
On Weakness of Evidential Networks∗
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Abstract

In evidence theory several counterparts of Bayesian networks based on differ-
ent paradigms have been proposed. We will present, through simple examples,
problems appearing in two kinds of these models caused either by the conditional
independence concept (or its misinterpretation) or by the use of a conditioning
rule. The latter kind of problems can be avoided if undirected models are used
instead.

1 Introduction

When applying models of artificial intelligence to any practical problem one must cope
with two basic problems: uncertainty and multidimensionality. The most widely used
models managing these issues are, at present, so-called probabilistic graphical Markov
models.

The problem of multidimensionality is solved in these models with the help of
the notion of conditional independence, which enables factorization of a multidi-
mensional probability distribution into small parts, usually marginal or conditional
low-dimensional distributions (e.g. in Bayesian networks), or generally into low-
dimensional factors (e.g. in decomposable models). Such a factorization not only
decreases the storage requirements for representation of a multidimensional distribu-
tion but it usually also induces efficient computational procedures allowing inference
from these models.

Probably the most popular representative of these models are Bayesian networks,
while from the computational point of view so-called decomposable models are the
most advantageous. Naturally, several attempts to construct an analogy of Bayesian
networks have also been made in other frameworks as e.g. in possibility theory [5],
evidence theory [4] or in the more general frameworks of valuation-based systems
[13] and credal sets [7], while counterparts of decomposable models are, more or less,
omitted.

In this contribution we will confine ourselves to evidence theory, where several
counterparts of Bayesian networks based on different paradigms have been proposed
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[4, 13, 19]. We will present, through two simple examples, problems appearing in these
models caused either by the conditional independence concept (or its misinterpreta-
tion) or by the use of different conditioning rules. The latter kind of problems can be
avoided if undirected models are used instead.

2 Basic Concepts

In this section we will briefly recall basic concepts from evidence theory [12] concerning
sets and set functions.

2.1 Set Projections and Joins

For an index set N = {1, 2, . . . , n} let {Xi}i∈N be a system of variables, each Xi

having its values in a finite set Xi. In this paper we will deal with multidimensional
frame of discernment XN = X1 × X2 × . . . × Xn, and its subframes (for K ⊆ N)

XK =×i∈KXi. When dealing with groups of variables on these subframes, XK will
denote a group of variables {Xi}i∈K throughout the paper.

For M ⊂ K ⊆ N and A ⊂ XK , A↓M will denote a projection of A into XM :

A↓M = {y ∈ XM | ∃x ∈ A : y = x↓M},

where, for M = {i1, i2, . . . , im},

x↓M = (xi1 , xi2 , . . . , xim) ∈ XM .

In addition to the projection, in this text we will also need an opposite operation,
which will be called a join. By a join1 of two sets A ⊆ XK and B ⊆ XL (K,L ⊆ N)
we will understand a set

A ./ B = {x ∈ XK∪L : x↓K ∈ A & x↓L ∈ B}.

Let us note that for any C ⊆ XK∪L naturally C ⊆ C↓K ./ C↓L, but generally
C 6= C↓K ./ C↓L.

2.2 Set Functions

In evidence theory [12] two dual measures are used to model the uncertainty: belief
and plausibility measures. Both of them can be defined with the help of another set
function called a basic (probability or belief) assignment m on XN , i.e. ,

m : P(XN ) −→ [0, 1],

where P(XN ) is the power set of XN , and
∑

A⊆XN
m(A) = 1. Furthermore, we assume

that m(∅) = 0.2

1This term and notation are taken from the theory of relational databases [1].
2This assumption is not generally accepted, e.g. in [2] it is omitted. The consequences of this

omission will be mentioned several times throughout this paper.
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A set A ∈ P(XN ) is a focal element if m(A) > 0. Let F denote the set of all focal
elements, a focal element A ∈ F is called an m−atom if for any B ⊆ A either B = A
or B ∈/ F . In other words, m−atom is a setwise-minimal focal element.

Belief and plausibility measures are defined for any A ⊆ XN by the equalities

Bel(A) =
∑
B⊆A

m(B), P l(A) =
∑

B∩A6=∅

m(B), (1)

respectively. It is well-known (and evident from these formulae) that for any A ∈
P(XN )

Bel(A) ≤ Pl(A), P l(A) = 1−Bel(AC), (2)

where AC is the set complement of A ∈ P(XN ). Furthermore, basic assignment can
be computed from belief function via Möbius inverse:

m(A) =
∑
B⊆A

(−1)|A\B|Bel(B), (3)

i.e. any of these three functions is sufficient to define values of the remaining two.
For a basic assignment m on XK and M ⊂ K a marginal basic assignment of m

is defined (for each A ⊆ XM ):

m↓M (A) =
∑

B⊆XK :B↓M=A

m(B).

3 Conditioning

Conditioning belongs to the most important topics of any theory dealing with uncer-
tainty. From the viewpoint of the construction of Bayesian-network-like multidimen-
sional models it seems to be inevitable.

3.1 Conditioning of Events

In evidence theory the “classical” conditioning rule is the so-called Dempster’s rule of
conditioning defined for any ∅ 6= A ⊆ XN and B ⊆ XN such that Pl(B) > 0 by the
formulae

Bel(A|DB) =
Bel(A ∪BC)−Bel(BC)

1−Bel(BC)
,

P l(A|DB) =
Pl(A ∩B)

Pl(B)
. (4)

Let us note that in [2] a bit different formulae are used: conditional beliefs and
plausibilities are not normalized. It corresponds to the omission of the assumption
m(∅) = 0.
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This is not the only possibility how to condition, another — in a way symmetric
— conditioning rule is the following one, called focusing defined for any ∅ 6= A ⊆ XN

and B ⊆ XN such that Bel(B) > 0 by the formulae

Bel(A|FB) =
Bel(A ∩B)

Bel(B)
, (5)

Pl(A|FB) =
Pl(A ∪BC)− Pl(BC)

1− Pl(BC)
.

Formulae (4) and (5) are, in a way, evidential counterparts of conditioning in
probabilistic framework. Let us note that the seemingly “natural” way of conditioning

m(A|PB) =
m(A ∩B)

m(B)
(6)

is not possible, since m(A|PB) need not be a basic assignment. It is caused by a
simple fact that m, in contrary to Bel and Pl, is not monotonous with respect to set
inclusion.

3.2 Conditional Variables

However, from the viewpoint of evidential networks conditioning of variables is of pri-
mary interest. In [18] we presented two definitions of conditioning by variables, based
on Dempster conditioning rule and focusing, we proved that these definitions are cor-
rect, nevertheless, their usefulness for multidimensional models is rather questionable,
as thoroughly discussed in the above-mentioned paper.

Therefore, in [19] we proposed a new conditioning rule which is, in a way, a gener-
alization of (6).

Definition 1 Let XK and XL (K ∩ L = ∅) be two groups of variables with values
in XK and XL, respectively. Then the conditional basic assignment of XK given
XL ∈ B ⊆ XL (for B such that m↓L(B) > 0) is defined as follows:

mXK |PXL
(A|PB) =

∑
C⊆XK∪L:

C↓K=A&C↓L=B

m(C)

m↓L(B)
(7)

for any A ⊆ XK .

Although we said above, that it makes little sense for conditioning of events, it is
sensible in conditioning of variables, as expressed by Theorem 1 proven in [19]. The
above-mentioned problem of non-monotonicity is avoided, because a marginal basic
assignment is always greater than (or equal to) the joint one.

Theorem 1 The set function mXK |PXL
defined for any fixed B ⊆ XL, such that

m↓L(B) > 0 by Definition 1 is a basic assignment on XK .
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4 Conditional Independence and Irrelevance

Independence and irrelevance need not be (and usually are not) distinguished in the
probabilistic framework, as they are almost equivalent to each other. Similarly, in pos-
sibilistic framework adopting De Cooman’s measure-theoretical approach [9] (particu-
larly his notion of almost everywhere equality) we proved that the analogous concepts
are equivalent (for more details see [15]).

4.1 Independence

In evidence theory the most common notion of independence is that of random set
independence [6]. It has already been proven [16] that it is also the only sensible one.

Definition 2 Let m be a basic assignment on XN and K,L ⊂ N be disjoint. We say
that groups of variables XK and XL are independent with respect to a basic assignment
m (in notation K ⊥⊥ L [m]) if

m↓K∪L(A) = m↓K(A↓K) ·m↓L(A↓L)

for all A ⊆ XK∪L for which A = A↓K ×A↓L, and m(A) = 0 otherwise.

This notion can be generalized in various ways [3, 13, 16]; the concept of conditional
non-interactivity from [3], based on conjunctive combination rule, is used for construc-
tion of directed evidential networks in [4] (cf. also Section 5.3). In this paper we will
use the concept introduced in [10, 16], as we consider it more suitable: in contrary
to other conditional independence concepts [3, 13] it is consistent with marginaliza-
tion [14], in other words, the multidimensional model of conditionally independent
variables keeps the original marginals (for more details see [16]).

Definition 3 Let m be a basic assignment on XN and K,L,M ⊂ N be disjoint,
K 6= ∅ 6= L. We say that groups of variables XK and XL are conditionally independent
given XM with respect to m (and denote it by K ⊥⊥ L|M [m]), if the equality

m↓K∪L∪M (A) ·m↓M (A↓M ) = m↓K∪M (A↓K∪M ) ·m↓L∪M (A↓L∪M )

holds for any A ⊆ XK∪L∪M such that A = A↓K∪M ./ A↓L∪M , and m(A) = 0
otherwise.

It has been proven in [16] that this conditional independence concept satisfies so-
called the semi-graphoid properties taken as reasonable to be valid for any conditional
independence concept and it has been shown in which sense this conditional indepen-
dence concept is superior to previously introduced ones [3, 13].

4.2 Irrelevance

Irrelevance is usually considered to be a weaker notion than independence (see e.g.
[6]). It expresses the fact that a new piece of evidence concerning one variable cannot
influence the evidence concerning the other variable, in other words is irrelevant to it.
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More formally: group of variables XL is irrelevant to XK (K ∩ L = ∅) if for any
B ⊆ XL such that the left-hand side of the equality is defined

mXK |XL
(A|B) = m(A) (8)

for any A ⊆ XK .3

It follows from the definition of irrelevance that it need not be a symmetric relation.
Let us note, that in the framework of evidence theory neither irrelevance based on
Dempster conditioning rule nor that based on focusing even in cases when the relation
is symmetric, imply independence, as can be seen from examples in [18].

Generalization of this notion to conditional irrelevance may be done as follows.
Group of variables XL is conditionally irrelevant to XK given XM (K,L,M disjoint,
K 6= ∅ 6= L) if

mXK |XLXM
(A|B) = mXK |XM

(A|B↓M ) (9)

is satisfied for any A ⊆ XK and B ⊆ XL∪M , such that both sides are defined.
Let us note that the conditioning in equalities (8) and (9) stands for an abstract

conditioning rule (any of those mentioned in the previous section or some other [8]).
However, the validity of (8) and (9) may depend on the choice of the conditioning rule.

4.3 Relationship Between Independence and Irrelevance

As mentioned at the end of preceding section, different conditioning rules lead to
different irrelevance concepts. Nevertheless, when studying the relationship between
(conditional) independence and irrelevance based on Dempster conditioning rule and
focusing we realized that they do not differ too much from each other, as suggested
by the following summary.

For both conditioning rules:

• Irrelevance is implied by independence.

• Irrelevance does not imply independence.

• Irrelevance is not symmetric, in general.

• Even in case of symmetry it does not imply independence.

• Conditional independence does not imply conditional irrelevance.

The only difference between these conditioning rules is expressed by the following
theorem proven in [18].

Theorem 2 Let XK and XL be conditionally independent groups of variables given
XM under joint basic assignment m on XK∪L∪M (K,L,M disjoint, K 6= ∅ 6= L).
Then

mXK |FXLXM
(A|FB) = mXK |FXM

(A|FB↓M ) (10)

for any m↓L∪M -atom B ⊆ XL∪M such that B↓M is m↓M -atom and A ⊆ XK .

3Let us note that somewhat weaker definition of irrelevance one can found in [2], where equality is
substituted by proportionality. This notion has been later generalized using conjunctive combination
rule [3].
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From this point of view focusing seems to be slightly superior to Dempster con-
ditioning rule, but still it is not satisfactory. However, the new conditioning rule
introduced by Definition 1 is more promising, as suggested by the following theorem,
proven in [19].

Theorem 3 Let K,L,M be disjoint subsets of N such that K,L 6= ∅. If XK and
XL are independent given XM (with respect to a joint basic assignment m defined on
XK∪L∪M ), then XL is irrelevant to XK given XM under the conditioning rule given
by Definition 1.

The reverse implication is not valid in general, which expresses the expected prop-
erty: conditional independence is stronger than conditional irrelevance.

However, in Bayesian networks also the reverse implication plays an important role,
as for the inference, the network is usually transformed into a decomposable model.
Nevertheless, the following assertion proven in [20] holds true.

Theorem 4 Let K,L,M be disjoint subsets of N such that K,L 6= ∅ and mXK |PXL∪M

be a (given) conditional basic assignment of XK given XL∪M and mXL∪M
be a basic

assignment of XL∪M . If XL is irrelevant to XK given XM under the conditioning
rule given by Definition 1, then XK and XL are independent given XM (with respect
to a joint basic assignment m = mXK |PXL∪M

·mXL∪M
defined on XK∪L∪M ).

5 (Directed) Evidential Networks and Compositional
Models

In this section we will deal with directed evidential networks [4] and evidential networks
[20]. These two models differ not only by the conditioning rule, but also, and it seems
to be more important, by the interpretation of graph structure of the model.

While in evidential networks conditional basic assignment is assigned to every node
given its parents (analogously to Bayesian networks), in directed evidential networks
conditional beliefs are assigned to arcs, i.e. to every node as many conditionals are
assigned as is the number of its parents. These conditionals are subsequently combined
by the conjunctive combination rule.

The difference between directed evidential networks and compositional models will
be described in Section 5.3 by a simple example, while the lost of information in
evidential networks (in comparison with compositional models) in Section 5.4. Before
doing that we need to recall the concept of compositional models.

5.1 Compositional models

Compositional models are based on the concept of the operator of composition of basic
assignments, introduced in [11] in the following way.

Definition 4 For two arbitrary basic assignments m1 on XK and m2 on XL a com-
position m1 . m2 is defined for all C ⊆ XK∪L by one of the following expressions:
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(a) if m↓K∩L2 (C↓K∩L) > 0 and C = C↓K ./ C↓L then

(m1 . m2)(C) =
m1(C↓K) ·m2(C↓L)

m↓K∩L2 (C↓K∩L)
;

(b) if m↓K∩L2 (C↓K∩L) = 0 and C = C↓K ×XL\K then

(m1 . m2)(C) = m1(C↓K);

(c) in all other cases

(m1 . m2)(C) = 0.

From the basic properties of this operator (proven in [10, 11]) it follows that op-
erator of composition is not commutative in general, but it preserves first marginal
(in case of projective basic assignments both of them). In both these aspects it dif-
fers from conjunctive combination rule. Furthermore, operator of composition is not
associative and therefore its iterative applications must be made carefully, as we will
see later.

A lot of other properties possessed by the operator of composition can be found in
[10, 11], nevertheless here we will confine ourselves to the following theorem (proven
in [10]) expressing the relationship between conditional independence and operator of
composition.

Theorem 5 Let m be a joint basic assignment on XM , K,L ⊆ M. Then (K \ L) ⊥⊥
(L \K)|(K ∩ L) [m] if and only if

m↓K∪L(A) = (m↓K . m↓L)(A)

for any A ⊆ XK∪L.

Now, let us consider a system of low-dimensional basic assignments m1,m2, . . . , mn

defined on XK1 ,XK2 , . . . ,XKn , respectively. Composing them together by multiple
application of the operator of composition, one gets multidimensional a basic assign-
ment on XK1∪K2∪...∪Kn

. However, since we know that the operator of composition
is neither commutative nor associative, we have to properly specify what “composing
them together” means.

To avoid using too many parentheses let us make the following convention. When-
ever we write the expression m1 . m2 . . . . . mn we will understand that the operator
of composition is performed successively from left to right:4

m1 . m2 . . . . . mn = (. . . ((m1 . m2) . m3) . . . .) . mn. (11)

Therefore, multidimensional model (11) is specified by an ordered sequence of low-
dimensional basic assignments — a generating sequence m1,m2, . . . ,mn.

4Naturally, if we want to change the ordering in which the operators are to be performed we will
do so using parentheses.
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5.2 Evidential network generated by a perfect sequence

From the point of view of artificial intelligence models used to represent knowledge in
a specific area of interest, a special role is played by the so-called perfect sequences,
i.e., generating sequences m1,m2, . . . ,mn, for which

m1 . m2 = m2 . m1,

m1 . m2 . m3 = m3 . (m1 . m2),

...

m1 . m2 . . . . . mn = mn . (m1 . . . . . mn−1).

The property explaining why we call these sequences “perfect” is expressed by the
following assertion proven in [10].

Theorem 6 A generating sequence m1,m2, . . . ,mn is perfect if and only if all assign-
ments m1,m2, . . . ,mn are marginal assignments of the multidimensional assignment
m1 . m2 . . . . . mn:

(m1 . m2 . . . . . mn)↓Kj = mj ,

for all j = 1, . . . , n.

Now, let us recall a simple algorithm for the construction of an evidential network
from a perfect sequence of basic assignments [17].

Having a perfect sequence m1,m2, . . . ,mn (m` being the basic assignment of XK`
),

we first order all the variables for which at least one of the basic assignments m` is
defined in such a way that first we order (in an arbitrary way) variables for which m1

is defined, then variables from m2 which are not contained in m1, etc.5 Finally we
have

{X1, X2, X3, . . . , Xk} = {Xi}i∈K1∪...∪Kn .

Then we get a graph of the constructed evidential network in the following way:

1. the nodes are all the variables X1, X2, X3, . . . , Xk;

2. there is an edge (Xi → Xj) if there exists a basic assignment m` such that both
i, j ∈ K`, j 6∈ K1 ∪ . . . ∪K`−1 and either i ∈ K1 ∪ . . . ∪K`−1 or i < j.

Evidently, for each j the requirement j ∈ K`, j 6∈ K1 ∪ . . . ∪K`−1 is met exactly
for one ` ∈ {1, . . . , n}. It means that all the parents of node Xj must be from the
respective set {Xi}i∈K`

and therefore the necessary conditional basic assignments
mj|pa(j) can easily be computed from basic assignment m` via (7).

It is also evident, that if both i and j are in the same basic assignment and
not in previous ones, then the direction of the arc depends only on the ordering of
the variables. This might lead to different independences, nevertheless, the following
theorem proven in [17] sets forth that any of them is induced by the perfect sequence.

5Let us note that variables X1, X2, . . . , Xk may be ordered arbitrarily, nevertheless, for the above
ordering proof of Theorem 7 is simpler than in the general case.



On weakness of evidential networks 199

Table 1: Basic assignments mi and conditional basic assignments m.|i.

A ⊆ Ci mi(A) D ⊆ B m.|i(D)

{hi} 0.49 {b} 0.49

{t1} 0.49 {b̄} 0.49

{h1, t1} 0.02 {b, b̄} 0.02

Table 2: Joint basic assignment m of variables C1, C2 and B.

m {b} {b̄} {b, b̄}
{h2} {t2} {h2, t2} {h2} {t2} {h2, t2} {h2} {t2} {h2, t2}

{h1} 0.24 0 0 0 0.24 0 0 0 0.01

{t1} 0 0.24 0 0.24 0 0 0 0 0.01

{h1, t1} 0 0 0 0 0 0 0.01 0.01 ∼ 0

Theorem 7 For a belief network defined by the above procedure the following inde-
pendence statements are satisfied for any j = 2, . . . k:

{j} ⊥⊥ ({i < j} \ pa(j)) | pa(j). (12)

5.3 Example: two coins toss

Let us consider two fair coins toss expressed by variables C1 and C2 with values in C1

and C2, respectively (Ci = {hi, ti}), and the basic assignments m1 and m2 (contained
in the left part of Table 1) expressing the fact that the result of any of the coins may
from time to time be unknown. The results of tossing two coins are usually considered
to be independent, therefore the joint basic assignment m12 is just a product of these
m1 and m2 (cf. definition of random set independence at the beginning of Section 4).

Now, let us consider one more variable B expressing the fact the bell is ringing,
i.e. B = {b, b̄}. It happens only if the result on both coins is the same (two heads
or two tails). It is evident, that B depends on both C1 and C2, which corresponds
to the graph in Figure 5.3 and (due to deterministic dependence of the values of B

��� ��� ���
�-C1 B C2

Figure 1: Graph G from Example: two coin toss.

on the values of C1 and C2) the joint basic assignment of the three variables is in
Table 2. The above-mentioned graph can easily be obtained from perfect sequence of
basic assignments m1,m2 and m3 ≡ m (contained in Tables 1 and 2) via the algorithm
presented in the preceding section.
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Table 3: Joint basic assignment of variables C1, C2 and B based conjunctive combi-
nation rule; b∗ stands for either b or b̄.

m {b∗} {b, b̄}
{h2} {t2} {h2, t2} {h2} {t2} {h2, t2}

{h1} 0.0624 0.0624 0.0025 0.0001 0.0001 ∼ 0

{t1} 0.0624 0.0624 0.0025 0.0001 0.0001 ∼ 0

{h1, t1} 0.0025 0.0025 0.0001 ∼ 0 ∼ 0 ∼ 0

The approach suggested by Ben Yaghlane et al. [4] is completely different. The
authors start from belief functions of C1 and C2 and conditional belief functions of B
given C1 and C2, respectively. To make the difference between these two approaches
more apparent we will use basic assignments instead of belief functions (belief func-
tions, nevertheless, can be easily obtained from them by (1)). The conditional basic
assignments of B given C1 and C2, respectively, can be found in the right part of
Table 1. Let us note that these conditional basic assignments do not depend on the
condition, as the results of tossing two coins are independent and therefore also the
event that the bell rings does not depend on the result at one coin.

The values of joint basic assignments is computed from Tables 1 using (non-
normalized) conjunctive combination rule. Results of these computations can be found
in Table 3.

It is evident that the independence (non-interactivity) between coins C1 and C2 is
not valid any more — it has been substituted by conditional non-interactivity, which
does not make a sense, as C1 is strongly dependent on C2 whenever B is known.

5.4 Evidential Network vs Compositional Model

Theorem 3 makes it possible to define evidential networks in a way analogous to
Bayesian networks, but simultaneously brings a question: are these networks advan-
tageous in comparison with other multidimensional models in this framework? The
following example brings, at least partial, answer to this question.

Example 1 Let X1, X2 and X3 be three binary variables with values in Xi = {ai, āi}, i =
1, 2, 3, and m be a basic assignment on X1 ×X2 ×X3 defined as follows

m(X1 ×X2 × {ā3}) = .5,
m({(a1, a2, ā3), (ā1, ā2, a3)}) = .5.

Variables X1 and X2 are conditionally independent given X3 with respect to m. There-
fore also X2 is irrelevant to X1 given X3, i.e.

mX1|X23
(A|B) = mX1|X3

(A|B↓{3}), (13)

for any focal element B of m↓{23}. As both m↓{23} and m↓{3} have only two focal
elements, namely X2×{ā3} and {(a2, ā3), (ā2, a3)} and {ā3} and X3, respectively, we
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have

mX1|PX23
(X1|X2 × {ā3}) = mX1|PX3

(X1|{ā3}) = 1, (14)

mX1|PX23
(X1|{(a2, ā3), (ā2, a3)}) = mX1|PX3

(X1|X3) = 1. (15)

Using these conditionals and the marginal basic assignment m↓{23} we get a basic
assignment m̃ different from the original one, namely

m̃(X1 ×X2 × {ā3}) = .5,
m̃(X1 × {(a2, ā3), (ā2, a3)}) = .5.

Furthermore, if we interchange X1 and X2 we get yet another model, namely

m̂(X1 ×X2 × {ā3}) = .5,
m̂(X2 × {(a1, ā3), (ā1, a3)}) = .5. ♦

The conditional independence of X1 and X2 given X3 and relation (13) correspond
to a directed graph in Figure 5.4, which leads to the following system of (conditional)

��� ��� ���
--X2 X3 X1

Figure 2: Graph G from Example 1.

basic assignments:

m↓2(X2) = 1,
mX3|PX2

({ā3}|X2) = mX3|PX2
(X2|X2) = 1,

and mX1|PX3
as suggested in right-hand side of (14) and (15).

The final model
m̌(X1 ×X2 × {ā3}) = .5,
m̌(X1 ×X2 ×X3) = .5.

is again different, as instead of basic assignment m↓23 (as in Example 1) we used its
marginal and conditional.

Therefore it is evident, that evidential networks are less powerful than e.g. com-
positional models [10], as any of these threedimensional basic assignments can be
obtained from two twodimensional ones using the operator of composition.

6 Conclusions

This contribution was devoted to two kinds of multidimensional models with directed
graph structure, namely directed evidential networks and evidential networks.

In directed evidential networks the graph structure is used in different sense than
in Bayesian networks (it resembles rather so-called pseudobayesian networks), which
may lead to senseless results, as we presented by a simple example.
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Evidential networks, in contrary, keep the sense of the graphical structure known
from Bayesian networks, nevertheless their weakness consists in conditioning, which
may destroy the structure of the original focal elements.

From this point of view compositional models seem to be more appropriate mul-
tidimensional models in the framework of evidence theory than these two kinds of
networks.
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[18] J. Vejnarová, Conditioning, conditional independence and irrelevance in evidence
theory, Proceedings of ISIPTA’11, eds. F. Coolen, G. de Cooman, T. Fetz, M.
Oberguggenberger, Innsbruck, Austria, 2011, 381–390.
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