ⊂ I2(x̄) \ I 0
2 (x̄) = I −

2 (x̄), we have λi = 0 for all i ∈ J−.
Indeed, if λ j > 0 for some j ∈ J−, then, by definitions (5) and (3), there exists a
z ∈ R

n such that

〈∇ fi (x̄), z〉 = 0, i ∈ I1; 〈∇ fi (x̄), z〉 ≤ 0, i ∈ I2(x̄); 〈∇ f j (x̄), z〉 < 0,

and consequently

m∑

i=1

λi 〈∇ fi (x̄), z〉 < 0,

which is impossible in view of (13). Hence, (13) can be rewritten as

∑

i∈J

λi∇ fi (x̄) = 0; λi ≥ 0, i ∈ I2,

where not all λi , i ∈ J , are equal zero, but this contradicts the linear independence of
the system of vectors {∇ fi (x̄), i ∈ J }. The proof is completed. ��

Theorem 4 strengthens [3, Theorem 5.5] which establishes the error bound property
under the assumption that the functions fi , i = 1, 2, . . . , m, are twice differentiable
in a neighbourhood of x̄ .

It was shown in [12, Proposition 1] that the error bound property implies the equality
TC (x̄) = �C (x̄). Hence, as observed by one of the reviewers, under the assumption
of Lipschitz continuity of the gradients ∇ fi (x), i = 1, 2, . . . , m, Theorem 1 is a
consequence of Theorem 4.

We do not know if RMFCQ implies the error bound property without this
assumption.

5 An application in second order analysis

Recall first a few definitions which will be used in the sequel.
If x ∈ C ⊂ R

n , then
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NC (x) :=
⎧
⎨

⎩x∗ ∈ (Rn)∗
∣∣ lim sup

u
C→x

〈x∗, u − x〉
‖u − x‖ ≤ 0

⎫
⎬

⎭

is the Fréchet normal cone to C at x . The denotation u
C→ x in the last formula means

that u → x with u ∈ C . If x /∈ C , we set NC (x) = ∅.
If x̄ ∈ C ⊂ R

n , then

N C (x̄) := Lim sup
x

C→x̄

NC (x)

:= {x∗ ∈ (Rn)∗|∃{xk} ⊂ C, ∃{x∗
k } ⊂ (Rn)∗ such that

xk → x̄, x∗
k → x∗, and x∗

k ∈ NC (xk)}

is the limiting normal cone to C at x̄ .
If S[Rs ⇒ R

n] is a multifunction with graph gph S := {(p, x) ∈ R
s × R

n|x ∈
S(p)} and ( p̄, x̄) ∈ gph S, then the limiting coderivative D

∗
S( p̄, x̄) of S at ( p̄, x̄) is

defined as

D
∗
S( p̄, x̄)(x∗) := {p∗ ∈ R

s |(p∗,−x∗) ∈ N gph S( p̄, x̄)}, x∗ ∈ R
n .

Let us recall some basic stability notions for multifunctions which will be used
in the sequel (cf., e.g. [8,27,38]). Given a multifunction S[Rs ⇒ R

n] and a point
( p̄, x̄) ∈ gph S, one has:

(i) S is said to be calm at ( p̄, x̄) if there are neighborhoods U of p̄ and V of x̄ and a
positive scalar L such that

S(p) ∩ V ⊂ S( p̄) + L‖p − p̄‖B, ∀p ∈ U; (14)

(ii) if, instead of (14), a stronger condition

S(p1) ∩ V ⊂ S(p2) + L‖p1 − p2‖B, ∀p1, p2 ∈ U (15)

holds, then S is said to have the Aubin Lipschitz-like property around ( p̄, x̄);
(iii) if, in addition to (15), for each p ∈ U , S(p) ∩ V is a singleton, then S−1 is said

to be strongly metrically regular at (x̄, p̄).

Consider the generalized equation (GE)

0 ∈ F(p, x) + NC (x), (16)

where x ∈ R
n is the decision variable, p ∈ R

s is a parameter, F[Rs × R
n → R

n] is
continuously differentiable, and C is given by (1).

Denote by S the solution map associated with (16), i.e.,

S(p) := {x ∈ R
n| 0 ∈ F(p, x) + NC (x)}.
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Let ( p̄, x̄) ∈ gph S and let the functions fi : R
n → R, i = 1, . . . , m, defining set C ,

be twice continuously differentiable near x̄ .
In various sensitivity and stability considerations, one usually imposes MFCQ at

the reference point x̄ to be able to replace (16), locally around x̄ , by the GE

0 ∈ F(p, x) + (∇ f (x))T NE ( f (x)), (17)

where f = ( f1, . . . , fm)T and

E = {0Rl } × R
m−l− . (18)

Then, by applying appropriate generalized differential calculus rules, one can establish
an upper estimate for the limiting coderivative D∗S( p̄, x̄) (cf. [18,28]). In these rules,
however, one needs MFCQ again together with a suitable second order CQ (cf. [18,
condition (17)] or [28, Theorem 3.1 (ii)]). So, MFCQ at x̄ is a key assumption in these
developments.

Nevertheless, the possibility of replacing (16) by (17) is available under any well-
posed CQ which implies at the same time the calmness at (0, x̄) of the perturbation
map

M(v) := {x ∈ R
n| fi (x) + vi = 0 for i ∈ I1,

fi (x) + vi ≤ 0 for i ∈ I2}, (19)

where v = (v1, . . . , vm)T .
Indeed, taking into account that NC (x̄) ⊂ N C (x̄), by virtue of the imposed calmness

condition one can apply [11, Theorem 4.1] to obtain

NC (x̄) ⊂ (∇ f (x̄))T NE ( f (x̄)).

Since the opposite inclusion holds true automatically, thanks to the well-posedness,
one has

NC (x) = (∇ f (x))T NE ( f (x)) (20)

for all x in a neighbourhood of x̄ . We observe that (20) definitely holds, e.g., under
the Relaxed constant rank condition [25, Theorem 1]. It follows from Theorem 4 that
RMFCQ can be used as well.

Proposition 1 Suppose RMFCQ holds at x̄ . Then the perturbation map (19) is calm
at (0, x̄).

Proof The statement follows immediately from the well known equivalence between
the calmness of (19) at (0, x̄) and the error bound property (Definition 10) of C at x̄
implied by RMFCQ by virtue of Theorem 4. ��
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By virtue of Theorem 3, we may conclude that, under RMFCQ at x̄ , equality (20)
holds for all x in a neighbourhood of x̄ . Consequently, (16) can be, locally around x̄ ,
replaced by either (17) or the KKT system

0 = L(p, x, λ),

x ∈ C, λi ≥ 0, λi fi (x) = 0, i ∈ I2,
(21)

where

L(p, x, λ) := F(p, x) +
m∑

i=1

λi∇ fi (x)

is the Lagrangian associated with (16).
Define the enhanced solution map Se[Rs ⇒ R

n × R
m] by

Se(p) := {(x, λ) ∈ R
n × R

m | system (21) is satisfied}.

Let ( p̄, x̄, λ̄) ∈ gph Se. The limiting coderivative D∗Se( p̄, x̄, λ̄) of Se at ( p̄, x̄, λ̄) was
computed in [18] in the case when (16) corresponds to stationarity conditions of a
parameterized nonlinear program. Unlike [18], we provide now an upper estimate for
D∗Se( p̄, x̄, λ̄) without requiring MFCQ at x̄ . In the next statement, we use the polar
cone

E◦ = R
l × R

m−l+

to cone E defined by (18).

Theorem 5 Suppose RMFCQ is fulfilled at x̄ and multifunction M[Rn+2m ⇒
R

s+n+m] defined by

M(ξ) :=
⎧
⎨

⎩(p, x, λ) | ξ ∈
⎡

⎣
L(p, x, λ)

−
(

λ

f (x)

)
+ gph NE◦

⎤

⎦

⎫
⎬

⎭ (22)

is calm at (0Rn+2m , p̄, x̄, λ̄). Then for any (a, b) ∈ R
n × R

m one has

D
∗
Se( p̄, x̄, λ̄)(a, b) ⊂ {(∇p F( p̄, x̄))T u|(u, v) ∈ R

n × R
m,

0 = a + (∇xL( p̄, x̄, λ̄))T u + (∇ f (x̄))T v,

0 ∈ b + ∇ f (x̄)u + D∗NE◦(λ̄, f (x̄))(−v)}.
(23)

Proof Multifunction M corresponds to the canonical perturbation of the KKT system
(21). Denote
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�(p, x, λ) :=
⎡

⎣
L(p, x, λ)

λ

f (x)

⎤

⎦ , G := {0Rn } × gph NE◦ ,

so that

gph Se = {(p, x, λ)|�(p, x, λ) ∈ G}.

Thanks to the calmness of multifunction M at (0Rn+2m , p̄, x̄, λ̄), we can now invoke
[11, Theorem 4.1] to obtain

N gph Se ( p̄, x̄, λ̄) ⊂ (∇�( p̄, x̄, λ̄))T N G(�( p̄, x̄, λ̄)).

Hence, for all (a, b) ∈ R
n × R

m one has

D
∗
Se( p̄, x̄, λ̄)(a, b) ⊂ {z ∈ R

s |(z,−a,−b)T ∈ (∇�( p̄, x̄, λ̄))T N G(�( p̄, x̄, λ̄))}.

It remains to observe that

∇p�( p̄, x̄, λ̄) =
⎡

⎣
∇p F( p̄, x̄)

0
0

⎤

⎦ , ∇x�( p̄, x̄, λ̄) =
⎡

⎣
∇xL( p̄, x̄, λ̄)

0
∇ f (x̄)

⎤

⎦ ,

∇λ�( p̄, x̄, λ̄) =
⎡

⎣
(∇ f (x̄))T

Im

0

⎤

⎦ ,

where Im is the identity m × m matrix, and

N G(�( p̄, x̄, λ̄)) = R
n × N gph NE◦ (λ̄, f (x̄))

= {(u, w, v) ∈ R
n × R

m × R
m |w ∈ D∗NE◦(λ̄, f (x̄))(−v)}.

Formula (23) follows immediately. ��
The limiting coderivative D

∗
NE◦(λ̄, f (x̄)) in (23) can be easily computed directly

(cf. [14, proof of Proposition 2]). The verification of the calmness assumption in
Theorem 5 seems to be a more challenging job. Various sufficient conditions can be
found in the literature (cf., e.g. [15,9]). Sometimes one can also use the following
statement based on the calmness criterion in [17, Theorem 2.5].

Proposition 2 Suppose that ∇p F( p̄, x̄) is surjective and multifunction

N (β) :=
{
(x, λ)

∣∣∣β +
(

λ

f (x)

)
∈ gph NE◦

}

is calm at (0R2m , x̄, λ̄). Then multifunctionMgiven by (22) is calm at (0Rn+2m , p̄, x̄, λ̄).
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Proof Let ξ = (ξ1, ξ2, ξ3) ∈ R
n ×R

m ×R
m be the argument of M in (22), and define

N1(ξ1) := {(p, x, λ) |ξ1 = L(p, x, λ) } ,

N2(ξ2, ξ3) :=
{
(p, x, λ)

∣∣∣
(

ξ2 + λ

ξ3 + f (x)

)
∈ gph NE◦

}
.

It follows that M(ξ) = N1(ξ1) ∩ N2(ξ2, ξ3). By virtue of [17, Theorem 2.5], the
assertion holds provided

(i) N1 is calm at (0Rn , p̄, x̄, λ̄) and N−1
1 has the Aubin Lipschitz-like property

around ( p̄, x̄, λ̄, 0Rn );
(ii) N2 is calm at (0R2m , p̄, x̄, λ̄), and

(iii) multifunction ξ1 ⇒ A(ξ1) := N2(0) ∩ N1(ξ1) is calm at (0Rn , p̄, x̄, λ̄).

Assumption (i) holds true because of the surjectivity of ∇p F( p̄, x̄). Assumption (ii)
follows immediately from the calmness of N . So it suffices to verify assumption (iii).
We show that multifunction A, in fact, has a stronger Aubin Lipschitz-like property
around (0Rn , p̄, x̄, λ̄). To this end, we invoke the coderivative criterion [38, Theorem
9.40]:

D∗ A(0, p̄, x̄, λ̄) = {0}.

In our setting, this criterion provides, by using of standard calculus rules, the sufficient
condition

− (∇L( p̄, x̄, λ̄))T y ∈ NN2(0)( p̄, x̄, λ̄) ⇒ y = 0, (24)

guaranteeing the Aubin Lipschitz-like property of A around (0Rn , p̄, x̄, λ̄). Clearly,
N2(0) = R

n × N (0). It follows that

NN2(0)( p̄, x̄, λ̄) = {0Rn } × NN (0)(x̄, λ̄),

and consequently implication (24) holds true by virtue of the assumed surjectivity of
∇p F(x̄, p̄). We conclude that all assumptions (i)–(iii) are fulfilled and so the assertion
has been established. ��
Remark 1 For the verification of the calmness of N at (0R2m , x̄, λ̄) we refer to [13,
Section 3].

Let us comment on the relationship between Theorem 5 and some existing results
about stability properties of mappings S, Se. In the landmark paper [36], the author
considered GE (16) for a general convex set C and derived a sufficient condition for the
strong metric regularity of S−1 at (x̄, p̄). Moreover, he considered also the mapping
Se in the case when (16) amounts to the canonically perturbed KKT conditions for
a nonlinear program with the constraint set C given by (1). He showed that, in this
case, (Se)−1 is strongly metrically regular at the reference triple (x̄, λ̄, p̄) provided
LICQ and the Strong Second Order Sufficient Condition (SSOSC) hold. As proved
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later in [7], these conditions are not only sufficient but also necessary whenever x̄
is a local minimum of the considered nonlinear program for the reference value p̄.
Note that, under strong metric regularity of (Se)−1, the coderivative D∗Se( p̄, x̄, λ̄)

can be computed by using the standard tools of generalized differential calculus (cf.
[29, Proposition 3.2]). In Theorem 5, we provide an upper estimate of D∗Se( p̄, x̄, λ̄)

under two other conditions the first of which, namely RMFCQ, is substantially weaker
than LICQ. Theorem 5 is also related with the corresponding results in [18,28] where
upper estimates of D∗S( p̄, x̄) and D∗Se( p̄, x̄, λ̄) were computed under MFCQ and
appropriate second order qualification conditions.

Our results can be used, e.g., in deriving optimality/stationarity conditions in hier-
archical equilibrium problems where GE (16) governs the equilibrium on the lower
level or in some other sensitivity/stability issues.
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