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Abstract. Feature Selection in very-high-dimensional or small sample
problems is particularly prone to computational and robustness compli-
cations. It is common to resort to feature ranking approaches only or
to randomization techniques. A recent novel approach to the random-
ization idea in form of Dependency-Aware Feature Ranking (DAF) has
shown great potential in tackling these problems well. Its original def-
inition, however, leaves several technical questions open. In this paper
we address one of these questions: how to define stopping rules of the
randomized computation that stands at the core of the DAF method.
We define stopping rules that are easier to interpret and show that the
number of randomly generated probes does not need to be extensive.

Keywords: dimensionality reduction, feature selection, randomization,
stopping rule.

1 Introduction

Feature selection (FS) is one of dimensionality reduction techniques, that pre-
serves meaning of the selected original data features, while irrelevant features
are discarded. Assume a general pattern recognition problem (typically a classi-
fication or clustering problem) in N -dimensional feature space. In the particular
case of classification, some objects described by means of features f1, f2, . . . , fN
(real valued or discrete) are to be classified into one of a finite number of mu-
tually exclusive classes. The common initial step in classifier design is to choose
a reasonably small subset of informative features by using a feature selection
method. The first step in solving the FS problem involves choosing appropriate
method based on the knowledge (or lack of therein) of available training data
properties. The key decision to be made involves the choice of the criterion and
the search algorithm capable of optimizing such a criterion. Note that feature
subset search is potentially an expensive combinatorial problem as the number
of candidate subsets is very high. The search is stopped according to chosen
stopping rule; it can be defined in terms of achieved completeness of search,
criterion convergence threshold, subset size limit, time, etc.

In recent years the focus of feature selection research is moving from the rela-
tively well covered area of low-to-mid-dimensional recognition problems towards
very-high-dimensional problems [1]. As the high-dimensional FS is susceptible
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to problems arising from insufficient sample size and computational complexity,
the FS methods often prefer simpler analysis ignoring inter-feature dependen-
cies, e.g., based on feature ranking [2]. This simplifications is commonly assumed
less harmful than obtaining misleading information through serious estimation
errors due to over-fitting. The computational complexity can be reduced by
resorting to randomized methods, however, this is counterbalanced by loss of
optimality due to a user-defined time restriction of the search process. An exam-
ple of such techniques is Relief algorithm [3] based on a simple idea of repeated
randomized sampling of one pattern followed by feature weights update. Com-
binations of randomized and greedy algorithms [4] seems to be better suited for
high-dimensional tasks, than randomized methods based on Genetic algorithms,
Simulated Annealing, and Tabu Search [5], which provide strong optimization
mechanism, at the cost of long converge times. Method’s over-fitting has been
tackled by a random restriction of inter-feature dependencies evaluation by re-
peatable running FS process on various random subspaces in [6].

Finally a combination of ranking and randomization called Dependency-Aware
Feature Ranking has been introduced in [7]. The idea of individually best rank-
ing is generalized to evaluate features contributions in a sequence of randomly
generated feature subsets. The method has been shown capable of selecting fea-
tures reliably even in settings where standard feature techniques fail due to
problem complexity or over-fitting issues and where individual feature ranking
results are unsatisfactory. Several open questions, however, remain with respect
to DAF applicability, that have not been addressed in [7]. The two most practi-
cally important are: a) What is the right final subset size?, and b) How long is
it necessary to let the random probe generation process run?

The problem to specify the optimal number of features to be selected, is
closely related to the number of available data, dimension of the feature space
and also to the underlying classification complexity. It is well known that in
case of infinitely large training sets we should use all features since by omitting
features the classifier performance cannot be improved. If a multidimensional
training set were not large enough then most classifiers would tend to over-fit
with the resulting poor classification performance on the independent test data.
In such a case the generalizing property of the classifier could be improved by
selecting a subset of informative features. Obviously, the optimal choice of the
final reduced dimensionality depends on the size of the training data set and the
complexity of the underlying classification problem. In this sense the question
a) is beyond the scope of this paper since the size of the training data set is not
considered explicitly. For a more detailed discussion of dimensionality problems
in the context of standard individual feature ranking see e.g. [8]. In the following
we investigate some aspects of question b), i.e., we discuss different options
specifying the stopping rule of the feature ordering process.

2 Dependency-Aware Feature Ranking

Denoting F the set of all features F = {f1, f2, . . . , fN} we assume that for each
subset of features S ⊂ F a feature selection criterion J(·) can be used as a
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measure of quality of S. We assume the criterion J(·) to be bounded according
to the most feature selection criteria (estimates of classification accuracy are
typically bounded by [0,1]).

The starting point of dependency-aware feature ranking is a randomly gener-
ated sequence of feature subsets to be denoted probe subsets S = {S1, S2, . . . , SK},
Sj ⊂ F, j = 1, 2, . . . ,K, where each subset is evaluated by the criterion function
J(·). For details on probe generation see [7].

Given a sufficiently large sequence of feature subsets S, we can utilize the
information contained in the criterion values J(S1), J(S2), . . . , J(SK) to assess
how each feature adds to the criterion value. Therefore, we compare the quality
of probe subsets containing f with the quality of probe subsets not including f .

We compute the mean quality μf of subsets S ∈ S containing the considered
feature

μf =
1

|Sf |
∑

S∈Sf

J(S), Sf = {S ∈ S : f ∈ S} (1)

and the mean quality μ̄f of subsets S ∈ S not containing the considered feature
f :

μ̄f =
1

|S̄f |
∑

S∈S̄f

J(S), S̄f = {S ∈ S : f /∈ S} (2)

with the aim to use the difference of both values as a criterion for ranking the
features:

DAF (f) = μf − μ̄f , f ∈ F. (3)

The sequence of generated probe subsets can be arbitrarily long but the num-
ber of possible probes is finite. The probe subsets are generated randomly ac-
cording to some fixed rules, for example the number of features in the subset
may be fixed or bounded. If we denote A the class of admissible subsets which
may occur in the sequence then, in view of the random generating procedure, the
admissible subsets S ∈ A will occur in the sequence S repeatedly according to
some fixed probabilities α(S). Thus, in long sequences of probes the admissible
subsets S ∈ A will occur in S with the relative frequencies approaching α(S).

Like Eq. (1), (2) we denote Af the class of admissible sets containing feature
f ∈ F and Āf the class of admissible sets not containing feature f

Af = {S ∈ A : f ∈ S}, Āf = {S ∈ A : f /∈ S}, f ∈ F. (4)

It can be seen that, in view of above considerations, both the mean quality μf

and μ̄f converge to some finite limit values. Considering Eq. (5) we can write

lim
|Sf |→∞

μf = lim
|Sf |→∞

1

|Sf |
∑

S∈Sf

J(S) =
∑

S∈Af

αf (S)J(S) = μ∗ (5)

where αf (S) is the probability that the admissible subsets S ∈ Af occur in the
sequence Sf and μ∗ is the corresponding limit value of μf . Similarly we can write
analogous limit expression for the mean quality μ̄f :

lim
|S̄f |→∞

μ̄f = lim
|S̄f |→∞

1

|S̄f |
∑

S∈S̄f

J(S) =
∑

S∈Āf

ᾱf (S)J(S) = μ̄∗ (6)
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with ᾱf (S) denoting the occurrence probability of S ∈ Āf in the sequence S̄f .
Consequently, the criterion value DAF (f) has a finite limit for any f ∈ F :

lim
|Sf |→∞

DAF (f) = μ∗
f − μ̄∗

f , f ∈ F. (7)

It has been shown in [7] that selecting features according to highest DAF
coefficients leads to significantly better results then selecting features according
to individually best criterion values. This makes the method well suitable for
scenarios where individual feature evaluation had been considered the only viable
choice (i.e., very high-dimensional or small sample size problems).

In paper [7] the question of when to stop the process of randomized probe
generation (i.e., what is the right value of K) is not specifically addressed. All
presented results have been obtained using the ad-hoc stopping rules. The first
obvious rule is a user-specified time limit, i.e., the computation is stopped after
a pre-specified time limit. Here it is hoped that the number of probes that are
evaluated in the time limit is sufficient with respect to the given problem. There
is almost no way of guessing what time limit should suffice, except the gener-
ally applicable advice that the more time can be invested, the more accurate
predictions can be made. Another problem here is the dependence on particular
hardware, different computers would manage significantly different number of
probes within the same time. The second trivial rule is a user-specified limit of
the number of probes, i.e, the computation is stopped after a pre-specified num-
ber of probes has been investigated. Specifying the minimum necessary number
of probes is as unreliable as specifying the time limit. Although this is indepen-
dent on particular computer settings, there is still no guidance or interpretation
available that would help to adjust the setting for particular problem.

3 Design of Novel Stopping Rules

In this section we consider two natural stopping rules that have not been con-
sidered in paper [7]. Both of them are based on evaluating a function of change
while adding probes, which then can be thresholded to find the moment to stop.

Stopping Condition 1. Change of Feature Order. The adding of probes and
recalculating DAF coefficients for each feature leads to changes in ordering of
all features according to their DAF coefficients. Defining a threshold on the
change would allow to stop adding probes when the ordering is not changing
substantially any more.

Definition 1. Let C denote the function to evaluate difference in feature order-
ing yielded by evaluating DAF coefficient in systems S1 and S2 where S1 ⊂ S2.
Denoting DAF (f)S the DAF coefficient of feature f computed on system S, and
assuming that features have been ordered according to descending DAF (f)S val-
ues and the index of feature f in such ordering is denoted DAF (f)Sidx, we define

C[S1, S2] =
1
N

∑N
f=1 |DAF (f)S1idx −DAF (f)S2idx|.
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In Definition 1 we average the change in position in DAF-based ordering of
features when a certain number of probes has been added to system S1 to obtain
system S2. Naturally, with decreasing change in DAF based ordering of features
we could assume at some point that no more probe adding is needed as it would
not affect the resulting feature ranking.

In Stopping Condition 1 we assume the value of C asymptotically decreases
with increasing S size. However, this may not be always true.

Proposition 1. Assume we keep adding equally large groups of random probes
to systems of subsets so as to obtain a series of systems S1 ⊂ S2 ⊂ S3 . . .. For
any i ≥ 1 the value C[Si, Si+1] can be arbitrary, there is no guarantee of it going
close to zero. As a consequence, there is no guarantee that C would fall below
given threshold when adding probes to a system of subsets indefinitely.

Proof. The problem here is the fact that arbitrarily small change of DAF value
can cause feature ordering to change. Imagine all features in the given problem to
be equal. The feature selection criterion used to evaluate each probe would yield
slightly different values for different probes because the estimate is done from
finite training data susceptible to sampling errors. The process of computing
DAF values would produce for each feature a DAF coefficient that would be
arbitrarily close to each other, in some cases equal. Adding a probe could at any
time cause an arbitrarily small change (possibly decreasing with the number of
probes), but any arbitrarily small nonzero change would be capable of change
DAF coefficient values of two features and change their mutual order.

It seems Stopping Condition 1 is thus useless in general case. We will test it,
however, in our experiments as well, as the convergence problem should not show
up in cases when a sufficient distinction among features can be identified.

Stopping Condition 2. Change of Average DAF value. The adding of probes
and recalculating DAF coefficients for each feature leads to changes in DAF
coefficient value for some or all features. Assuming that these changes would
decrease with increasing number of probes, it should be possible to define a
threshold on DAF value change to specify when the change is to be considered
small enough to justify stopping the process.

Definition 2. Let C2 denote the function to evaluate difference in average DAF
coefficient values over all features, yielded by evaluating DAF coefficient in sys-
tems S1 and S2 where S1 ⊂ S2. Denoting DAF (f)S the DAF coefficient of fea-

ture f computed on system S, we define C2[S1, S2] = 1
N

∑N
f=1 |DAF (f)S1 −

DAF (f)S2 |.
In Definition 2 we average the change in DAF coefficient values of features

when a certain number of probes has been added to system S1 to obtain system
S2. Naturally, with decreasing change in DAF coefficient values we could assume
at some point that no more probe adding is needed as it would not affect the
resulting feature ranking. Concerning the convergence properties of C2 we proof
the following Lemma.
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Lemma 1. Assume we keep adding equally large groups of random probes to
systems of subsets so as to obtain a series of systems S1 ⊂ S2 ⊂ S3 . . .. Then,
for arbitrarily small threshold value t > 0 there exists a size of subset system S

(number of probes) p so that for any i > j > p it is true that C2[Si, Sj ] < t.

Proof. The proof is a simple consequence of the Bolzano-Cauchy theorem. The
sequence ofDAF (f)S coefficients converges with the increasing number of probes

in S and the same holds for the finite sum of coefficients
∑N

f=1 DAF (f)S. There-
fore the corresponding Bolzano-Cauchy condition is satisfied which directly im-
plies the assertion of the Lemma.

The remaining problem with Stopping Condition 2 is the necessity by user to
specify a threshold based on DAF coefficient values. this may still be difficult
to interpret. Therefore, we suggest to set relative instead of absolute threshold.
The relative change can be evaluated with respect to the first recorded change in
probe adding process. For this and also for computational reasons it is practical
to evaluate function C2 not after each probe addition but after the addition of
several probes.

Stopping Condition 2a. Relative Change of Average DAF value. The adding
of probes to system of subsets S and recalculating DAF coefficients for each
feature after the additions leads to changes in DAF coefficient value for some
or all features. Stop probe adding when for the k-th added probe it is true that
C2[Sk,Sk+1]
C2[S1,S2]

< t for a pre-specified threshold t.

In this case the threshold represents limit on the proportional change in av-
erage DAF coefficient values. In the next section we show on examples how the
values C and C2 correspond with classification accuracy throughout the probe
addition process.

4 Experimental Evaluation

We illustrate the proposed stopping rules on two datasets: Reuters-21578 text
categorization benchmark data1 (33 classes, 10105 features) and artificial Made-
lon data [9] (2 classes, 500 features, out of which 20 are informative and 480
noise). Our experiment setup followed the setup described in [7]. With Reuters
data we used the estimated accuracy of linear SVM; both as probe evaluating
criterion and the eventual evaluation of the quality of selected subsets. With
Madelon data we used 3-NN for the same purpose.

Figures 1 and 2 show a 3D graph showing the achieved classification accuracy
on independent test data at various stages of probe-adding process. As DAF
ranking does not decide about the number of features, the d axis in graph rep-
resents results for various subset sizes obtained by using the first d best features
according the current DAF coefficients. Both Figures 1 and 2 show very quick
improvement of classification accuracy after a small number of initially added

1 http://www.daviddlewis.com/resources/testcollections/reuters21578

http://www.daviddlewis.com/resources/testcollections/reuters21578
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Fig. 1. Reuters data - SVM Classifier accuracy and C2 convergence during DAF probe
generation

Fig. 2. Madelon data - 3-NN Classifier accuracy and C and C2 convergence during
DAF probe generation

probes, most of the remaining process of probe adding later led to very slow im-
provement (Fig. 1) or negligible improvements but stabilization (visible in Fig. 2
at least for subset sizes around 20 representing the informative features).

The experiments serve primarily to illustrate the behavior of functions C and
C2 with respect to growing number of probes being added to S. The C and C2
have not been computed after each single added probe but after each 400-th
probe. This is to compensate for the fact that adding a single probe can not
affect all features (probe size was limited to 200 features).
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The function C converged very slowly in the case of Madelon data. Reach-
ing a point of no changes in feature ordering proved unrealistic in this case of
500-dimensional data; with higher-dimensional Reuters data we did not even
attempt. The function C2 though converges reasonably fast as can be seen in
both experiments. The question of what would be the practical threshold can
not be answered unanimously for the general case, but in all our experiments (on
5 different datasets from which only 2 are presented here) it showed practical

to set the threshold roughly to C2[Sk,Sk+1]
C2[S1,S2]

< 0.01, i.e., to stop when C2 values

decrease roughly to 1% of their initial value.

5 Conclusions

We have investigated alternative stopping rules in Dependency-Aware Feature
Ranking. We have shown that thresholding the averaged change in DAF value
when adding probes to the considered subset system is preferable to other stop-
ping rules in terms of interpretability, especially in cases when there is lack
of knowledge of the underlying data. We have also demonstrated that DAF is
fairly robust and does not require excessive numbers of randomized probes (as
expressed by change evaluating functions) in order to produce feature ranking
that works well in independent test case.
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