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Abstract. The Bidirectional Texture Function (BTF) is the recent most advanced representa-
tion of material surface visual properties. BTF specifies the changes of its visual appearance due
to varying illumination and viewing angles. Such a function might be represented by thousands
of images of given material surface. Original data cannot be used due to its size and some
compression is necessary. This paper presents a novel probabilistic model for BTF textures.
The method combines synthesized smooth texture and corresponding range map to produce the
required BTF texture. Proposed scheme enables very high BTF texture compression ratio and
may be used to reconstruct BTF space as well.
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Abstrakt. Obousměrná funkce textury je nejpokročilejší v současné době používaná reprezen-
tace vizuálních vlastností povrchu materiálu. Popisuje změny jeho vzhledu v důsledku měnících
se úhlů osvětlení a pohledu. Tato funkce může být reprezentována tisíci obrazy daného povrchu
materiálu. Původní data nelze díky jejich velikosti použít a je třeba je komprimovat. Tento
článek představuje nový pravděpodobnostní model pro BTF textury. Tato metoda kombinuje
syntetizovanou hladkou texturu a odpovídající hloubkovou mapu výsledkem čehož je požadovaná
BTF textura. Navržený postup umožňuje velmi vysokou úroveň komprese BTF textur a může
být také využit při rekonstrukci BTF prostoru.

Klíčová slova: BTF, analýza textur, syntéza textur, komprese dat, virtuální realita

1 Introduction
Bidirectional Texture Function (BTF) [3] is recent most advanced representation of real
material surface [6]. It is a seven dimensional function describing surface texture appear-
ance variations due to changing illumination and viewing conditions. The arguments of
this function are planar coordinates, spectral plane, azimuthal and elevation angles of
both illumination and view respectively.

Such a function for given material is typically represented by thousands of images of
surface taken for several combinations of the illumination and viewing angles [16]. Direct
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utilization of acquired data is inconvenient because of extreme memory requirements [16].
Even simple scene with only several materials requires about terabyte of texture memory
which is still far out of limits for any current and near future graphics hardware.

Several so called intelligent sampling methods, i.e., based on some sort of original
small texture sampling, for example [4], were developed to solve this problem, but they
still require to store thousands sample images of the original BTF. In addition, they of-
ten produce textures with disruptive visual effects except for the Roller algorithm [12].
Another disadvantage is that they are sometimes very computationally demanding [6].

Contrary to the sampling approaches utilization of mathematical model is more flexi-
ble and offers significant compression, because only several parameters have to be stored
only. Such a model can be used to generate virtually infinite texture without visible
discontinuities. On the other hand, mathematical model can only approximate real mea-
surements, which may result in some kind of visual quality compromise.

One possibility is utilization of random field theory [8]. Generally, texture is assumed
to be realization of random field. Additional assumptions further vary depending on
particular model. BTF theoretically requires seven dimensional model owing to its defi-
nition, but it is possible to approximate general BTF model with a set of much simpler
less dimensional ones, three [10],[13] and two dimensional [9],[11] in practice. Mathemat-
ical model based on random fields provides easy smooth texture generation with huge
compression and visual quality ratio for a large set of textures [6].

Multiscale approach (Gaussian Laplacian pyramid (GLP), wavelet pyramid or sub-
band pyramids) provides successful representation of both high and low frequencies
present in texture so that the hierarchy of different resolutions of an input image provides
a transition between pixel level features and region or global features [9]. Each resolution
component is modelled independently.

We propose an algorithm for BTF texture modelling which combines material range
map with synthetic smooth texture generated by multiscale three dimensional Pseudo
Gaussian Markov Random Field (3D PGMRF) [1]. Overall texture visual appearance
during changes of viewing and illumination conditions is simulated using displacement
mapping technique [17].

2 BTF 3D PGMRF Model

The overall BTF 3D PGMRF model scheme can be found on Figure 1. First stage is
material range map estimation followed by optional data segmentation (k-means cluster-
ing with color cumulative histograms of individual BTF images in perceptually uniform
CIELAB colour space as the data features) [9]. An analysed BTF subspace texture is
decomposed into multiple resolution factors using GLP [9]. Each resolution data are then
independently modelled by their dedicated 3D PGMRF resulting with set of parameters.
Multispectral fine resolution subspace component can be then obtained from the pyramid
collapse procedure, i.e., the interpolation of sub band components which is the inversion
process to the creation of the GLP [9]. Resulting smooth texture is then combined with
range map via displacement mapping filter of graphics hardware or software.
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Figure 1: BTF 3D PGMRF model scheme.

2.1 Range Map

The overall roughness of surface significantly influences the BTF texture appearance.
This attribute can be specified by range map which comprise information of relative
height or depth of individual sites on the surface. Range map can be either measured
on real surface or estimated from images of this surface by several existing approaches
such as the shape from shading [7], shape from texture [5] or photometric stereo [18].
Since the number of mutually registered BTF measurements for fixed view is sufficient
(e.g., 81 in case of the University of Bonn data [16]) it is possible to use over determined
photometric stereo to obtain the most accurate outcome. Range map is then stored as a
monospectral image where each pixel equals relative height or depth respectively of the
corresponding pixel, i.e., point of the surface. If synthesized smooth texture is larger than
stored range map then range map is enlarged by the Roller technique [12] chosen for its
good properties.

3 3D PGMRF Model

Three dimensional texture random field models are defined as random values representing
intensity levels on multiple two dimensional lattices (three in case of widely used colour
spaces such as RGB, CIELAB, YUV, YIQ for instance, all of them are widely used in
computer graphics, although number of lattices is not limited). The value at each lattice
location is considered to be a linear combination of neighbouring ones and some additive
noise component. All lattices are considered as double toroidal.

Let a location within an M ×M two dimensional lattice be denoted by (i, j) with
i, j ∈ J where the set J is defined as J = {0, 1, . . . ,M − 1}. The set of all lattice
locations is then defined as Ω = { (i, j) : i, j ∈ J }. Let the value of an image
observation at location (i, j) and lattice k be denoted by y(i, j, k) and P equals number
of lattices. All random variables forming vector y(i, j) = (y(i, j, k)) (i, j) ∈ Ω, k ∈ P̂
are expected to have zero mean. Neighbour sets relating the dependence of points at
lattice k on points at lattice l are defined as Nkl = { (i, j) : i, j ∈ ±J } with the
associated neighbour coefficients θ(k, l) = { θ(i, j, k, l) : (i, j) ∈ Nkl } where ±J =
{−(M − 1), . . . ,−1, 0, 1, . . . ,M − 1} and k, l ∈ P̂ . We also use shortened notation:
θ = { θ(k, l); k, l ∈ P̂ }. Our model is defined on symmetric hierarchical contextual
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neighbour set (Figure 2), i.e., this holds: r ∈ Nkl ⇐⇒ −r ∈ Nlk. Since all sets Nkl

are equivalent in our implementation, although generally they do not have to be, we use
shortened notation N for simplification purposes.

The 3D PGMRF model relates each zero mean pixel value by a linear combination of
neighbouring ones and an additive uncorrelated Gaussian noise component [1]:

y(i, j, k) =
P∑
n=1

∑
(l,m)∈N

θ(l,m, k, n) y(i+ l, j +m,n) + e(i, j, k) (1)

where

e(i, j, k) =
P∑
n=1

∑
(l,m)∈Ω

c(l,m, k, n) w(i+ l, j +m,n)

and w(i, j, k) represents zero mean unit variance i.i.d. variable for (i, j) ∈ Ω, k ∈ P̂ .
Rewriting the autoregressive equation (1) to the matrix form, with random fields y =
{ y(i, j, k); (i, j) ∈ Ω, k ∈ P̂ } and w = { w(i, j, k); (i, j) ∈ Ω, k ∈ P̂ } model equations
become By = w where

B =


B(θ(1, 1)) B(θ(1, 2)) . . . B(θ(1, P ))
B(θ(2, 1)) B(θ(2, 2)) . . . B(θ(2, P ))

...
... . . . ...

B(θ(P, 1)) B(θ(P, 2)) . . . B(θ(P, P ))

 .

Matrix B is in fact PM2 × PM2 sized matrix composed of M2 ×M2 block circulant
matrices

B(θ(k, l)) =


B(θ(k, l))1 B(θ(k, l))2 . . . B(θ(k, l))M
B(θ(k, l))M B(θ(k, l))1 . . . B(θ(k, l))M−1

...
... . . . ...

B(θ(k, l))2 B(θ(k, l))3 . . . B(θ(k, l))1

 (2)

where each element of matrix (2): B(θ(k, l)p) isM×M circulant matrix with elements
b(θ(k, l))p(m,n) defined as:

b(θ(k, l))p(m,n) =


1 k = l, p = l, m = n
−θ(i, j, k, l) i = p− 1, j = ((n−m) mod M), (i, j) ∈ N
0 otherwise

Let us remark that the selection of an appropriate model support is important to
obtain good results in modelling of a given random field. If used hierarchical contextual
neighbourhood set is too small then corresponding model cannot capture all details of
the random field. Contrariwise inclusion of the unnecessary neighbours increases both
time and memory demands with possible model performance degradation as an additional
source of noise.
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Figure 2: Examples of the used hierarchical contextual neighbourhood sets. The (0,0)
position is represented by the central light square while relative neighbour locations are
darker surrounding ones. First order neighbourhood to fifth order neighbourhood, from
left to right.

3.1 Parameters Estimation

The model is completely specified by parameters θ = { θ(k, l) : k ≥ l, k ∈ P̂ , l ∈ P̂ }
(as θ(k, l) = θ(l, k), ∀k, l due to symmetry of neighbourhood) and vector ρ where each
component ρ(k), k ∈ P̂ of ρ specifies variance of noise component of lattice k. These
parameters may be estimated by means of the Least Squares (LS) technique [1]. The
LS estimates of the neighbour set coefficients θ(i, j, k, l), (i, j) ∈ N, k, l ∈ P̂ of vector
θ are independent of the variance vector ρ. It is due to correlation structure of noise
component [1]:

ε{e(i, j, k)e(i+ l, j +m,n)} =

 −θ(l,m, k, n)
√
ρ(k)ρ(n) (l,m) ∈ N ,

ρ(n) l = 0, m = 0, k = n ,
0 otherwise .

If ρ(k) = ρ(n) ∀k, n ∈ P̂ then the random field becomes strictly Gaussian Markov
with θ̂ depending on ρ̂ making impossible non iterative estimation [1].

Estimates may be derived from equating the observed values to their expected ones,
i.e., y(i, j) = QT (i, j)θ, (i, j) ∈ Ω where

Q(i, j) =


q(i, j, 1, 1) q(i, j, 1, 2) . . . 0

0 q(i, j, 2, 1) . . . 0
0 0 . . . 0
...

... . . . ...
0 0 . . . q(i, j, P, P )


T

q(i, j, k, n) =


(y(i+ l, j +m, k) + y(i− l, j −m, k), (l,m) ∈ N) k = n
(y(i+ l, j +m,n), (l,m) ∈ N) k < n
(y(i− l, j −m,n), (l,m) ∈ N) k > n

The LS solution θ̂ and ρ̂ can be found then as [1]
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θ̂ =

 ∑
(i,j)∈Ω

Q(i, j)QT (i, j)

−1  ∑
(i,j)∈Ω

Q(i, j)y(i, j)

 ,

ρ̂ =
1

M2

∑
(i,j)∈Ω

(y(i, j)− θ̂TQ(i, j))2 .

This approximation of real values of parameters allows to avoid expensive numerical
optimization method at the cost of accuracy [1].

Additional parameter is mean µ = (µ(k)), k ∈ P̂ . Mean of each spectral plane
is estimated as the arithmetic mean and then is subtracted from the plane (prior to
estimation of θ and ρ) so that image can be regarded as realization of zero mean random
field.

3.2 Image Synthesis

Estimated model parameters θ̂, ρ̂ and µ̂ represent original data. So that only their val-
ues (several real numbers) need to be stored instead of those data themselves thus this
approach offers extreme compression.

A general multidimensional Gaussian Markov random field model has to be synthe-
sized using some of the Markov Chain Monte Carlo (MCMC) method [8]. Due to the
double toroidal lattice assumption it is possible to employ efficient non iterative synthesis
based on the fast discrete Fourier transformation (DFT) [1].

The model equations (1) may be expressed in terms of the DFT of each lattice as

Y (i, j, k) =
P∑
n=1

∑
(l,m)∈N

θ(l,m, k, n)Y (i, j, n)e
√
−1ω +

√
ρ(k)W (i, j, k) (3)

where Y (i, j, k) and W (i, j, k) are the two dimensional DFT coefficients of the image
observation y(i, j, k) and noise sequence w(i, j, k), respectively, and ω = 2π(il+jm)

M
with

(i, j) ∈ Ω and k ∈ P̂ . Model equations (3) can be written in matrix form as Y (i, j) =

Λ(i, j)−1 Σ
1
2 W (i, j) with the matrices Σ and Λ(i, j) defined as [1]:

Σ =


ρ(1) 0 . . . 0

0 ρ(2) . . . 0
...

... . . . ...
0 0 . . . ρ(P )

 ,

Λ(i, j) =


λ(i, j, 1, 1) λ(i, j, 1, 2) . . . λ(i, j, 1, P )
λ(i, j, 2, 1) λ(i, j, 2, 2) . . . λ(i, j, 2, P )

...
... . . . ...

λ(i, j, P, 1) λ(i, j, P, 2) . . . λ(i, j, P, P )

 ,

λ(i, j, k, n) =

{
1−

∑
(l,m)∈N θ(l,m, k, n) e

√
−1

2π(il+jm)
M k = n

−
∑

(l,m)∈N θ(l,m, k, n) e
√
−1

2π(il+jm)
M k 6= n

.
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The synthesis process begins with generation of two dimensional arrays of white noise
w with help of pseudo random number generator for each spectral plane independently.
It is followed by two dimensional discrete fast Fourier transform so that arrays W are
obtained. Transformation Λ(i, j)−1 Σ

1
2 W (i, j) is then computed for each discrete fre-

quency index (i, j) ∈ Ω. Following step which is inverse two dimensional fast discrete
Fourier transform results with image y with zero mean spectral planes so desired mean
µ(k) need to be added to corresponding plane k, ∀k ∈ P̂ .

4 Results

We have tested BTF 3D PGMRF model on BTF colour textures from the University of
Bonn BTF measurements [16] which represents the most accurate ones available to date
[6]. Every material in the database is represented by 6561 images, 800 × 800 RGB pixels
each, corresponding to 81 × 81 different view and illumination angles respectively.

The open source project Blender1 with plugin for BTF texture support [14] was used to
render the results. Very simple scene consisting one source of light one three dimensional
object represented by polygons and one camera (its coordinates defines view angles) was
rendered several times with varying illumination angles while view angles stayed fixed.
Synthetic smooth texture combined with range map in displacement mapping filter of
Blender was mapped on the object. Several examples may be reviewed on Figures 3 and
4 where visual quality of synthesised BTF may be compared with measured BTF.

The model was also tested on colour textures picked from Amsterdam Library of
Textures (ALOT)2 [2] which consists more coloured, but less dense sampled materials.

5 Conclusion

The main benefit of the presented method is realistic representation of texture colour-
fulness, which is naturally apparent in case of very distinctively coloured textures. Any
simpler two dimensional random field model is not almost able to achieve such results due
to colour information loss caused by necessary spectral decorrelation of input data [9].
The multiscale approach is more robust and sometimes allows better results than the sin-
gle scale one it is when model cannot represent low frequencies properly. This model offers
efficient and seamless enlargement of BTF texture to arbitrary size and very high BTF
texture compression ratio which cannot be achieved by any other sampling based BTF
texture synthesis method while still comparable with other random field BTF models [6].
This can be useful for, e.g., transmission, storing and modelling realistic visual surface
texture data with possible application in robust visual classification, human perception
study, segmentation, virtual prototyping, image restoration, aging modelling, face recog-
nition and many others [6]. On the other hand the model has still moderate computation
complexity. Described approach does not need any kind of time consuming numerical
optimisation, e.g., Markov chain Monte Carlo method which is usually employed for such
tasks [8]. In addition analysis complexity is not important too much since it is performed

1http://www.blender.org
2http://staff.science.uva.nl/˜ aloi/public_alot/
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Figure 3: A curved plane with mapped BTF. Bottom row: the original measured BTF
(artificial leather). Top row: the synthesised BTF. Each column represents one unique
illumination condition. Camera stayed fixed for all shots.

Figure 4: BTF mapped on complex geometry. The original measured BTF of artificial
leather (2nd and 4th object from left) and corresponding (same illumination and view
angles) synthesised BTF (1st and 3rd object from left).
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once per material and offline. Both analysis and synthesis steps may be performed in par-
allel. Utilizing displacement mapping is both efficient (due to direct hardware support)
and improve overall visual quality of the result. In addition, this model may be used to
reconstruct BTF space, i.e., synthesize missing parts, previously unmeasured, of the BTF
space. Oh the other hand the method is based on the mathematical model in contrast
to intelligent sampling type methods and as such it can only approximate realism of the
original measurement. The approximation strongly depends on several factors such as
size and nature of training data and size of neighbourhood set.

6 Future Work

This BTF model might be further tested and compared with other random field based
models. Overall texture visual quality comparison is complex and not yet completely
solved problem. We would like to focus on texture overall colour quality comparison
because direct pixel to pixel comparison (or based on texture geometry) seems to be
inconvenient due to stochastic character of synthesised textures. One possibility might
be Generalized Colour Moments [15].

Very interesting task would be extension of current implementation by means of par-
allel programming, for example with use of OpenMP3 interface or other multithreading
techniques (TBB4, UPC5).

An extensive utilization of graphics processing unit seems to be applicable as well, but
requires more sophisticated adaptation of current implementation where all computation
is performed in the central processing unit. It would be possible to utilize framework
OpenCL6 or standard OpenGL7. Such improvements would notably increase overall per-
formance which would be beneficial especially in case of virtual reality system requiring
as fast as possible or even real time render and thus fast texture synthesis as well.
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