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Abstract. Image quality assessment is a difficult problem in the field of image
processing without any acceptable solution yet. Quality assessment of textures,
which is the topic of this work, is even harder problem. This work presents an
overview and a description of current state of the art methods as well as brief
experiments on textures and a discussion about the usability of these methods on
textures.

Introduction

Image quality assessment tries to quantify a visual quality or, analogically, an amount of
distortion in a given picture. These distortions are inevitable part of any digital image processing
pipeline (acquisition, compression, transmission, etc. of images). The only ”correct” method of
evaluating the human-perceived visual quality of the pictures is the evaluation by the human
beings. Unfortunately, such a procedure is expensive, very time consuming and not usable in
real-time applications (adjustment of the rate of transfer etc.). Therefore, there is a need for an
automated method that would predict the human-perceived visual quality as close as possible.

The pioneering work in this area was done by psychologist and neuroscientist Béla Julesz.
In the article Visual Pattern Discrimination from 1962 [Julesz, 1962] he experimented with
textures with controlled properties to find out what is important for a human to discriminate
two textures. The age of this article shows how old the problem is and also how difficult it is,
because it is still not satisfyingly solved.

This work is oriented on an evaluation of texture quality, which has not been very well doc-
umented yet. Its task differs from regular quality assessment. The ideal measure would predict
and quantify how much the tested (e.g. synthesized) texture can or cannot be distinguished
from the original texture by a human. This cannot be achieved by any kind of a pixel-wise
comparison, because, usually, the exact pixel-to-pixel correspondence is not necessary or is even
undesired. Analysis of its structure or its statistical properties could be the right approach.

Most of today’s methods are designed to evaluate the visual quality of real-world images like
photos. Within this work the survey of most used methods in this area was made to see if they
or at least some ideas from them could be refined and used. All of studied methods work with
monospectral (greyscale) images. They could also be used with multispectral images after the
preprocessing, but this leads to information loss. In the next part there are presented possible
classifications of image quality measures and then the measures themselves are described.

Classifications

Most basically, image quality measures can be divided to subjective and objective ones.
The former are performed by humans, i.e. the image quality is evaluated by humans; the latter
are acquired by computer algorithms.

Another possible classification of image quality measures can be made according to the
availability of a reference image. Most of existing approaches are full-reference (FR), which
means that complete reference image is available during an evaluation. Reference image is often
not available at all and no-reference (NR) or ”blind” methods are needed. Third group is called
reduced-reference (RR) and such methods measure image quality with help of features extracted
from a reference image. The measures considered in this work are objective and belong to the
FR class.
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MSE and PSNR

Mean-squared error (MSE) and peak signal-to-noise ratio (PSNR) are two basic measures.
They measure a difference between two signals and the result can be understood as a degree of
similarity or a strength of error signal between signals.

Let x and y be two discrete image signals (generally any signals) of finite length N , where
N is the number of pixels (samples) in the images and xi and yi are intensities of i-th pixel in
x and y, respectively. Then MSE between these two signals is

MSE(x,y) =
1

N

N∑

i=1

(xi − yi)
2. (1)

In the field of image processing the MSE is often converted into PSNR measure

PSNR(x,y) = 10 log10

L2

MSE(x,y)
, (2)

where L is a dynamic range of allowable pixel intensities. For example if the image has 8 bits
for a pixel, L = 28

− 1 = 255. PSNR is useful when comparing images with different dynamic
ranges [Wang and Bovik, 2009].

This measure is universal, easily computable and as a valid distance metric in R
N has a

few nice conditions such as symmetry, triangular equality etc. and therefore provides consistent
interpretation of image similarity. Because of all of this MSE became a convention in image
quality evaluation and has been compared to new methods in this field.

So what is the problem with MSE? It measures just the pixel-wise correspondence and
the main issue, as many experiments and tests of MSE have shown, is that despite of all the
good features, MSE does not represent human-perceived image quality very well. This led to
attempts to create measures, whose performance would be more closely related to the human
perception of visual quality.

Modeling of human visual system

Because the difference between signals does not measure the distortion well, it is natural
to try and model human visual system (HVS) itself. If all parts of HVS were precisely modeled,
accurate prediction of subjective image visual quality would probably be achieved. Precise
modeling of HVS is, however, very hard, if not impossible, because HVS is very complicated
system with a lot of nonlinearities and, moreover, we still do not know every detail of how it
processes information.

In the pioneer method of this approach [Mannos and Sakrison, 1974] the HVS is modeled by
monotonic, increasing, concave function f(i) and a linear filter A(fx, fy). Let u(x, y) be an inten-
sity of the pixel [x, y] of an image. First, on both reference and distorted images the function f(i)
is applied and a new image w(x, y) = f(u(x, y)) is created. Then, the filter A(fx, fy) is applied
to obtain the final transformed image v(x, y) = FT−1 (A(fx, fy)FT (w(fx, fy))). Finally, the

distortion d is measured by the integral squared error d(v, v′) =
∫
x

∫
y
(v(x, y) − v′(x, y))2dxdy.

This model should at least partially correspond to image processing of human visual sys-
tem. Function f represents the sensitivity of an eye to the light and the filter A has some
correspondence to a lateral inhibition and optical limitations of human visual system. However,
this method and others similar to it are essentially just variants of MSE, only different parts of
the signals are weighted differently according to their presumed visibility for the HVS.

SSIM

Structural similarity index is a measure based on the assumption that human visual system
is adapted to extract structural information from the field of view. Therefore, the change of
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structural information between distorted and original image could be a good approximation of
perceived image distortion.

In [Wang et al., 2004] basic version of SSIM is described, where structural information is
gathered by a comparison of luminance, contrast and structure. Let x and y are two nonnegative
image signals of length N . First, the luminance is compared by a function of mean intensities
µx and µy in the form

l(x,y) =
2µxµy + C1

µ2
x + µ2

y + C1

, (3)

where C1 is the constant included to avoid an instability when µ2
x + µ2

y is almost zero. C1 =
(K1L)2, where L is a dynamic range of the picture and K1 << 1 is a small number. The same
stands for the constants in contrast and structure functions, whose description follows.

Contrast comparison is a function of standard deviations σx and σy that looks like

c(x,y) =
2σxσy + C2

σ2
x + σ2

y + C2

, (4)

where C2 = (K2L)2 and K2 << 1. Also note, that with the same amount of change of contrast
∆σ = σy − σy, this function is less sensitive in the case of high base contrast than in the case
of low base contrast, which corresponds to the contrast-masking behaviour of human visual
system. Finally, structure comparison is a function of correlation between the two signals in
the form

s(x,y) =
σxy + C3

σxσy + C3

, (5)

where C3 is again a small constant. Note, that correlation coefficient between orignal signals
is the same as between normalized signals (i.e. (x − µx)/σx) and therefore could represent the
structure well.

These functions are combined into the resulting measure as

SSIM(x,y) = [l(x,y)]α [c(x,y)]β [s(x,y)]γ , (6)

where α > 0, β > 0, γ > 0 are parameters used to change the relative importance of individual
components. For simplification in [Wang et al., 2004] they set α = β = γ = 1 and C3 = C2/2,
which simplified the measure to

SSIM(x,y) =
(2µxµy + C1)(2σxy + C2)

(µ2
x + µ2

y + C1)(σ2
x + σ2

y + C2)
. (7)

SSIM works best if used locally. It means to compute local statistics µx, σx and σxy in
a small window that is pixel-by-pixel moved over the entire image and the results are then
averaged. The reasons for such an approach are that different parts of the image can differ a
lot and also human can concentrate on just one limited area at the time. Such approach can
also be used to create spatially varying quality map of the picture to obtain more information
about the distortion of the image.

SSIM is one of the most used measures not only in the field of image processing. For
example, SSIM is used in award-winning freeware H.264 codec x.264 and it is also used in
speech recognition, in compressing algorithms etc.

SSIM, even though it performs much better than MSE, has limits. For example, the basic
variant does not perform well in cases of translated, scaled or rotated images, even if the quality
of these images is the same as of their reference images. This is partially solved by Complex
Wavelet SSIM (CW-SSIM) [Wang and Simoncelli, 2005]. SSIM, in essence, also compares the
signals with pixel-to-pixel approach so it is still quite similar to MSE.
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VIF criterion

Main theoretical problem with SSIM is the assumption about the structural information.
There is no widely accepted definition of this term and, therefore, such an assumption does not
have to be correct. Another attempt of image quality assessment is visual information fidelity
(VIF) criterion presented in [Sheikh and Bovik, 2006].

Authors of VIF also assumes that HVS has evolved to best perceive so called natural scenes.
However, instead of HVS, they have chosen to model these natural scenes, which are a class
of images or videos of common three-dimensional visual environment. Even though this class
forms just a small subspace in the space of all possible signals, its relevance for a human caused
an increased interest in a statistics of their structure [Srivastava et al., 2003], which are called
natural scenes statistics (NSS).

They model the reference image as an output of a natural source that passes through the
HVS channel (signal for a test image passes also through the distortion channel). Then, the
amount of information brain could extract is said to be the mutual information between the
output of the source and the HVS channel. Everything is modeled for a single subband in
the wavelet domain, which was shown to well represent the natural sources. In the final VIF
measure these values for both reference and test image are compared.

Natural source is modeled as Gaussian scale mixtures (GSM), which is a random field (RF)
that can be expressed as a product of two independent RFs. That is, C = S · U = {Si ·

−→
Ui :

i ∈ I}, where I is a set of spatial indices, S = {Si : i ∈ I} is an RF of positive scalars and
U = {

−→
Ui : i ∈ I} is a Gaussian vector RF with zero mean and covariance CU . Subbands in the

wavelet domain are split into nonoverlapping blocks of M coefficients and the block i is modeled
as the M -dimensional vector

−→
Ci.

Distortion channel is modeled as a signal attenuation plus additive noise. This model is
supposed to well approximate real-world distortions locally and is not specialized to particular
artifacts (e.g. blocking of JPEG compression). The model of the output of the distortion
channel looks like D = G · C + V = {gi

−→
Ci +

−→
Vi : i ∈ I}, where RF G = {gi : i ∈ I} is a

deterministic scalar gain field and V = {
−→
Vi : i ∈ I} is a stationary, additive, zero-mean, white

Gaussian noise RF with variance CV = σ2
vI.

HVS channel is modeled simply as a single additive noise component that adds uncertainty
to the signal that flows through the HVS. It is again a stationary, zero mean, additive, white
Gaussian noise RF N = {

−→
Ni : i ∈ I} for a reference and N

′ for a test image. Then E = C + N

and F = D + N ′ are the signals processed by the brain for a reference and a test image,
respectively.

From this model, the mutual information for both images I(
−→
C ,

−→
F |s) and I(

−→
C ,

−→
E |s) can

be computed, where s stands for the realization of S for particular reference image (detailed
description of the calculation of mutual information can be found in [Sheikh and Bovik, 2006]).

Final measure then combines these results from each subband into the final formula

VIF =

∑
j∈subbands

I(
−→
C

N,j
,
−→
F

N,j
|sN,j)

∑
j∈subbands

I(
−→
C

N,j
,
−→
E

N,j
|sN,j)

, (8)

where
−→
C

N,j
(and others analogically) represents the N elements of RF Cj for j-th subband.

This N -notation is useful for a local application of the measure, because as well as SSIM, VIF
works better if computed locally by a moving window.

For common distortions values of the VIF belong to the interval [0, 1], where VIF = 1 if and
only if the test image is the copy of the reference image and VIF = 0 if all information was lost
because of the distortion. However, for the special case of slight linear contrast enhancement of
the test image the value of VIF will be greater than 1. This is quite useful property, because
such images are visually perceived to be better than originals. According to [Sheikh et al., 2006],
VIF criterion performs better than all other state-of-the-art image quality assessment methods.
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Experiments with textures

Tested measures were MSE, VSNR (Visual Signal-to-Noise-Ratio [Chandler and Hemami,
2007], which is based on HVS modeling), SSIM and VIF. The implementations of the afore-
mentioned methods from the Matlab package MeTriX MuX [Gaubatz, 2012] were used.

Figure 1. Textures of wood. From the left: original, 2D GMRF, 3D GMRF, CAR, SAR.

All of the measures were used on two sets of textures: wood and straws. Textures used
were modeled with 2D Gaussian Mixtures Random Field (GMRF), 3D GMRF, Causal Auto-
Regressive model (CAR) and Spatial Auto-Regressive model (SAR) [Haindl, 1991]. Lets label
them with numbers from 1 to 4 in this order. An example of a texture of wood can be seen on
Figure 1.

Table 1. Test results on generated textures of wood.

2D 3D CAR SAR
mse 383.943825 683.548720 605.675215 472.032387
vsnr 4.154531 0.685098 1.493072 2.847859
ssim 0.423054 0.258032 0.292863 0.293117

vif 0.019130 0.020040 0.026589 0.015571
The results on a wood textures can be seen in the Table 1. Lets look at the textures

themselves. Their visual quality is a matter of opinion, but the discussion will be as objective
as possible. The SAR generated texture (the last one on the Figure 1) has a bad structure and
resembles the original wood texture just by its color. Therefore, it should be evaluated as the
worst one. The 3D GMRF generated texture is quite similar to the original. Even though its
structure is not exactly the same, it looks a lot like the original wood and the distribution of
colors in the image is also fairly similar to the original. Therefore, it should be evaluated as the
best one. The 2D GMRF and CAR generated textures are both completely different and it is
hard to compare them. The 2D GMRF has very soft structure that may look like a wood, but
not as a wood in the original image. The CAR, on the other hand, has very aggressive texture
but is slightly similar to the original. However, both of them, for sure, are better than SAR
and worse than 3D GMRF. So, the textures should be evaluated from the best to the worst in
the order 2, 1, 3, 4 or 2, 3, 1, 4.

According to the results, MSE evaluates the textures as 1, 4, 3, 2, VSNR evaluates them
as 2, 3, 4, 1, SSIM also as 2, 3, 4, 1 and VIF as 4, 1, 2, 3. MSE is completely wrong, which was
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expected due to its poor perfomance on normal images. VSNR and SSIM evaluated textures
the same, which could also be expected because of their common pixel-to-pixel approach. They
both valued the second texture correctly as the best one, but SSIM just by a small margin above
others and both of them did not evaluated correctly the rest. VIF performed surprisingly bad,
even though the final ordering is slightly better than the ordering of MSE. Textures from the
second set has poor visual quality and the tests on them turned out even worse and therefore
are not mentioned here.

Conclusion

Image quality assessment is an important problem in the field of image processing. It is
still not satisfyingly solved and new approaches are still appearing. This work concentrates on
a texture quality assessment and tries to find out whether the current state of the art methods
for images can be used on textures. The most commonly used measures for image quality
assessment were described and briefly tested on textures. The tests showed that none of the
tested methods works well on used textures (not even SSIM or VIF) and, therefore, there is
a need for a measure designed particularly for textures, which is the subject of further effort.
Important disadvantage of the most of the current methods is also that they are designed to
work only with grey-scale images. The use of information from all scales could help with the
quality assessment. There should be also more thorough testing on the variety of textures to
show with greater certainity that the methods for images do not work on textures or find the
cases where they do work and determine why.
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