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Abstract. The Bidirectional Texture Function (BTF) is the recent most advanced represen-
tation of material surface visual properties. BTF specifies the changes of visual appearance
due to varying illumination and viewing conditions. Such a function might be represented by
thousands of images of surface taken in given illumination and viewing conditions per sample of
the material. Resulting BTF size, hundreds of gigabytes, excludes its direct rendering in graph-
ical applications, accordingly some compression of these data is obviously necessary. This paper
presents a novel probabilistic model based algorithm for realistic multispectral BTF texture mod-
elling. This complex but efficient method combines several multispectral band limited spatial
factors and corresponding range map to produce the required BTF texture. Proposed scheme
enables very high BTF texture compression ratio and in addition may be used to reconstruct
BTF space i.e. non-measured parts of the BTF space.
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Abstrakt. Obousmérné texturovaci funkce je nejpokrocilejsi v sou¢asné dobé pouzivana reprezen-
tace vizualnich vlastnosti povrchu materidlu. Popisuje zmény vzhledu v disledku ménicich se
dhlt osvétleni a pohledu. Tato funkce miuze byt predstavovina tisici obrazy povrchu vzorku
materialu, které jsou pofizeny za riznych svételnych podminek a pod riznym thlem. Vysledna
velikost BTF, stovky gigabajti, znemoznuje primé vyuziti v grafickych aplikacich a je tedy tieba
tyto data néjakym zpiisobem komprimovat. Tento ¢lanek pfedstavuje novy pravdépodobnostni
model umoznujici realistické modelovani multispektralnich BTF textur. Tato slozité ale t¢inna
metoda kombinuje nékolik multispektrilnich frekvenénich faktort a odpovidajici hloubkovou
mapu vysledkem ¢ehoz je pozadovana BTF textura. Navrzeny postup umoziuje velmi vysokou
droven komprese BTF textur a navic miZe byt vyuZit k rekonstrukci BTF prostoru, tj. téch
casti BTF, které nebyly ptivodné naméfeny.

Klicovd slova: BTF, analyza textur, syntéza textur, komprese dat, virtualni realita

1 Introduction

Photo realism in virtual reality scenes cannot be realized without nature like colour tex-
tures covering visualised scene objects. These textures can be either smooth or rough.
The rough ones have rugged surface and do not obey Lambertian law, their reflectance
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is illumination and view angle dependent. Such textures might be represented by Bidi-
rectional Texture Function (BTF) [3] which is 7-dimensional function describing texture
appearance variations due to varying illumination and viewing angles. Generally, tex-
tures can be either digitised natural or artifical materials or images synthesised from an
appropriate mathematical model.

The former simplistic option suffers among others with extreme memory requirements
for storage of a large number of digitised cross sectioned slices through different material
samples (apposite example can be found in [15]). This solution become unmanageable
for rough textures which require to store thousands of different illumination and view
angle samples for every texture so that even simple scene featuring only several different
textures requires to store tera bytes of texture data which is still far out of limits for
any current hardware. Several so called intelligent sampling methods (for example [4],
[5] and many others) were proposed to reduce these extensive memory requirements. All
these methods are based on some sort of original small texture sampling and the best of
them produce very realistic textures. However they require to store thousands images for
every combination of viewing and illumination angle of the original target texture sample
and in addition often produce visible seams (except for method presented in [10]). Some
of them are computationally demanding and in addition they are not able to generate
textures unseen by these algorithms.

While synthetic textures are more flexible and extremely compressed, because only
several parameters have to be stored in contrast with gigabytes of original data [15]. They
may be evaluated directly in procedural form and can be used to fill virtually infinite tex-
ture space without visible discontinuities. On the other hand, mathematical models can
only approximate real measurements which results in visual quality compromise of some
methods. Several multispectral modelling approaches were published for example [11],
[1], [12], [13]. Modelling multispectral images requires in theory three dimensional models
but it is possible to approximate such model with a set of simpler two dimensional ones.
Evidently this leads to certain loss of information (for example 3D Causal Autoregressive
(CAR) model [7] versus 2D CAR model [§]).

Among such possible models the random fields are appropriate for texture modelling
not only because they do not suffer with some problems of alternative options (see 6], [12]
for details) but they provide relatively easy to implement and computational undemand-
ing texture synthesis and sufficient flexibility to reproduce a large set of both natural and
artifical textures. While the random field based models quite successfully represent high
frequencies appeared in natural textures low frequencies are sometimes difficult for them.
This slight drawback may be overcome by usage of a multiscale random field model. In
this case the hierarchy of different resolutions of an input image provides a transition
between pixel level features and region or global features and hence such a representa-
tion simplify modelling a large variety of possible textures. Each resolution component
is both analysed and synthesised independently. Multiple resolution decomposition may
be performed by means of Gaussian Laplacian pyramids, wavelet pyramids or subband
pyramids. Because of its relative simplicity we decided to utilize Gaussian Laplacian
pyramid decomposition for this task.



2  Smooth Texture Model

The overall roughness of a textured surface significantly influences a BTF texture ap-
pearance. Such a surface can be specified using its range map, which can be estimated
by several existing approaches. The most accurate range map can be acquired by direct
measurement of the observed surface using corresponding range cameras, however this
method requires special hardware and measurement methodology [9]. Hence alternative
approaches for range map estimation from surface images are more suitable. One of the
most accurate approaches is the Photometric Stereo [9] which estimates surface range
map from at least three images obtained for different position of illumination source and
fixed camera position. This approach was used for range map estimation from textures
for experiments described below. Naturally it is enough to estimate range map once per
material and reuse it whenever it is needed.

We propose a novel algorithm for efficient rough texture modelling which combines an
estimated range map with synthetic multiscale smooth textures generated using Multi-
spectral Simultaneous Autoregressive Model (MSAR) [1]. The material visual appearance
during changes of viewing and illumination conditions can be simulated using the bump
mapping [2| or displacement mapping technique [16]. The obvious advantage of this
solution is the possibility to use hardware support of bump mapping and displacement
mapping in up to date visualisation hardware. The overall appearance is guided by the
corresponding underlying probabilistic model.

2.1 Spatial Factorization

An analysed texture is decomposed into multiple resolution factors using Laplacian pyra-
mid and the intermediary Gaussian pyramid Y, *) which is a sequence of images and each
its element is a low pass down sampled version of its predecessor. The Gaussian pyramid

for a reduction factor n is [8]:

V'O = m v, " Veow), k=1,2... |,
where | denotes down sampling with reduction factor n and ® is the convolution
operation. The Laplacian pyramid Y, ® contains band pass components and provides a
good approximation to the Laplacian of the Gaussian kernel. It can be constructed by
simple differencing single Gaussian pyramid layers:

Y0 =y Ry Dy =01,

r

As previously noticed each resolution data are independently modelled by their ded-
icated MSAR model so that model parameters are estimated for each component inde-
pendently in analysis step.

2.2 Multispectral Simultaneous Autoregressive Model

In the multispectral case random field models are defined as intensity levels on multiple
two dimensional lattice planes (e.g. in case of widely used standard RGB colour model
three such planes are considered). The value at each lattice location is taken to be a linear



combination of neighbouring ones and an additive noise component. For mathematical
simplicity, all lattices are double toroidal (the same way as Gaussian Markov Random
Field model [9] for example). Let a location within an M x M two dimensional lattice be
denoted by s = (s1, s2), with s, 9 € J and the set J is defined as J = {0,1,..., M —1}.
The set of all lattice locations is then defined as Q = {s = (s1,52) : s1,52 € J}. The
value of an image observation at location s is denoted by y(s). These random vectors are
expected to have zero mean. Neighbour sets relating the dependence of image plane ¢ on
image plane j are defined as N;; = {r = (k,l) : k,l € £J} with the associated neighbour

coefficients ¢;; = {q;;(r) : r € N;;}. The set £J ={—-(M - 1),...,—-1,0,1,..., M — 1},
We also use shortened notation: ¢ = {¢;; 4,7 € {1,...,P}}and r = {r;; i €
{1,..., P} }). Neighbour sets may be classified as symmetric or nonsymmetric. In par-

ticular, in the case of multispectral models, a symmetric neighbour set is defined as one
for which r € N;; <= —r € Nj;. Our model is defined on symmetric neighbour set.
Scale parameter p associated with the corresponding noise component of the model is
defined for each particular lattice.

The Multispectral Simultaneous Autoregressive model (MSAR) [1] relates each lattice
position ;(s) to its neighbouring pixels, both within and between image planes, according
to the following equations:

P

vi(s) =Y Y 0i(ryi(s @) + pawi(s), i=1,...,P, (1)

jil T'EN,L'J'

where P equals number of image planes, p; is noise variance of image plane 7, w;(s)
are i.i.d. random variables with zero mean and unit variance and & denotes modulo M
addition in each index. Virtually the MSAR model characterizes the spatial interactions
between neighbouring pixels through the parameter vectors 6 = (6;;; i=1,...,P;j =
L,....,P)YTand p = (p;; i =1,...,P)T. Rewriting (1) in matrix form for the RGB
colour model, i.e. i€ {r,g,b}, the MSAR model equations are then B(f)y = w where

B(‘grr) B<9rg> B(‘%b)
B(@) = B(Qgr) B(Qgg) B(ng) )
B(6y) B(bhy) B(Ow)

y=((s), wels): w(s))",  w=(Vprwi(s), \/pgwy(s), v/oww(s))"

and both y;(s) and w;(s) are M?-vectors of lexicographic ordered arrays {y;(s)} and
{w;(s)}, respectively. The transformation matrix B(f) is composed of M? x M? block
circulant submatrices

B(0i;)1 B(bij)2 ... B(0ij)m
B(o,) B(Q:ij)M 3(9:1'3‘)1 ) B(%)M—l
B(0:;)2 B(bij)s ... B0
where each element B(6;;),p € {1,...,M} is an M x M circulant matrix whose

(m,n)-th element is given by:



17 Z = ja m = n7
b(0ij)p(m,n) =< —0i(k, 1), k=p—1,1=((n—m) mod M), (k,1) € Ny,
0, otherwise.
Writing the image observations as y = B (q) Lw, the image covariance matrix is

obtained as ¥, = e{yy'} = e { B(g)™" ww’ [B () T} = Blo)'Su[Blg)~']"

where

pl 00
Y = c{ww’} = 0 pd O
0 0 pl

2.3 Parameter Estimation

It is neccesary to notice that the selection of an appropriate MSAR model support is
important to obtain good results in modelling of a given random field. If the contextual
neighbourhood is too small it can not capture all details of the random field. Contrari-
wise, inclusion of the unnecessary neighbours add to the computational burden and can
potentially degrade the performance of the model as an additional source of noise.

A least squares (LS) estimate of the MSAR model parameters can be obtained by
equating the observed pixel values of an image to the expected value of the model equa-
tions. As we prefer RGB colour model our task leads to three independent systems of
M? equations:

vi(s) = ai(s)"0i, s€9Q, i€ {rgb},

with vectors 6; and ¢;(s) formed as follows 6; = (6, 6;5,0:)" and

a(s) = ({y(s@t) 1t € N}, {ygs@t):t€ Ny}, {m(s&t):te Ny})l.
The LS solution 6; and p; can be found then as

)i = (Z q@-(S)qz-(S)T) (Z qi(s)yi(3)> ’

2.4 Texture Synthesis

The goal of texture synthesis in case of probabilistic model is to generate image of ar-
bitrary size directly from the model parameters so that resulting texture has the same
statistical properties as original measured and analysed one. Several possibilities exist for
a finite lattice MSAR synthesis. The most effective method uses the discrete fast Fourier
transformation (DFT). The MSAR model equations (1) may be expressed in terms of the
DFT of each image plane as



ZZ@U eVl L pWi(t), i=1,...,P (2)

j=1 reN;;

where Y;(t) and W;(t) are the two-dimensional DFT coefficients of the image ob-
servation {y;(s)} and noise sequence {w;(s)}, respectively, at discrete frequency index

t = (m,n) and w, = W for r = (k,1). For the RGB colour model equations (2)

can be written in matrix form as
Y(t) = A@®)' S W(t), teQ
where the vectors Y (t) and W (t) are formed this way:

Y(t) = (Yo(t), Y,(t), Y1), W(t) = (Wi(t), Wy(t), Wu(t))",
and the matrices ¥ and A(t) are defined as:

pr 0 0
Z - 0 pg O )
0 0 pe
Are(t)  Arg(t) rb()
A<t) = gr(t) >‘gg t ( ) )
Aor(t) A

N

! —Yren, Oi(r) e/ i

Apparently, the MSAR model will be stable and valid if A(¢) is nonsingular matrix

Vvt € Q. Given the model parameters, a M x M MSAR image can be synthesized according
to the following algorithm:
1) Generate the i.i.d. noise arrays {w;(s)} for each image plane using a pseudo random
number generator.
2) Calculate the two-dimensional DFT of each noise array i.e. produce the transformed
noise arrays {W;(t)}).
3) For each discrete frequency index ¢ compute Y (£) = A(t)"1 Sz W(¢).
4) Perform the two-dimensional inverse DFT of each frequency plane {Y;(¢)}, producing
the synthesized image planes {y;(s)}.
The resulting image planes will have zero mean thus it is necessary to add desired mean
to each spectral plane after step 4. Fine resolution texture is obtained from the pyramid
collapse procedure that is inversion process to process described in section 2.1.
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3 Results

We have tested the algorithm on colour BTF textures from the University of Bonn BTF
measurements [15], namely on following materials: artifical leather, foil, glazed tails,
plastic floor and two different samples of wood. Each BTF material sample comprised



in mentioned database is measured in 81 illumination and 81 viewing angles and has
resolution 800 x 800 pixels, so that 6561 images had to be analysed for each material.

The open source project Blender! with special plugin for BTF support [14] was used
to render the results i.e. the scene in virtual reality featuring three-dimensional object
covered with synthesised BTF texture. Figure 1 demonstrates the result for one picked
material, foil in this case, i.e. synthesised BTF texture combined with its range map
in a displacement mapping filter of the rendering software mapped on bumpy board.
Scene was rendered in several different illumination conditions with fixed view angle to
demonstrate visual quality of synthesised BTF.

3.1 Implementation Details

The source code was written in C++ and compiled in several different environments
(namely with g+ versions 3.4.4,4.1.2,4.3.2, 4.3.4 and 4.5.0) and tested on many different
systems including standard windows based operating system with cygwin environment
as well as linux based systems to prove stability and portability of the program. This
implementation uses many parts of library developed at Pattern Recognition Department,
Institute of Information Theory and Automation?, such as image reading and writting
routines, memory managment and XML format support.

4 Summary and Conclusion

Our testing results of the algorithm on available BTF data are encouraging. Some syn-
thetic textures reproduce given measured texture images so that both natural and syn-
thetic texture are almost visually indiscernible. The main benefit of this method is more
realistic representation of texture colourfulness which is naturally apparent in case of very
distinctively coloured textures. The multi scale approach is more robust and allows some-
times better results than the singlescale one due to capabilities of the model described
above.

The proposed method allows huge compression ratio unattainable by alternative in-
telligent sampling approaches for transmission or storing texture data while it has still
moderate computation complexity. It is neccesary to mention that the complexity of
analysis is not as important as the complexity of synthesis because the parameter esti-
mation can be performed offline unlike the synthesis which should be as fast as possible.
The method does not need any time consuming numerical optimisation like for example
the usually employed Monte Carlo methods. The replacement of the bump mapping
technique with the displacement mapping further significantly improve the visual quality
of the results. The presented method is based on the mathematical model in contrast
to intelligent sampling type of methods, and as such it can only approximate realism
of the original measurement. However it offers easy simulation of even non existing i.e.
previously not measured BTF textures and fast seamless synthesis of texture of arbitrary
size.

http:/ /www.blender.org
2http://www.utia.cas.cz



Figure 1: Resulting BTF texture of foil, synthesised texture combined with its range map
mapped on bumpy board rendered with 15 different angles of illumination and fixed view
angle.



5 Future Work

This developed model might be further tested on different BTF measurements and com-
pared with other random field based models such as already mentioned CAR or Gauss-
Markov random field model [9]. Though the quality of the model was proven it would be
interesting to find its limitation and study the influence of the size of the neighbourhood
to overall performance for example. Naturally more interesting is possible extension of
current implementation by means of parallel programming with use of OpenMP? library
wich is straightforward and would notably increase the model performance. It is also

possible rewrite the source code so that program would perform all computations on
GPU.

References

. Bennett, A. Khotanzad. Multispectral Random Fie odels for Synthesis and Anal-

1] J.B A. Kh d. Mult: [ Random F'ield Model Synthest d Anal
ysis of Color Images. IEEE Transactions on Pattern Analysis and Machine Inteligence
20(3) (1998), 327-332.

[2] J. Blinn. Simulation of Wrinkled Surfaces. ACM SIGGRAPH Computer Graphics
12(3) (1978), 286-292.

[3] K. Dana, S. Nayar, B van Ginneken, J. Koenderink. Reflectance and Texture of
Real-World Surfaces. Proceedings of IEEE Conference Computer Vision and Pattern
Recognition (1997), 151-157.

[4] J. De Bonet Multiresolution sampling procedure for analysis and synthesis of textured
images. Proceedings of SIGGRAPH 97, ACM (1997), 361-368.

[5] W. Efros, A.A. Freeman. Image quilting for texture synthesis and transfer. SIG-
GRAPH 2001, Computer Graphics Proceedings, E. Fiume, Ed. ACM Press /| ACM
SIGGRAPH (2001), 341-346.

[6] M. Haindl. Tezture synthesis. CWI Quarterly 4(4) (1991), 305-331.

[7] M. Haindl, J. Filip, M. Arnold. BTF Image Space Utmost Compression and Modelling
Method. Proceedings of 17th ICPR 3, IEEE Computer Society Press (2004), 194-198.

[8] M. Haindl, J. Filip. A Fast Probabilistic Bidirectional Texture Function Model. Pro-
ceedings of ICTAR (lecture notes in computer science 3212) 2, Springer-Verlag, Berlin
Heidenberg (2004), 298-305.

[9] M. Haindl, J. Filip. Fast BTF Texture Modeling. Proceedings of the 3rd International
Workshop on Texture Analysis and Synthesis (2003), 47-52.

[10] M. Haindl, M. Hatka. BTF Roller. Texture 2005: Proceedings of the 4th Interna-
tional Workshop on Texture Analysis and Synthesis (2005), 89-94.

3http://openmp.org



10

[11] M. Haindl, V. Havli¢ek. Multiresolution colour texture synthesis. Proceedings of the
7th International Workshop on Robotics in Alpe-Adria-Danube Region, K. Dobrovod-
sky, Ed. Bratislava: ASCO Art (1998), 297-302, Berlin: Springer-Verlag (2000), 114
122.

[12] M. Haindl, V. Havli¢ek. A multiresolution causal colour texture model. Proceedings
of the Joint TAPR International Workshops on Advances in Pattern Recognition,
Springer-Verlag (2000), 114-122.

[13] M. Haindl, V. Havli¢ek. A multiscale colour texture model. Proceedings of the 16th
International Conference on Pattern Recognition (2002), 255-258.

[14] M. Hatka Vizualizace BTF textur v Blenderu. Doktorandské dny 2009, sbornik work-
shopu doktorandii FJFI oboru Matematické inzenyrstvi, Ceské vysoké uceni technické
v Praze (2009), 37-46.

[15] G. Miiller, J. Meseth, M. Sattler, R. Sarlette, R. Klein. Acquisition, Compression,
and Synthesis of Bidirectional Texture Functions. State of the art report, Eurographics
(2004), 69-94.

[16] X. Wang, X. Tong, S. Lin, S. Hu, B. Guo, H.-Y. Shum. View-dependent displacement
mapping. ACM SIGGRAPH 2002 22(3), ACM Press (2003), 334-339.



