On Random Sets Independence and Strong
Independence in Evidence Theory

Jifina Vejnarova

Abstract. Belief and plausibility functions can be viewed as lower and upper
probabilities possessing special properties. Therefore, (conditional) independence
concepts from the framework of imprecise probabilities can also be applied to its
sub-framework of evidence theory. In this paper we concentrate ourselves on ran-
dom sets independence, which seems to be a natural concept in evidence theory,
and strong independence, one of two principal concepts (together with epistemic
independence) in the framework of credal sets. We show that application of strong
independence to two bodies of evidence generally leads to a model which is beyond
the framework of evidence theory. Nevertheless, if we add a condition on result-
ing focal elements, then strong independence reduces to random sets independence.
Unfortunately, it is not valid no more for conditional independence.

1 Introduction

Imprecise probabilities is a general concept comprising different theories dealing
with imprecise information. These theories can be partially ordered with respect to
their generality and evidence theory belongs to the most specific ones. More pre-
cisely, belief and plausibility functions can be viewed as lower and upper probabili-
ties, respectively, possessing special properties.

Independence belongs to the most important concepts within any theory dealing
with uncertainty and therefore it has been studied in the evidential framework from
the very beginning [11]. Because of reasons stated above, the application of inde-
pendence concepts from imprecise probabilities to belief plausibility functions is,
in principle, possible and their relationship to “natural” independence concepts in
evidence theory is an interesting question, as already suggested in [5, 6, 8].
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In this paper we confine ourselves to random sets independence and strong in-
dependence and will not deal with epistemic irrelevance and independence, as they
are based on conditional probabilities/beliefs and there does not exist a uniquely
accepted conditioning rule [7] in the framework of evidence theory.

The paper is organized as follows. Section 2 is an overview of basic concepts
from evidence theory and form credal sets and in Section 3 random sets indepen-
dence and strong independence are introduced and their relationship in the frame.-
work of evidence theory is studied.

2 Basic Concepts

In this section we will briefly recall basic concepts from evidence theory [11] cop-
cerning sets and set functions and from the framework of credal sets [10].

2.1 Set Projections and Joins

For an index set N = {1,2,...,n} let {Xi}ien be a system of variables, each X;
having its values in a finite set X;. In this paper we will deal with multidimensiona]
Jrame of discernment Xy = X; x X X ... x X1, and its subframes (for K C N)

Xg = X exX;.

When dealing with groups of variables on these subframes, Xz will denote a group
of variables {X;}cx throughout the paper.
A projection of x = (x1,x3,...,%,) € Xy into Xx will be denoted oK ie. for

K:{il,iz,...,ik}
x'LK = (x,-l,x,-z,...,x,-k) € Xg.

Analogously, for M ¢ K <_Z N and A C Xg, A will denote a projection of A
into X,:

sz{yeXMfoeA:y=xW}.

In addition to the projection, in this text we will also need an opposite operation,
which will be called ajoin. By a join [1] of two sets A CXgandB CX, (K,LCN)
we will understand a set

AB={xeXgu :x¥ cA & x'* e B}.
Let us note that for any C C Xgur naturally C € CH g ¢4, but generally C #

CHE b e, » @ join is, in a sense, a generalization of a rectangle — so called
XL jgyered rectangle [3]. '
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2.2 Set Functions

In evidence theory [11] (or Dempster-Shafer theory) two dual measures are used
to model the uncertainty: belief and plausibility measures. Both of them can be
defined with the help of another set function called a basic (probability or belief)
assignment m on Xy, i.e., m: @ (Xy) — [0,1], where & (Xy) is power set of Xy
“and Yacx, m(A) = 1. Furthermore, we assume that m(0) = 0. A set A € & (Xn) is
a focal element if m(A) > 0.

Belief and plausibility measures are defined for any A C Xy by the equalities

Bel(A) = Y, m(B), Pl(A)= Y, m(B),

BCA BNA%0

respectively. It is well-known (and evident from these formulae) that for any A €
P (Xn)

Bel(A) <PI(A),  PI(A)=1—Bel(A°), )

where AC is the set complement of A € Z(Xy).

Because of (1) belief and plausibility functions may be viewed as lower and upper
probabilities, respectively. Furthermore, basic assignment can be computed from
belief function via Mobius inversion:

m(A) = Y, (~1)*\¥IBel(B), @
BCA
i.e. any of these three functions is sufficient to define values of the remaining two.
For a basic assignment m on Xg and M C K, a marginal basic assignment of m
on Xy is defined (for each A C Xp):

mM(A) = Bc:E):( m(B).
P

Analogously we will denote by Bel*™ marginal belief measure on Xy.

2.3 Credal Sets

A credal set .#(X) about a variable X is defined as a closed convex set of proba-
bility measures about the values of this variable. In order to simplify the expression
of operations with credal sets, it is often considered [10] that a credal set is the
set of probability distributions associated to the probability measures in it. Under
such consideration a credal set can be expressed as a convex hull of its extreme
distributions

M (X) = CH{ext(.#(X))}.
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Any lower probability P can be associated with a credal set of probabilities domj.
nating it:
- (P) = CH{P : P(A) > P(4),A C X}.

As belief measure is a lower probability, this association can be done also for it, as
suggested in both examples in the next section. ,

3 Independence Concepts

3.1 Random Sets Independence
Let us start this section by recalling the notion of random sets independence [4].

Definition 1. Let m be a basic assignment on Xy and X »L C N be disjoint. We say
that groups of variables Xy and X, are independent with respect to basic assignment
m if

- m4) = (4 it (4t 3)
for all A C Xy for which A = A x AL, and m(4) = 0 otherwise.

Example 1. Consider two basic assignments my and my on X = {x,%} and Y =
{3, 7}, respectively, specified in Table 1 together with their beliefs and plausibilities.
Under the assumption of random sets independence we get the joint basic assign-
ment m, values of which are contained in the second column of Table 2. In third
and fourth columns one can find beliefs and plausibilities of the corresponding sets,
respectively. &

Table 1 Basic assignments my and my.

A C X[my (A)[Bely (A)[Plx (4) A C Y[my (A)[Bely (A)|Ply (A)
{x} | 03| 03 | 08 | 06| 06 | 09
o2 02 | 07 {7} | 01 | 01 | 04

X |os5] 1 1 Y |03 ] 1 1

There exist numerous generalizations [3, 9, 12] of this notion to the conditional case.
For the reasons presented e.g. in [9], we use the following one.

Definition 2. Let m be a basic assignment on Xy and K,L,M C N be disjoint, K #
0 # L. We say that groups of variables Xk and X;, are conditionally independent
given Xy with respect to m (and denote it by X L LIM [m]), if the equality

mMULUM(A)_mLM(AW) - m,]_KUM(AiKUM) .mi.LUM(Ai.LUM) (4)

holds for any A C Xk such that A = AKUM g AILUM , and m(A) = 0 otherwise.
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Table 2 Results of application of random sets independence (Col. 2-4) and strong indepen-
dence (Col. 5-7).

C C X x Y |mg(C)[Belr(C)|Belr(C)|Pxy (C) Pyy (C)|Axy (C)
{xy} 018 | 0.18 | 072 | 0.18 | 0.72 | 0.18
{xy} |003| 003 | 032 } 0.03 | 032 | 0.03
{®m} |o012]| 012 | 0.63 | 0.12 | 0.63 | 0.12
{#} |o0.02]| 002 | 028 | 0.02 | 0.28 | 0.02

{x}xY |009| 03 | 08 [ 03 | 08 | 0.09
{#xY |006| 02 | 07 | 02 | 07 | 0.06
Xx{y} | 03| 06 | 09 | 06 } 09 | 03
Xx{y} |005]| 01 04 | 01 | 04 | 005
{xy, %5} 0 02 | 085 | 034 | 074 | 0.14

(ot | 0 | 015 | 08 | 026 | .66 | 0.11
XxY\{#}| 0 | 072 | 098 | 072 | 0.98 | —0.11
XxY\{®&y}| 0 | 037 | 088 | 0.37 | 0.88 | -0.14
XxY\{x5}| 0 | 068 | 0.97 | 0.68 | 0.97 | -0.14
XxY\{w}| 0 | 028 | 0.82 | 028 | 0.82 | -0.11

XxY |015] 1 1 1 1 | 04

3.2 Strong Independence

From numerous definitions of independence for credal sets [4] we have cho-
sen strong independence, as it seems to be most proper for multidimensional

models.
We say that Xx and X;, are strongly independent with respect to # (Xg Xy ) iff (in

terms of probability distributions)

.//Z(XKXL) = CH{Pl ‘PP € .///(XK),PZ S .//Z(XL)} )

Again, there exist several generalizations of this notion to conditional independence,
see e.g. [10], but as the following definition is suggested by the authors as the most
appropriate for the marginal problem, it seems to be a suitable counterpart of random

sets independence.
Given three variables X,Y and Z we say that X and Y are independent on the

distribution given Z under global set . (X,Y,Z) iff

AETZ) = {(pr-p2) P p1 € MX,Z),pr € AX,Z),P) =P2 }-

From the term “strong independence” one could deduce that it should imply random
sets independence. Nevertheless, it is not true, as can be seen from the following
simple example.
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Example 1. (Continued) From values contained in Table 1 we obtain credal setg
about variables X and Y :

A (X) =CH{(0.3,0.7),(0.8,0.2)}, .#(Y)=CH{(0.6,0.4),(0.9,0.1)}.
Under the assumption of strong independence we get

#4(XY) = CH{(0.18,0.12,0.42,0.28), (0.27,0.03,0.63,0.07),
(0.48,0.32,0.12,0.08), (0.72,0.08,0.18,0.02)}.

Let us compute lower and upper probabilities of all nonempty subsets of X x Y.
Their values can be found in fifth and sixth columns of Table 2.

In the last column one can find hypothetical values of basic assignment corre-
sponding the these lower and upper probabilities taken as beliefs and plausibilities
computed via formula (2). From this column one can see that X and ¥ do not satisfy
random set independence, as myy assigns positive values also to subsets which are
not of the form A = B x C. Furthermore, negative values are assigned to some sets,
which violates the nonnegativity of basic assignment, i.e. we are beyond the limits
of evidence theory. ¢

This result led us to the conclusion that strong independence cannot be applied in
the framework of evidence theory. Nevertheless, under specific conditions it can be
done as the following theorem! holds true.

Theorem 1. Let Xx and X; (K NL 5 0) be two groups of variables with basic as-
signments m* and m\, respectively. Let Bel'"L and PYKYL denote the joint belief
Junction under random sets independence and joint lower probability under strong
independence, respectively, and let A be a subset of Xg x Xy such that A =
A x A Then

Bel*KYL(A) = pKUL(4), t (6)

Proof. Tt is well-known? that for random sets independence the following equality
holds true for any A = A x A

Bel"XYL(A) = Bel* (4%K) . BelL (aM),
Taking into account the fact that
Belk (A¥K) = pHE(A¥K), Bel(A¥) = pi-(ath),

to get (6) it is enough to prove that for any A C Xg x X, such that A = AYK x AKX
the equality

! Let us note that the content of this theorem was already mentioned (without a proof)
in [4).

2 [2] equality (7) together with an analogous one for plausibilities is used as a definition
of evidential independence and Definition 1 is presented as an equivalent characterization.

!
;
;
;
%
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PHUL(4) = PH(4¥K) - PE(A)

is satisfied.
Generally, ’

PHY(A) = min {3 P

PHYE(A) = min{D P},

! x€A
but as % = {P1-Py : Py € My, P, € M}, and A= A x AV then
PRV (A) = min{ ), P(x)} = { Y Pbx)- Y, Pew)}

ot Pt
xcA P=P-Py DM DAL hik xpeall

xgeAK 5L Al

as requested (where the last but one equality holds thanks to the fact that we deal
with non-negative numbers.) O
Unfortunately, for conditional independence an analogous result does not hold.

Example 2. Let X,Y and Z be three binary variables with values inX={xx},Y=
{,7} and Z = {z,2}, respectively, and mxz and myz two basic assignments, both of
them having only two focal elements:

mXZ({(xvf)’ ()f,f)}) =05, mxz({(u,Z), (f,Z)}) =0.5,
myz({(,2),7,2)}) = 0.5, myz({(%,2),(F:2)}) =0.5.

Applying Definition 2 one can easily obtain the following joint assignment:
m(X xY x {z})=0.5, m({(x,2),(%73,2)}) =0.5.
From the values of the basic assignments mxz we will obtain credal set
M (XZ) = CH{(0,1,0,0),(0,.5,0, 5),(0,.5,0.5,0),(0,0,.5,.5)},

and credal set .# (Y Z) is identical. We can see, that the first two probability distribu-
tions are projective and the remaining two as well. Therefore under the assumption
of strong conditional independence we will get the following joint credal set

M(XYZ) = CH{(0,1,0,0,0,0,0,0), (0,.5,0,.5,0,0,0,0),(0,.5,0,0,0,.5,0,0),
(0,.25,0,.25,0,.25,0,.25), (0,.5,0,0,0,0,.5,0),
(0,.0,0,.5,0,0,.5,0),(0,0,0,0,0,.5,.5,0),(0,0,0,0,0,0,.5,.5)}.

From .#(XYZ) we can easily get values of lower and upper probabilities of all

singletons as well as values of bigger subsets. For example, for the above mentioned
focal elements we have

PXxYx{v})=05, P({(muv), (v,v,u)}) = 0.25,

i.c., the latter is different from that obtained under random sets independence. &
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4 Conclusions

The aim of this paper was to clarify the relationship between random sets inde-
pendence and strong independence in the framework of evidence theory. Although
evidence theory can be viewed as a special case of imprecise probabilities, applica-
tion of strong independence may lead to models which are beyond the framework
of evidence theory. If we confine ourselves to rectangles, values of joint belief func-
tion (under random sets independence) and those of joint lower probability (under
strong independence) coincide. Nevertheless, an analogous result does not hold in
the conditional case.

The problem of (epistemic) irrelevance was not discussed here, as the properties
of irrelevance are dependent on the conditioning rule in question, and the problem
of conditioning in evidence theory has not yet been satisfactorily solved.
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