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Abstract

This paper is the first attempt to introduce the oper-
ator of composition, already known from probability,
possibility and evidence theories, also for credal sets.
We prove that the proposed definition preserves all
the necessary properties of the operator enabling us
to define compositional models as an efficient tool for
multidimensional models representation. Theoretical
results are accompanied by numerous illustrative ex-
amples.

Keywords. Credal sets, graphical models, condi-
tional independence.

1 Introduction

In the second half of 1990’s a new approach to efficient
representation of multidimensional probability distri-
butions was introduced with the aim to be alterna-
tive to Graphical Markov Modeling. This approach is
based on the following idea: multidimensional distri-
bution is composed from a system of low-dimensional
distributions by repetitive application of a special op-
erator of composition, which is also the reason why
the models are called compositional models. In several
papers, in which the properties of the operator and
models were studied [4, 5, 6], it was shown (among
others) that these models are, in a way, equivalent
to Bayesian networks. Roughly speaking, any multi-
dimensional distribution representable by a Bayesian
network can also be represented in the form of a com-
positional model, and vice versa.

Later, this compositional models were introduced also
in possibility theory [12, 13] (here the models are pa-
rameterized by a continuous t-norm) and a few years
ago also in evidence theory [8, 9]. In all these frame-
works the original idea is kept, but there exist some
slight differences among them, as we shall see later.

Although Bayesian networks and compositional mod-
els represent the same class of distributions, they do

not make it in the same way. Bayesian networks
use conditional distributions whereas compositional
models consist of unconditional distributions. Nat-
urally, both types of models contain the same in-
formation but while some marginal distributions are
explicitly expressed in compositional models, it may
happen that their computation from a correspond-
ing Bayesian network is rather computationally ex-
pensive. Therefore it appears that some of computa-
tional procedures designed for compositional models
are (algorithmically) simpler than their Bayesian net-
work counterparts.

Furthermore, the research concerning relationship be-
tween compositional models in evidence theory and
evidential networks [14] revealed probably a more im-
portant thing. Even though any evidential network
(with proper conditioning rule and conditional inde-
pendence concept) can be expressed as a composi-
tional model, if we do it in the opposite way and
transform a compositional model into an evidential
network, we realize, that the model is more imprecise
than the original one. It is caused by the fact that
conditioning increases imprecision, and as it is typical
not only for evidence theory, but also for other impre-
cise probability frameworks, compositional models in
more general frameworks than evidence theory (e.g.
for credal sets) seem to be worth-studying.

The goal of this paper is to show that the operator
of composition can also be introduced for credal sets.
Moreover, we will show that it keeps the basic prop-
erties of its counterparts in other frameworks, and
therefore it will enable us to introduce compositional
models for multidimensional credal sets.

The contribution is organized as follows. In Section 2
we summarize basic concepts and notation. Definition
of the operator of composition is introduced in Sec-
tion 3, where also its basic properties can be found,
while Section 4 is devoted to more advanced proper-
ties. Finally, in Section 5 we introduce the concept
of so-called perfect sequences and demonstrate their



importance.

2 Basic Concepts and Notation

In this section we will recall basic concepts and nota-
tion necessary for understanding the contribution.

2.1 Variables and Distributions

For an index set N = {1, 2, . . . , n} let {Xi}i∈N be
a system of variables, each Xi having its values in a
finite set Xi and XN = X1 ×X2 × . . . ×Xn be the
Cartesian product of these sets.

In this paper we will deal with groups of variables
on its subspaces. Let us note that XK will denote a
group of variables {Xi}i∈K with values in

XK =×i∈KXi

throughout the paper.

Having two probability distributions P1 and P2 of XK

we say that P1 is absolutely continuous with respect
to P2 (and denote P1 � P2) if for any xK ∈ XK

P2(xK) = 0 =⇒ P1(xK) = 0.

This concept plays an important role in the definition
of the operator of composition.

2.2 Credal Sets

A credal setM(XK) about a group of variables XK is
defined as a closed convex set of probability measures
about the values of this variable.

In order to simplify the expression of operations with
credal sets, it is often considered [10] that a credal set
is the set of probability distributions associated to the
probability measures in it. Under such consideration
a credal set can be expressed as a convex hull of its
extreme distributions

M(XK) = CH{ext(M(XK ))}.

Consider a credal set about XK , i.e. M(XK). For
each L ⊂ K its marginal credal set M(XL) is ob-
tained by element-wise marginalization, i.e.

M(XL) = CH{P ↓L : P ∈ ext(M(XK))}, (1)

where P ↓L denotes the marginal distribution of P on
XL. If the above introduced notation (1) cannot be
used (e.g. to avoid misunderstandings), then we use
M(XK)↓L, or simply M↓L, instead.

Having two credal sets M1 and M2 about XK and
XL, respectively (assuming that K,L ⊆ N), we say

that these credal sets are projective if their marginals
about common variables coincide, i.e. if

M1(XK∩L) =M2(XK∩L).

Let us note that if K and L are disjoint, thenM1 and
M2 are projective, as M(X∅) = 1.

Besides marginalization we will also need the opposite
operation, called vacuous extension. Vacuous exten-
sion of a credal set M(XL) about XL to a credal set

M(XK) =M(XL)↑K

(L ⊂ K) is the maximal credal set about XK such
that M(XK)↓L =M(XL).

Example 1 Let

M(X1) = CH({[0.2, 0.8], [0.4, 0.6]})

be a credal set about variable X1. Its vacuous exten-
sion M(X1X2) is then

M(X1X2) = CH({[0.2, 0, 0.8, 0], [0, 0.2, 0.8, 0],

[0.2, 0, 0, 0.8], [0, 0.2, 0, 0.8],

[0.4, 0, 0.6, 0], [0, 0.4, 0.6, 0],

[0.4, 0, 0, 0.6], [0, 0.4, 0, 0.6]}),

since evidently

M(X1X2)↓{1} = CH({[0.2, 0.8], [0.4, 0.6]}),

as desired.

To show, that it is also maximal let us suppose,
that there exists a credal set M′(X1X2) containing
M(X1X2) and M(X1) =M′(X1). Then M′(X1X2)
must contain at least one p = (p1, p2, p3, p4) /∈
M(X1X2). Nevertheless, it means, that either p1 +
p2 < 0.2 or p1 + p2 > 0.4 (from which analogous
inequalities for p3 + p4 follow). Therefore, p↓{1} /∈
M(X1) and M(X1X2) is maximal. ♦

The concept of absolute continuity of probability
distributions can be generalized for credal sets in
the following way. M1(XK) is absolutely continu-
ous with respect to M2(XK), if P1 � P2 for any
P1 ∈M1(XK) and P2 ∈M2(XK).

Evidently, it is not the only way how to generalize the
concept of absolute continuity to credal sets. It can be
done e.g. using lower previsions (but the definitions
are not equivalent), nevertheless, the above-presented
definition is more suitable for our purpose, as we shall
see in the next section.



2.3 Strong Independence

Among numerous definitions of independence for
credal sets [2] we have chosen strong independence,
as it seems to be most appropriate for multidimen-
sional models.

We say that (groups of) variables XK and XL (K and
L disjoint) are strongly independent with respect to
M(XK∪L) iff (in terms of probability distributions)

M(XK∪L) (2)

= {P1 · P2 : P1 ∈M(XK), P2 ∈M(XL)}.

Again, there exist several generalizations of this no-
tion to conditional independence, see e.g. [10], but
since the following definition is suggested by the au-
thors as the most appropriate for the marginal prob-
lem, it seems to be a suitable concept also in our case,
since the operator of composition can also be used as
a tool for solution of a marginal problem, as shown
(in the framework of possibility theory) e.g. in [13].

Given three groups of variables XK , XL and XM

(K,L,M be mutually disjoint subsets of N , such that
K and L are nonempty), we say that XK and XL are
independent on the distribution [10] given XM under
global set M(XK∪L∪M ) (in symbols K ⊥⊥ L|M [M]1

iff

M(XK∪L∪M ) = {(P1 · P2)/P
↓M

1 : P1 ∈M(XK∪M ),

P2 ∈M(XL∪M ), P ↓M1 = P ↓M2 } .

This definition is a generalization of stochastic condi-
tional independence: if M(XK∪L∪M ) is a singleton,
then alsoM(XK∪M ) andM(XL∪M ) are (projective)
singletons and the definition collapses into definition
of stochastic conditional independence.

3 Operator of Composition and Its
Properties

Now, let us start considering how to define compo-
sition of two credal sets. Consider two index sets
K,L ⊂ N . At this moment we do not put any re-
strictions on K and L; they may be but need not be
disjoint, one may be subset of the other. We even
admit that one or both of them are empty.

In order to enable the reader the understanding of this
concept, let us first present the definition of composi-
tion for precise probabilities [4]. Let P and Q be two
probability distributions of (groups of) variables XK

and XL. Then

(P . Q)(XK∪L) =
P (XK) ·Q(XL)

Q(XK∩L)
,

1If there is no doubt, we will omit [M].

whenever P (XK∩L) � Q((XK∩L). Otherwise, it re-
mains undefined.

Let M1 and M2 be credal sets about XK and XL,
respectively. Our goal is to define a new credal set,
denoted by M1 .M2, which will be about XK∪L
and will contain all of the information contained in
M1 and as much as possible of information of M2

(for the exact meaning see properties (ii) and (iii) of
Lemma 1). The required properties are met by the
following definition.

Definition 1 For two arbitrary credal sets M1 and
M2 about XK and XL, a composition M1 .M2 is
defined by one of the following expressions:

[a ] if M1(XK∩L) =M2(XK∩L), then

(M1 .M2)(XK∪L)

= {(P1 · P2)/P
↓K∩L

2 : P1 ∈M1(XK),

P2 ∈M2(XL), P ↓K∩L1 = P ↓K∩L2 },

[b ] ifM1(XK∩L) 6=M2(XK∩L), andM1(XK∩L)�
M2(XK∩L), then

(M1 .M2)(XK∪L)

= {(P1 · P2)/P
↓K∩L

2 : P1 ∈M1(XK),

P2 ∈M(XL)}),

[c ] otherwise

(M1 .M2)(XK∪L) =M1(XK)↑K∪L.

From point [b] of the definition one can see the im-
portance of the definition of absolute continuity in the
way presented in et the end of Section 2.2. Exactly
this definition enables us to define the composition of
two credal sets correctly.

The following lemma presents basic properties pos-
sessed by this operator of composition.

Lemma 1 For arbitrary two credal setsM1 andM2

about XK and XL, respectively, the following proper-
ties hold true:

(i) M1 .M2 is a credal set about XK∪L.

(ii) (M1 .M2)(XK) =M1(XK).

(iii) M1 .M2 =M2 .M1

⇐⇒ M1(XK∩L) =M2(XK∩L).



Proof.

(i) To prove that M1 .M2 is a credal set about
XK∪L we have to distinguish cases [a] and [b]
from [c]. In cases [a] and [b] it is enough to
show that any P ∈ M1 .M2 is a probability
distribution on XK∪L. But it is obvious, as any
P ∈ (M1 .M2) is obtained via formula for com-
position of probability distributions (cf. e.g. [4]).
In case [c] it is obvious too, asM1 .M2 is a vac-
uous extension of an credal set about XK to a
credal set about XK∪L.

(ii) Again, we have to make the proof separately. If
(M1 .M2)(XK∪L) is obtained via [c], then the
equality follows directly from the definition of
vacuous extension. In cases [a] and [b] marginal-
ization of a credal set is element-wise (as men-
tioned in the preceding section), therefore, anal-
ogous to the proof of (i) it is enough to prove

that
(

(P1 · P2)/P ↓K∩L2

)↓K
= P1 for any P1 ∈

M1(XK) and P2 ∈ M2(XL). But it immedi-
ately follows from the results obtained for precise
probabilities (see e.g. [4]).

(iii) First, let us assume that

(M1 .M2)(XK∪L) = (M2 .M1)(XK∪L).

Then also its marginals must be identical, partic-
ularly

(M1 .M2)(XK∩L) = (M2 .M1)(XK∩L).

Taking into account (ii) of this lemma we have

(M1 .M2)(XK∩L)

=
(

((M1 .M2)(XK∪L))
↓K

)↓K∩L
= ((M1 .M2)(XK))

↓K∩L

= (M1(XK))
↓K∩L

=M1(XK∩L)

and similarly

(M2 .M1)(XK∩L) =M2(XK∩L),

from which the desired equality immediately fol-
lows.

Let, on the other hand, M1(XK∩L) =
M2(XK∩L). In this case [a] of Definition 1 is
applied and for any distribution P of (M1 .
M2)(XK∪L) there exist P1 ∈ M1(XK) and

P2 ∈ M2(XL) such that P ↓K∩L1 = P ↓K∩L2 and

P = (P1 · P2)/P ↓K∩L2 . But simultaneously (due

to projectivity) P = (P1 · P2)/P ↓K∩L1 , which is
an element of (M2 .M1)(XK∪L). Hence

(M1 .M2)(XK∪L) = (M2 .M1)(XK∪L),

as desired. ut

Let us now illustrate the application of the operator
of composition and its properties by three examples.
The first shows what happens when K ∩ L = ∅.

Example 2 Let

M1(X1) = CH{[0.2, 0.8], [0.7, 0.3]}

and

M2(X2) = CH{[0.6, 0.4], [1, 0]}

be two credal sets about X1 and X2, respectively.
Then, as mentioned above,M1(X1) andM2(X2) are
projective, and thereforeM1 .M2 is obtained via [a]
in Definition 1:

(M1 .M2)(X1X2) (3)

= {[0.7− 0.5α− 0.28β + 0.2αβ,

0.28β − 0.2αβ,

0.3 + 0.5α− 0.12β − 0.2αβ,

0.12β + 0.2αβ], α, β ∈ [0, 1]},

which is nothing else than strong independence prod-
uct of M1(X1) and M2(X2). The extreme points of
M1 .M2 are

[0.12, 0.08, 0.48, 0.32], [0.2, 0, 0.8, 0], (4)

[0.42, 0.28, 0.18, 0.12], [0.7, 0, 0.3, 0],

nevertheless

(M1 .M2)(X1X2)

6= CH{[0.12, 0.08, 0.48, 0.32], [0.2, 0, 0.8, 0],

[0.42, 0.28, 0.18, 0.12], [0.7, 0, 0.3, 0]},

as e.g.

[0.41, 0.04, 0.39, 0.16]

∈ CH{[0.12, 0.08, 0.48, 0.32], [0.2, 0, 0.8, 0],

[0.42, 0.28, 0.18, 0.12], [0.7, 0, 0.3, 0]},

but [0.41, 0.04, 0.39, 0.16] 6∈ M1 .M2. ♦

It is evident, that one would obtain the same result by
application of the formula in [b] (if he/she omits the
fact that the condition M1(XK∩L) 6= M2(XK∩L) is
not fulfilled), as triviallyM1(XK∩L))�M2(XK∩L).
Nevertheless, these two cases must be distinguished
in general case, as can be seen from the following two
examples.

Let us note that in the examples that follow we will
prefer to use extreme points of credal sets (4) to their
general form (3), as it seems to be more convenient if
we want to compare e.g. the resulting credal sets (or
their marginals).



Example 3 Let

M1(X1X2)

= CH{[0.2, 0.8, 0, 0], [0.1, 0.4, 0.1, 0.4],

[0.25, 0.25, 0.25, 0.25], [0, 0, 0.5, 0.5]},

and

M2(X2X3)

= CH{[0.5, 0, 0.5, 0], [0.2, 0.3, 0.2, 0.3],

[0.3, 0.3, 0.2, 0.2], [0, 0.6, 0, 0.4]},

be two credal sets about variables X1X2 and X2X3,
respectively. These two credal sets are not projec-
tive, as M1(X2) = CH{[0.2, 0.8], [0.5, 0.5]}, while
M2(X2) = CH{[0.5, 0.5], [0.6, 0.4]}. Therefore [b] of
Definition 1 should be applied:

(M1 .M2)(X1X2X3)

⊆ CH{[0.2, 0, 0.8, 0, 0, 0, 0, 0],

[0.08, 0.12, 0.32, 0.48, 0, 0, 0, 0],

[0.1, 0, 0.4, 0, 0.1, 0, 0.4, 0],

[0.04, 0.06, 0.16, 0.24, 0.04, 0.06, 0.16, 0.24],

[0.1, 0.1, 0.4, 0.4, 0, 0, 0, 0],

[0, 0.2, 0, 0.8, 0, 0, 0, 0],

[0.05, 0.05, 0.2, 0.2, 0.05, 0.05, 0.2, 0.2],

[0, 0.1, 0, 0.4, 0, 0.1, 0, 0.4],

[0.25, 0, 0.25, 0, 0.25, 0, 0.25, 0],

[0.1, 0.15, 0.1, 0.15, 0.1, 0.15, 0.1, 0.15],

[0, 0, 0, 0, 0.5, 0, 0.5, 0],

[0, 0, 0, 0, 0.2, 0.3, 0.2, 0.3]

[0.125, 0.125, 0.125, 0.125,

0.125, 0.125, 0.125, 0.125],

[0, 0.25, 0, 0.25, 0, 0.25, 0, 0.25],

[0, 0, 0, 0, 0.25, 0.25, 0.25, 0.25],

[0, 0, 0, 0, 0, 0.5, 0, 0.5]}.

If we, despite this fact, try to apply [a] of Defini-
tion 1, we will realize that only probability distribu-
tions P1 and P2 from M1(X1X2) and M2(X2X3),

respectively, with marginal P
↓{2}
i = [0.5, 0.5] are pro-

jective, and therefore we obtain only a subset of
(M1 .M2)(X1X2X3), namely a subset of

CH{[0.25, 0, 0.25, 0, 0.25, 0, 0.25, 0],

[0.1, 0.15, 0.1, 0.15, 0.1, 0.15, 0.1, 0.15],

[0, 0, 0, 0, 0.5, 0, 0.5, 0],

[0, 0, 0, 0, 0.2, 0.3, 0.2, 0.3]},

which does not keep the first marginal in contrary to
(M1 .M2)(X1X2X3), as can easily be checked. ♦

Example 4 LetM1(X1X2) be as in previous exam-
ple and

M2(X2X3) = CH{[0.2, 0, 0.3, 0.5], [0, 0.2, 0, 0.8],

[0.5, 0, 0.5, 0], [0.2, 0.3, 0.2, 0.3]},

be a credal set about variables X2X3. Contrary to the
previous example these two credal sets are projective,
as

M1(X2) = CH{[0.2, 0.8], [0.5, 0.5]} =M2(X2),

therefore [a] of Definition 1 should be applied:

(M1 .M2)(X1X2X3)

⊆ CH{[0.2, 0, 0.3, 0.5, 0, 0, 0, 0],

[0, 0.2, 0, 0.8, 0, 0, 0, 0],

[0.1, 0, 0.15, 0.25, 0.1, 0, 0.15, 0.25],

[0, 0.1, 0, 0.4, 0, 0.1, 0, 0.4],

[0.25, 0, 0.25, 0, 0.25, 0, 0.25, 0],

[0.1, 0.15, 0.1, 0.15, 0.1, 0.15, 0.1, 0.15],

[0, 0, 0, 0, 0.5, 0, 0.5, 0],

[0, 0, 0, 0, 0.2, 0.3, 0.2, 0.3]},

If, instead of it, one used [b] of the same definition,
he/she would arrive to the credal set containing in
addition the following extreme points

[0.2, 0, 0.8, 0, 0, 0, 0, 0],

[0.08, 0.12, 0.32, 0.48, 0, 0, 0, 0],

[0.1, 0, 0.4, 0, 0.1, 0, 0.4, 0],

[0.04, 0.06, 0.16, 0.24, 0.04, 0.06, 0.16, 0.24],

[0.25, 0, 0.09375, 0.15625, 0.25, 0, 0.09375, 0.15625],

[0, 0.25, 0, 0.25, 0, 0.25, 0, 0.25],

[0, 0, 0, 0, 0.5, 0, 0.1875, 0.3125],

[0, 0, 0, 0, 0, 0.5, 0, 0.5].

Although both of these composed credal sets keep the
first marginal, as can easily be checked, they differ
form each other as concerns the second marginal: the
correctly composed credal set keeps it, while the other
has much bigger marginal, containing in addition the
following extreme points:

[0.2, 0, 0.8, 0], [0.08, 0.12, 0.32, 0.48],

[0.5, 0, 0.1875, 0.3125], [0, 0.5, 0, 0.5]. ♦

Unfortunately, the definition is not elegant, neverthe-
less, its basic properties are satisfied and, as we shall
see later, it holds also for other properties necessary
for the introduction of compositional models.



4 Further Properties

As said in the Introduction, the operator of compo-
sition was originally introduced in (precise) proba-
bility theory. Nevertheless, any probability distribu-
tion may be viewed also as a singleton credal set (i.e.
credal set containing a single point). One would ex-
pect that the operator of composition we have intro-
duced in this contribution coincides with the proba-
bilistic one if applied to singleton credal sets. And it
is the case, as can be seen from the following lemma.

Lemma 2 Let M1 and M2 be two singleton
credal sets about XK and XL, respectively, where
M1(XK∩L) is absolutely continuous with respect to
M2(XK∩L). Then (M1 .M2)(XK∪L) is also a sin-
gleton.

Proof. Let us suppose thatM1.M2 is not a singleton,
i.e. it contains at least two different points. Due to
the condition of absolute continuity both these points
can be expressed in the form

P i = P i
1 · P i

2/(P
i
2)↓K∩L.

As P 1 6= P 2, it is evident that either P 1
1 6= P 2

1 or
P 1
2 /(P

1
2 )↓K∩L 6= P 2

2 /(P
2
2 )↓K∩L (and therefore also

P 1
2 6= P 2

2 ), or both. In any case, it is a contradic-
tion as both credal setsM1 andM2 are singletons. ut

The reader should however realize that the definition
of the operator of composition for singleton credal sets
is not completely equivalent to the definition of com-
position for probabilistic distributions. They equal
each other only in case that the probabilistic version is
defined. This is ensured in Lemma 2 by assuming the
absolute continuity. In case it does not hold, the prob-
abilistic operator is not defined while its credal version
introduced in this paper is always defined (analogous
to evidential operator of composition). Nevertheless,
in this case, the result is not a singleton credal set.
We shall illustrate it by a simple example.

Example 5 Let

M1(X1X2) = {[0.25, 0.25, 0.25, 0.25]},

and
M2(X2X3) = {[0.5, 0.5, 0, 0]},

be two singleton credal sets about variables X1X2 and
X2X3, respectively. Let us compute M1 .M2. As
M1(X2) = {[0.5, 0.5]}, while M2(X2) = {[1, 0]}, it is
evident, that M1 is not absolutely continuous with
respect to M2. Therefore we have via [c] of Defini-
tion 1:

(M1 .M2)(X1X2X3) =M1(X1X2)↑{1,2,3}

which is evidently not a singleton any more.

Let us remark that (M2 .M1)(X1X2X3), in contrast
to (M1 .M2)(X1X2X3), is a singleton credal set

(M2 .M1)(X1X2X3)

= {[0.25, 0.25, 0, 0, 0.25, 0.25, 0, 0]},

because M2(X2) is absolutely continuous with re-
spect to M1(X2). ♦

From this example one can see that the operator of
composition is not commutative. The following ex-
ample demonstrates that this operator is neither as-
sociative.

Example 6 Let

M1(X1) = CH{[0.2, 0, 8], [0.7, 0.3]}

and
M2(X2) = {[0.5, 0.5]}

be two credal sets about X1 and X2, respectively, and

M3(X1X2) = CH{[1, 0, 0, 0], [0, 1, 0, 0]

[0, 0, 1, 0], [0, 0, 0, 1]}.

Then M1 .M2 is obtained via [a] in Definition 1:

(M1 .M2)(X1X2)

= CH{[0.1, 0.1, 0.4, 0.4], [0.35, 0.35, 0.15, 0.15]},

due to Definition 1 and (M1 .M2) .M3 =M1 .M2

according to property (2) of Lemma 1. On the other
hand

(M2 .M3)(X1X2)

= CH{[0.5, 0.5, 0, 0], [0.5, 0, 0, 0.5]

[0, 0.5, 0.5, 0], [0, 0, 0.5, 0.5]},

via [c] of Definition 1. Now, computing M1 . (M2 .
M3) we obtain again via [c] of Definition 1

(M1 . (M2 .M3))(X1X2)

= CH{[0.2, 0, 0.8, 0], [0.2, 0, 0, 0.8],

[0, 0.2, 0.8, 0], [0, 0.2, 0, 0.8],

[0.7, 0, 0.3, 0], [0.7, 0, 0, 0.3]

[0, 0.7, 0.3, 0], [0, 0.7, 0, 0.3]},

which evidently differs from (M1 .M2) .M3. ♦

The following theorem reveals the relationship be-
tween strong independence and the operator of com-
position. It is, together with Lemma 1, the most
important assertion enabling us to introduce multi-
dimensional models.



Theorem 1 Let M be a credal set about XK∪L with
marginals M(XK) and M(XL). Then

M(XK∪L) = (M↓K .M↓L)(XK∪L) (5)

iff
(K \ L) ⊥⊥ (L \K)|(K ∩ L). (6)

Proof. Let us suppose that (5) holds. SinceM1(XK)
and M2(XL) are projective, [a] of Definition 1 is ap-
plied and therefore

M(XK∪L)

= {(P1 · P2)/P
↓K∩L

2 : P1 ∈M(XK),

P2 ∈M(XL), P ↓K∩L1 = P ↓K∩L2 }).

To prove (6) means to find for any P fromM(XK∪L)
a pair of projective distributions P1 and P2 from
M(XK) and M(XL), respectively, such that P =
(P1 · P2)/P1

↓K∩L. But due to condition of projectiv-
ity, M(XK∪L) consists of exactly this type of distri-
butions.

Let on the other hand (6) be satisfied. Then any
P from M(XK∪L) can be expressed as conditional
product of its marginals, namely

P = (P ↓K · P ↓K)/P ↓K∩L,

P ↓K ∈M(XK) and P ↓L ∈M(XL). Therefore,

M(XK∪L)

= {(P ↓K · P ↓K)/P ↓K∩L : P ↓K ∈M1(XK),

P ↓L ∈M2(XL))},

which concludes the proof. ut

5 Compositional models

In this section we will consider repetitive application
of the operator of composition with the goal to create
a multidimensional model. Since the operator is nei-
ther commutative nor associative we have to specify in
which order the low-dimensional credal sets are com-
posed together. To make the formulae more transpar-
ent we will omit parentheses in case that the operator
is to be applied from left to right, i.e., in what follows

M1 .M2 .M3 . . . . .Mn−1 .Mn

= (. . . ((M1 .M2) .M3) . . . . .Mn−1) .Mn.

Furthermore, we will always assume Mi be a credal
set about XKi .

The reader familiar with some papers on probabilistic,
possibilistic or evidential compositional models knows
that one of the most important notions of this theory
is that of a so-called perfect sequence, which will be
now introduced also for credal sets.

Definition 2 A generating sequence of credal sets
M1, M2, . . . ,Mn is called perfect if

M1 .M2 = M2 .M1,

M1 .M2 .M3 = M3 . (M1 .M2),

...

M1 .M2 . . . . .Mn = Mn . (M1 . . . . .Mn−1).

It is evident that the necessary condition for perfect-
ness is pairwise projectivity of low-dimensional credal
sets. However, the following example demonstrates
the fact that it need not be sufficient.

Example 7 Let M1(X1) and M2(X2) as in Exam-
ple 2 and let M3(X1, X2) be defined as follows:

M3(X1, X2)

= CH{[0.1, 0.1, 0.5, 0.3], [0.2, 0, 0.8, 0],

[0.4, 0.3, 0.2, 0.1], [0.7, 0, 0.3, 0]}.

It is evident, thatM1,M2 andM3 are pairwise pro-
jective, as

M3(X1) = CH{[0.2, 0.8, ], [0.7, 0.3]} =M1(X1)

and

M3(X2) = CH{[0.6, 0.4, ], [1, 0]} =M2(X2)

and M1 and M2 are trivially projective, as already
mentioned above. But they do not form a perfect
sequence, as

(M1 .M2 .M3)(X1X2) = (M1 .M2)(X1X2),

whose extreme points are in (4), while

(M3 . (M1 .M2))(X1X2) =M3(X1X3),

which is different. ♦

Therefore a stronger condition, expressed by the fol-
lowing assertion, must be fulfilled.

Lemma 3 A generating sequence M1,M2, . . . ,Mn

is perfect iff the pairs of credal sets Mj and (M1 .
. . . .Mj−1) are projective, i.e. if

Mj(XKj∩(K1∪...∪Kj−1))

= (M1 . . . . .Mj−1)(XKj∩(K1∪...∪Kj−1)),

for all j = 2, 3, . . . , n.

Proof. This assertion is proved just by a multiple
application of assertion (3) of Lemma 1:



M1 .M2 =M2 .M1

⇐⇒ M1(XK2∩K1) =M2(XK2∩K1),

M1 .M2 .M3 =M3 . (M1 .M2)

⇐⇒ (M1 .M2)(XK3∩(K1∪K2))

=M3(XK3∩(K1∪K2)),

...

M1 .M2 . . . . .Mn =Mn . (M1 . . . . .Mn− 1)

⇐⇒ (M1 . . . . .Mn−1)(XKn∩(K1∪...∪Kn−1))

=Mn(XKn∩(K1∪...∪Kn−1)). ut

From Definition 2 one can hardly see what are the
properties of the perfect sequences; the main one is
expressed by the following characterization theorem,
which, hopefully, also reveals why we call these se-
quences perfect.

Theorem 2 A generating sequence of credal sets
M1,M2,. . . ,Mn is perfect iff all the credal sets from
this sequence are marginal to the composed credal set
M1 .M2 . . . . .Mn:

(M1 .M2 . . . . .Mn)(XKj
) =Mj(XKj

),

for all j = 1, . . . ,m.

Proof. The fact that all credal sets Mj from per-
fect sequenceM1,M2,. . . ,Mn are marginals of (M1.
M2 . . . . .Mn) follows from the fact that (M1 . . . . .
Mj) is marginal to (M1 . . . . .Mn) (due to (ii) of
Lemma 1) and Mj is marginal to

Mj . (M1 . . . . .Mj−1) =M1 . . . . .Mj .

Suppose now that for all j = 1, . . . , n, Mj are
marginal assignments to M1 . . . . .Mn. It means
that all the assignments from the sequence are pair-
wise projective, and that each Mj is projective with
any marginal assignment of M1 . . . . .Mn, and con-
sequently also with M1 . . . . .Mj−1. So we get that

Mj(XKj∩(K1∪...∪Kj−1))

= (M1 . . . . .Mj−1)(XKj∩(K1∪...∪Kj−1))

for all j = 2, . . . , n, which is equivalent, due to
Lemma 3, to the fact that M1,M2, . . . ,Mn is per-
fect. ut

The following (almost trivial) assertion, which brings
the sufficient condition for perfectness, resembles as-
sertions concerning decomposable models.

Theorem 3 Let a generating sequence of pairwise
projective credal sets M1,M2, . . . ,Mn be such that

K1,K2, . . . ,Kn meets the well-known running inter-
section property:

∀j = 2, 3, . . . , n ∃`(1 ≤ ` < j)

such that Kj ∩ (K1 ∪ . . . ∪Kj−1) ⊆ K`.

Then M1,M2, . . . ,Mn is perfect.

Proof. Due to Lemma 3 it is enough to show that
for each j = 2, . . . , n credal setMj and the composed
credal setM1.. . ..Mj−1 are projective. Let us prove
it by induction.

For j = 2 the required projectivity is guaranteed
by the fact that we assume pairwise projectivity of
all M1, . . . ,Mn. So we have to prove it for gen-
eral j > 2 under the assumption that the asser-
tion holds for j − 1, which means (due to Theo-
rem 2) that all M1,M2, . . . ,Mj−1 are marginal to
M1 . . . . .Mj−1. Since we assume that K1, . . . ,Kn

meets the running intersection property, there exists
` ∈ {1, 2, . . . j−1} such that Kj ∩ (K1∪ . . .∪Kj−1) ⊆
K`. Therefore (M1 . . . . .Mj−1)(XKj∩(K1∪...∪Kj−1))
and M`(XKj∩(K1∪...∪Kj−1)) are the same marginals
of M1 . . . . .Mj−1 and therefore they have to equal
to each other:

(M1 . . . . .Mj−1)(XKj∩(K1∪...∪Kj−1))

=M`(XKj∩(K1∪...∪Kj−1)).

However we assume that Mj and M` are projective
and therefore also

(M1 . . . . .Mj−1)(XKj∩(K1∪...∪Kj−1))

=Mj(XKj∩(K1∪...∪Kj−1)),

as desired. ut

It should be stressed at this moment that running in-
tersection property of K1,K2, . . . ,Kn is a sufficient
condition which guarantees perfectness of a generat-
ing sequence of pairwise projective assignments. By
no means this condition is necessary as it will be
shown in the following example.

Example 8 Simple example is given by two credal
sets M1 and M2 from Example 7 about X1 and X2,
respectively, and the third credal set M̃3 =M1.M2.
Considering sequenceM1,M2,M̃3, it is evident that
K1 = {1},K2 = {2},K3 = {1, 2} do not meet the
running intersection property. And yet the sequence
M1,M2,M̃3 is perfect because all the credal sets are
marginal (or equal) to M1 .M2 . M̃3. Let us note
that if we chose instead of M̃3 any other credal set
M3 about X1X2 different from M̃3 = M1 .M2,
e.g. that from Example 7 the generating sequence
M1,M2,M3 would not be perfect any more. ♦



Therefore we can see that perfectness of a sequence
is not only a structural property connected with the
properties of K1,K2, . . . ,Kn but depends also on spe-
cific values of the respective basic assignments.

As said already in the introduction, in precise prob-
ability framework any multidimensional distribution
representable by a Bayesian network can also be rep-
resented in the form of a perfect sequence, and vice
versa. For more details the reader is referred to
[7], where also an algorithm for transformation of a
perfect sequence of probability distributions into a
Bayesian network can be found.

Recently we have found out, that in evidence theory
transformation from evidential network to a compo-
sitional model is exactly the same as in precise prob-
ability framework, but the opposite process is a bit
different — it may happen that resulting model ex-
pressed by evidential network is less precise than that
the compositional model [14].

At present we do not know too much about the re-
lationship between compositional models of multidi-
mensional credal sets and credal networks. We con-
jecture it will be similar to the evidential framework.
But it is only a conjecture, the research is just at the
beginning. Nevertheless, to clarify this relationship is
our first goal.

6 Conclusions

Graphical Markov Models were designed to enable de-
scription of real-life problems by probabilistic models.
This is because problems of practice lead to multidi-
mensional models, where the number of dimensions is
expressed rather in hundreds than in tens. Inspired
by the original probabilistic approach the paper is the
first attempt to build up compositional models of mul-
tidimensional credal sets as an alternative to Graphi-
cal Markov Models with imprecision.

We have defined credal set operator of composition
manifesting all the main characteristics of its proba-
bilistic pre-image. Even more, there is one point in
which the credal set operator of composition is supe-
rior to the probabilistic one (similarly to the operator
in the evidential framework): thanks to the ability of
credal sets to model total ignorance, the operator of
composition is for credal sets always defined, which is
not the case in the (precise) probabilistic framework.

In the paper we have proved the basic properties of
the operator (including the relationship to strong in-
dependence) necessary for the introduction of compo-
sitional models and their most important special case,
perfect sequence models.

Naturally, there are still many open problems to be
solved. The most important one is a design of efficient
computational procedures for this type of models. At
this moment we know very little about similarities
and differences between the described compositional
models and other multidimensional models such as
[1, 3, 11], as well as about the relation between the
compositional models developed for credal sets and
those introduced in possibility [12, 13] and evidence
[8, 9] theories.
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multidimensional models by operators of compo-
sition: current state of art. Soft Computing, 7
(2003), pp. 328–335.
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[12] J. Vejnarová, Composition of possibility mea-
sures on finite spaces: preliminary results. In:
Proc. of 7th International Conference on Infor-
mation Processing and Management of Uncer-
tainty in Knowledge-based Systems IPMU’98, (B.
Bouchon-Meunier, R.R. Yager, eds.). Editions
E.D.K. Paris, 1998, pp. 25–30.
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