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Abstract

It is known that certain one-dimensional nearest-neighbor random walks in i.i.d. random
space-time environments have diffusive scaling limits. Here, in the continuum limit, the
random environment is represented by a ‘stochastic flow of kernels’, which is a collection of
random kernels that can be loosely interpreted as the transition probabilities of a Markov
process in a random environment. The theory of stochastic flows of kernels was first
developed by Le Jan and Raimond, who showed that each such flow is characterized by its
n-point motions. Our work focuses on a class of stochastic flows of kernels with Brownian
n-point motions which, after their inventors, will be called Howitt-Warren flows.

Our main result gives a graphical construction of general Howitt-Warren flows, where
the underlying random environment takes on the form of a suitably marked Brownian
web. This extends earlier work of Howitt and Warren who showed that a special case, the
so-called ‘erosion flow’, can be constructed from two coupled ‘sticky Brownian webs’. Our
construction for general Howitt-Warren flows is based on a Poisson marking procedure
developed by Newman, Ravishankar and Schertzer for the Brownian web. Alternatively,
we show that a special subclass of the Howitt-Warren flows can be constructed as random
flows of mass in a Brownian net, introduced by Sun and Swart.

Using these constructions, we prove some new results for the Howitt-Warren flows. In
particular, we show that the kernels spread with a finite speed and have a locally finite
support at deterministic times if and only if the flow is embeddable in a Brownian net.
We show that the kernels are always purely atomic at deterministic times, but, with the
exception of the erosion flows, exhibit random times when the kernels are purely non-
atomic. We moreover prove ergodic statements for a class of measure-valued processes
induced by the Howitt-Warren flows.

Our work also yields some new results in the theory of the Brownian web and net. In
particular, we prove several new results about coupled sticky Brownian webs and about
a natural coupling of a Brownian web with a Brownian net. We also introduce a ‘finite
graph representation’ which gives a precise description of how paths in the Brownian net
move between deterministic times.
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1 Introduction

1.1 Overview

In [LRO4a], Le Jan and Raimond introduced the notion of a stochastic flow of kernels, which
is a collection of random probability kernels that can be loosely viewed as the transition
kernels of a Markov process in a random space-time environment, where restrictions of the
environment to disjoint time intervals are independent and the environment is stationary
in time. For suitable versions of such a stochastic flow of kernels (when they exist), this
loose interpretation is exact, see Definition 1] below and the remark following it. Given the
environment, one can sample n independent copies of the Markov process and then average
over the environment. This defines the n-point motion for the flow, which satisfies a natural
consistency condition: namely, the marginal distribution of any & components of an n-point
motion is necessarily a k-point motion. A fundamental result of Le Jan and Raimond [LR04a]
shows that conversely, any family of Feller processes that is consistent in this way gives rise
to an (essentially) unique stochastic flow of kernels.

As an example, in [LR04b], the authors used Dirichlet forms to construct a consistent
family of reversible n-point motions on the circle, which are a-stable Lévy processes with some
form of sticky interaction characterized by a real parameter 6. In particular, for o = 2, these
are sticky Brownian motions. Subsequently, Howitt and Warren [HW09a] used a martingale
problem approach to construct a much larger class of consistent Feller processes on R, which
are Brownian motions with some form of sticky interaction characterized by a finite measure v
on [0, 1]. In particular, if v is a multiple of the Lebesgue measure, these are the sticky Brownian
motions of Le Jan and Raimond. From now on, and throughout this paper, we specialize to the
case of Browian underlying motions. By the general result of Le Jan and Raimond mentioned
above, the sticky Brownian motions of Le Jan and Raimond, resp. Howitt and Warren, are the
n-point motions of an (essentially) unique stochastic flow of kernels on R, which we call a Le
Jan-Raimond flow, resp. Howitt-Warren flow (the former being a special case of the latter).
It has been shown in [HW09a] that these objects can be obtained as diffusive scaling
limits of one-dimensional random walks in i.i.d. random space-time environments.

The main goal of the present paper is to give a graphical construction of Howitt-Warren
flows that follows as closely as possible the discrete construction of random walks in an i.i.d.
random environment. In particular, we want to make explicit what represents the random
environment in the continuum setting. The original construction of Howitt-Warren flows using
n-point motions does not tell us much about this. In [HWQ9b], it was shown that the Howitt-
Warren flow with v = g+ 41, known as the erosion flow, can be constructed using two coupled
Brownian webs, where one Brownian web serves as the random space-time environment, while
the conditional law of the second Brownian web determines the stochastic flow of kernels.

We will extend this construction to general Howitt-Warren flows, where in the general
case, the random environment consists of a Brownian web together with a marked Poisson
point process which is concentrated on the so-called points of type (1,2) of the Brownian
web. A central tool in this construction is a Poisson marking procedure invented by Newman,
Ravishankar and Schertzer in [NRS10]. Of course, we also make extensive use of the theory
of the Brownian web developed in [TW9S8| [FINR04]. For a special subclass of the Howitt-
Warren flows, we will show that alternatively the random space-time environment can be
represented as a Brownian net, plus a countable collection of i.i.d. marks attached to its so-
called separation points. Here, we use the theory of the Brownian net, which was developed



in [SSO8] and [SSS09].

Using our graphical construction, we prove a number of new properties for the Howitt-
Warren flows. In particular, we give necessary and sufficient conditions in terms of the measure
v for the random kernels to spread with finite speed, for their support to consist of isolated
points at deterministic times, and for the existence of random times when the kernels are non-
atomic (Theorems 270 [Z7] and 228 below). We moreover use our construction to prove the
existence of versions of Howitt-Warren flows with nice regularity properties (Proposition
below), in particular, versions which can be interpreted as bona fide transition kernels in
a random space-time environment. Lastly, we study the invariant laws for measure-valued
processes associated with the Howitt-Warren flows (Theorem 2.1T]).

Our graphical construction of the Howitt-Warren flows is to a large extent motivated by its
discrete space-time counterpart, i.e., random walks in i.i.d. random space-time environments
on Z. Many of our proofs will also be based on discrete approximation. Therefore, in the
rest of the introduction, we will introduce a class of random walks in i.i.d. random space-
time environments and some related objects of interest, and sketch heuristically how the
Brownian web and the Brownian net will arise in the representation of the random space-time
environment for the Howitt-Warren flows. An outline of the rest of the paper will be given at
the end of the introduction.

Incidentally, we note that random walks in i.i.d. random space-time environments have
been used in the physics literature to model the flow of stress in a granular medium, called
the ¢ model, see e.g. [LMYOIl [JMII] and the references therein. The Howitt-Warren flows we
consider are effectively scaling limits of so-called near-critical ¢ models.

1.2 Discrete Howitt-Warren flows

Let Z2,., = {(z,t) : 2,t € Z, x +tis even} be the even sublattice of Z2. We interpret the
first coordinate = as space and the second coordinate t as time, which is plotted vertically in
figures. Let w := (w;).ezz  beii.d. [0,1]-valued random variables with common distribution
. We view w as a random space-time environment for a random walk, such that conditional
on the environment w, if the random walk is at time ¢ at the position x, then in the next unit
time step the walk jumps to z + 1 with probability w(, ;) and to x — 1 with the remaining
probability 1 —w, ;) (see Figure [II).

To formalize this, let P denote the law of the environment w and for each (z,s) € Z2,,,
let Q%"x’ 5) denote the conditional law, given the random environment w, of the random walk
in random environment X = (X(¢));>s we have just described, started at time s at position
X (s) = x. Since parts of the random environment belonging to different times are independent,
it is not hard to see that under the averaged (or ‘annealed’) law [ IP’(dw)Q‘(’x’S), the process X

is still a Markov chain, which in each time step jumps to the right with probability f w(dq)q
and to the left with the remaining probability [ x(dg)(1 —g¢). Note that this is quite different
from the usual random walk in random environment (RWRE) where the randomness is fixed
for all time, and the averaged motion no longer has the Markov property.

We will be interested in three objects associated with the random walks in the i.i.d. ran-
dom space-time environment w, namely: random transition kernels, n-point motions, and a
measure-valued process. The law of each of these objects is uniquely characterized by g and,
conversely, uniquely determines p.

First of all, the random environment w determines a family of random transition probability



Figure 1: Random walk on Z2,., in a random environment w.

kernels,
Kgy(w,y) = QE o [X(®) =y] (s <t (2,9), (1) € Lien) (1.1)

which satisfy

(1) Z K:t('mvy)K;ju(yv Z) = K;ju(x> Z) (8 <t<u, (aj» 8)7 (Z,’LL) € ngen)‘
y: (Y,t) €22 ven

(ii) For each ty < --- < t,,, the random variables (K2‘:717ti)i:1,...7n are independent.

(iil) K¢, and K¢\, 1, are equal in law for each u € Zeyen := {27 : z € Z}.

We call the collection of random probability kernels (K¢;)s<; the discrete Howitt-Warren flow
with characteristic measure . Such a collection is a discrete time analogue of a stochastic

flow of kernels as introduced by Le Jan and Raimond in [LR04a)] (see Definition 211 below).
Next, given the environment w, we can sample a collection of independent random walks

(X(#)izo = (X1(1), -+, X (1)) 2 (1.2)

in the random environment w, started at time zero from deterministic sites z1, ..., Ty € Zeven,
respectively. It is easy to see that under the averaged law

[P0 ®at, o, (1.3
=1

the process X = ()Z(t))tzo is still a Markov chain, which we call the discrete n-point motion.
Its transition probabilities are given by

P(n)(f> 37) = /P(dw) HK:t(mzayz) (3 < t» (.Z'Z',S), (yiat) € ngen? = 17 s ,’I’L). (14)

i=1



Note that these discrete n-point motions are consistent in the sense that any k coordinates of
X are distributed as a discrete k-point motion. Each coordinate X; is distributed as a nearest-
neighbor random walk thats makes jumps to the right with probability [ 1(dg)g. Because of
the spatial independence of the random environment, the coordinates evolve independently
when they are at different positions. To see that there is some nontrivial interaction when
they are at the same position, note that if £ + [ coordinates are at position = at time ¢, then
the probability that in the next time step the first & coordinates jump to z + 1 while the
last [ coordinates jump to = — 1 equals f ,u(dq)qk(l — q)l , which in general does not factor
into ([ u(dg)q)*([ 1(dg)(1 — g)). Note that the law of w(0,0) is uniquely determined by its
moments, which are in turn determined by the transition probabilities of the discrete n-point
motions (for each n).
Finally, based on the family of kernels (Ky;)s<;, we can define a measure-valued process

pt(x) = Z pO(y)Ké]u,t(yv‘T) (t >0, (x7t) € Z(zzvon)v (15)
YEZeven

where pg is any locally finite initial measure on Zeyen. Note that conditional on w, the process
p = (pt)e>0 evolves deterministically, with

pt-i-l(x) = oJ(:c—l,t)pt(x - 1) + (1 - o')(:c-i-l,t))pt(x + 1) ((‘Tvt + 1) € ngen? t=> 0) (16)

Under the law P, the process p is a Markov chain, taking values alternatively in the spaces of
finite measures on Zeyen and Zoqq := {2z + 1 : © € Z}. Note that (LG) says that in the time
step from ¢ to £ + 1, an w(, ;)-fraction of the mass at z is sent to  + 1 and the rest is sent to
x — 1. Obviously, this dynamics preserves the total mass. In particular, if pg is a probability
measure, then p, is a probability measure for all ¢ > 0. We call p the discrete Howitt-Warren
process.

We will be interested in the diffusive scaling limits of all these objects, which will be
(continuum) Howitt-Warren flows and their associated n-point motions and measure-valued
processes, respectively. Note that the discrete Howitt-Warren flow (Kéft)sgt determines the
random environment w a.s. uniquely. The law of (K¢;)s<; is uniquely determined by either
the law of its n-point motions or the law of its associated measure-valued process.

1.3 Scaling limits of discrete Howitt-Warren flows

We now recall from [HW09a] the conditions under which the n-point motions of a sequence
of discrete Howitt-Warren flows converge to the n-point motions of a (continuum) stochastic
flow of kernels, which we call a Howitt-Warren flow. We will then use discrete approximation
to sketch heuristically how such a Howitt-Warren flow can be constructed from a Brownian
web or net.

Let (ex)ren be positive constants tending to zero, and let (ui)ren be probability laws on
[0,1] Satisfyinjzl

(i) e’ /(2q — Dpk(dg) — B,

(1.7)
(i) e la(1 = @)ur(dg) = v(dg)

"We follow [IW09a] in our definition of v. Many of our formulas, however, such as Z3), II) or (B10)
are more easily expressed in terms of 2v than in v. Loosely speaking, the reason for this is that in (1) (ii), the
weight function ¢(1 — ¢) arises from the fact that if o', o® are independent {—1, +1}-valued random variables
with Pla® = 4+1] = ¢ (i = 1,2), then Pla* # o®] = 2¢(1 — q).



for some 8 € R and finite measure v on [0, 1], where = denotes weak convergence. Howitt
and Warren ﬂm proved that under condition (7)), if we scale space by & and time by
ek, then the discrete n-point motions with characteristic measure py, converge to a collection
of Brownian motions with drift 8 and some form of sticky interaction characterized by the
measure v. These Brownian motions form a consistent family of Feller processes, hence by the
general result of Le Jan and Raimond mentioned in Section [[LT] they are the n-point motions
of some stochastic flow of kernels, which we call the Howitt-Warren flow with drift 8 and
characteristic measure v. The definition of Howitt-Warren flows and their n-point motions
will be given more precisely in Section

Now let us use discrete approximation to explain heuristically how to construct a Howitt-
Warren flow based on a Brownian web or net. The construction based on the Brownian net
is conceptually easier, so we consider this case first.

Let 5 € R and let v be a finite measure on [0, 1]. Assuming, as we must in this case, that

[ q’ﬁ‘f’g) < 00, we may define a sequence of probability measures ux on [0, 1] by
Ui = bgkﬂ + 5 (1 — (b + C)gk;)(so + 1 - - C)€k)5
where b ::/77 = vldg) ==
a-q 707 ai-a " T g

Then py, is a probability measure on [0, 1] for k& suﬂiciently large (such that 1—(b+|c|)er > 0),
and the py satisfy (7). Thus, when space is rescaled by e and time by 6%, the discrete
Howitt-Warren flow with characteristic measure uj approximates a Howitt-Warren flow with
drift 5 and characteristic measure v.

Let wi) .= (w§k>) -ez2,,, belld. with common law py, which serves as the random environ-
ment for a discrete Howitt-Warren flow with characteristic measure pg. We observe that for

(k)

large k, most of the w; "’ are either zero or one. In view of this, it is convenient to alternatively

(k)

encode w'*) as follows. For each z = (z,t) € Z2 ., if ws"’ € (0,1), then we call z a separation

even’
point, set w§k> = w§k>, and we draw two arrows from z, leading respectively to (x +1,¢ + 1).

When w§k> =0, resp. 1, we draw a single arrow from z to (x —1,t+1), resp. (x+1,t+1). Note
that the collection of arrows N generates a branching-coalescing structure, called discrete
net, on Z2 ., (see FigureE) and conditional on N ¥, the o) at separation points z of N*) are
independent with common law 7. Therefore the random environment w') can be represented
by the pair (N <’f>,w<’f>), where a walk in such an environment must navigate along N (k) and
when it encounters a separation point z, it jumps either left or right with probability 1 — @),
resp. otk

It turns out that the pair (N}, ©*)) has a meaningful diffusive scaling limit. In particular,
if space is scaled by ¢ and time by E%, then N¥) converges to a limiting branching-coalescing
structure A called the Brownian net, the theory of which was developed in [SS08, [SSS09]. In
particular, the separation points of N have a continuum analogue, the so-called separation
points of N, where incoming trajectories can continue along two groups of outgoing trajecto-
ries. These separation points are dense in space and time, but countable. Conditional on N,
we can then assign i.i.d. random variables w, with common law 7 to the separation points of
N. The pair (N,©) provides a representation for the random space-time environment under-
lying the Howitt-Warren flow with drift 5 and characteristic measure v. A random motion in

2 Actually, the paper [HW09a] considers a continuous-time analogue of the discrete n-point motions defined
in Section [[:2] but their proof, with minor modifications, also works in the discrete time setting. In Appendix[A]
we present a similar, but somewhat simplified convergence proof.



such a random environment must navigate along N, and whenever it comes to a separation
point z, with probability 1 — w, resp. w,, it continues along the left resp. right of the two
groups of outgoing trajectories in N at z. We will recall the formal definition of the Brownian
net and give a rigorous construction of a random motion navigating in A/ in Section @l

. /

0.86 .56,

(1)

Figure 2: Representation of the random environment (w§k> ) zez2,,, in terms of a marked discrete

net (N®) ok,
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Figure 3: Representation of the random environment (w§k> )zezz,,., in terms of a marked discrete
web (I/V0<k> LWy,

We now consider Howitt-Warren flows whose characteristic measure is a general finite

measure v. Let (ju)pen satisfy () and let w*) = (w§k>)zezgm, be an i.i.d. random space-



time environment with common law pi. Contrary to the previous situation, it will now in

(k)

general not be true that the most of the w;"’’s are either zero or one. Nevertheless, it is still
(k)

true that for large k, most of the w;'’s are either close to zero or to one. To take advantage
of this fact, conditional on w*), we sample independent {—1,+1}-valued random variables

(&é’f))zezgvm such that ¢ = +1 with probability W For each z = (z,t) € Z2

even’
an arrow from (z,t) to (:17+o°z,<zk> ,t+1). These arrows define a coalescing structure W()(k>, called
discrete web, on Z2,., (see Figure B]). Think of these arrows as assigning to each point z a
preferred direction, which, in most cases, will be 41 if w§k> is close to one and —1 if w§k> is
close to zero.

Now let us describe the joint law of (w<k>,o°z<k>) differently. First of all, if we forget about

we draw

w'*) then the (&§k>) zezz,,, are just iid. {—1,+1}-valued random variables which take the
value +1 with probability [ gui(dg). Second, conditional on &®) | the random variables

(w§k> ) -ez2,,, are independent with distribution

1 (1 — @)ux(dg) : qpk(dg)
Wy = e ———— resp. Wy = (1.9)
" (1= @)m(dg) " [ am(dq)
depending on whether &§k> = —1 resp. +1. Therefore, we can alternatively construct our

random space-time environment w'* in such a way, that first we construct an i.i.d. collection

k) 2 (k)

as above, and then conditional on &‘*), independently for each z € Z2,,,, we choose w

with law ,u}C if é’yim = —1 and law pj, if é’yim =+1.

&f

Let V[/()(k> denote the coalescing structure on Z2,, generated by the arrows associated
with (é’yim) sez2,,, (see Figure[3). Then (Wék>,w<k>) gives an alternative representation of the

random environment w'). A random walk in such an environment navigates in such a way

that whenever it comes to a point z € Z2 .., the walk jumps to the right with probability

w§k> and to the left with the remaining probability. The important thing to observe is that
(k)

if k& is large, then ws" is with large probability close to zero if &*) = —1 and close to one

(k)

if &¥) = 4+1. In view of this, the random walk in the random environment (W,",w*) will
most of its time walk along paths in W()(k>.
It turns out that (Wék>,w<k>) has a meaningful diffusive scaling limit. In particular, if

space is scaled by ¢, and time by E%, then the coalescing structure I/Vo<k> converges to a limit
W) called the Brownian web (with drift ), which loosely speaking is a collection of coalescing
Brownian motions starting from every point in space and time. These provide the default
paths a motion in the limiting random environment must follow. The i.i.d. random variables
w§k> turn out to converge to a marked Poisson point process which is concentrated on so-
called points of type (1,2) in Wy, which are points where there is one incoming path and two
outgoing paths. These points are divided into points of type (1,2), and (1,2),, depending
on whether the incoming path continues on the left or right. A random motion in such an
environment follows paths in W,y by default, but whenever it comes to a marked point z of
type (1,2), it continues along the left resp. right outgoing path with probability 1 — w, resp.
wzﬁ We will give the rigorous construction in Section Bl The procedure of marking a Poisson

3In fact, this is not the full story, but describes only what happens if the measure v from (T is concentrated
on (0,1). If v puts mass on the boundary of [0, 1], then a random motion in Wy will in addition, with a certain
Poisson rate, decide to follow the non-default outgoing path at some unmarked points of type (1,2). In
particular, this is the only mechanism if v is concentrated on {0, 1}, i.e., for so-called erosion flows.



set of points of type (1,2) that we need here was first developed by Newman, Ravishankar and
Schertzer in [NRS10], who used it (among other things) to give an alternative construction of
the Brownian net.

1.4 Outline and discussion

The rest of the paper is organized as follows. Sections BH4] provide an extended introduction
where we rigorously state our results. In Section [2, we recall the notion of a stochastic flow
of kernels, first introduced in [LR04a], and Howitt and Warren’s [HW09a] sticky Brownian
motions, to give a rigorous definition of Howitt-Warren flows. We then state out main re-
sults for these Howitt-Warren flows, including properties for the kernels and results for the
associated measure-valued processes. In Sections [3] and [ we make the heuristics from Sec-
tion rigorous. In Section [ in particular in Theorem B.7] we present our construction of
Howitt-Warren flows based on a ‘reference’” Brownian web with a Poisson marking, which is
the main result of this paper. Along the way, we will recall the necessary background on the
Brownian web. In Section @l we show that a special subclass of the Howitt-Warren flows can
be constructed alternatively as flows of mass in the Brownian net. Along the way, we will
recall the necessary background on the Brownian net and establish some new results on a
coupling between a Brownian web and a Brownian net. Sections BHIQl are devoted to proofs.
In particular, we refer to Section [ for an outline of the proofs. The paper concludes with a
number of appendices and a list of notation.

Our work leaves several open problems. One question, for example, is how to characterize
the measure-valued processes associated with a Howitt-Warren flow (see (ZI]) below) by means
of a well-posed martingale problem. Other questions (martingale problem formulation, path
properties) refer to the duals (in the sense of linear systems duality) of these measure-valued
processes, introduced in (ILI]) below, which we have not investigated in much detail.

Moving away from the Brownian case, we note that it is an open problem whether our
methods can be generalized to other stochastic flows of kernels than those introduced by
Howitt and Warren. In particular, this applies to the stochastic flows of kernels with a-stable
Lévy n-point motions introduced in for 1 < a < 2. A first step on this road would
be the construction of an a-stable Lévy web which should generalize the presently known
Brownian web. Some first steps in this direction have recently been taken in [EMS13].

2 Results for Howitt-Warren flows

In this section, we recall the notion of a stochastic flow of kernels, define the Howitt-Warren
flows, and state our results on these Howitt-Warren flows, which include almost sure path
properties and ergodic theorems for the associated measure-valued processes. The proofs of
these results are based on our graphical construction of the Howitt-Warren flows, which we
postpone to Sections BHA due to the extensive background we need to recall.

2.1 Stochastic flows of kernels

In [LRO4a], Le Jan and Raimond developed a theory of stochastic flows of kernels, which
may admit versions that can be interpreted as the random transition probability kernels of a
Markov process in a stationary random space-time environment. The notion of a stochastic
flow of kernels generalizes the usual notion of a stochastic flow, which is a family of random
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mappings (¢%)s<¢ from a space E to itself. In the special case that all kernels are delta-
measures, a stochastic flow of kernels reduces to a stochastic flow in the usual sense of the
word.

Since stochastic flows of kernels play a central role in our work, we take some time to
recall their defintion. For any Polish space E, we let B(E) denote the Borel o-field on E
and write M(E) and M (E) for the spaces of finite measures and probability measures on E,
respectively, equipped with the topology of weak convergence and the associated Borel o-field.
By definition, a probability kernel on E is a function K : E x B(E) — R such that the map
x — K(x,-) from E to M;(F) is measurable. By a random probability kernel, defined on
some probability space (€2, F,P), we will mean a function K : Q x E x B(E) — R such that
the map (w,z) — K“(z, ) from Q x E to M;(FE) is measurable. We say that two random
probability kernels K, K’ are equal in finite dimensional distributions if for each 1, ..., 2, € E,
the n-tuple of random probability measures (K (1, )y, K(xy, )) is equally distributed
with (K/(xl, Yy, K (2, )) We say that two or more random probability kernels are
independent if their finite-dimensional distributions are independent.

Definition 2.1 (Stochastic flow of kernels) A stochastic flow of kernels on E is a col-
lection (Kg¢)s<¢ of random probability kernels on E such that

(i) For alls <t <wand z € E, a.s. Ks4(x,A) = 0,(A) and / Ko i(x,dy)Ki(y, A) =
E
K (x,A) for all A€ B(E).

ii) For each tg < --- < t,, the random probability kernels (Ky,_, t.)i=1....n are independent.
i—1,07 PARRE)
(ili) Ksp and Kgyy 144 are equal in finite-dimensional distributions for each real s <t and u.

The finite-dimensional distributions of a stochastic flow of kernels are the laws of n-tuples of
random probability measures of the form (Ksht1 (1, ), ., Ky, 1, (n, )), where z; € E and
Si Sti, iZl,...,TL.

Remark. If the random set of probability 1 on which Definition 2] (i) holds can be chosen
uniformly for all s <t <w and x € E, then we can interpret (K ;)s<; as bona fide transition
kernels of a random motion in random environment. For the stochastic flows of kernels we
are interested in, we will prove the existence of a version of K which satisfies this property
(see Proposition below). To the best of our knowledge, it is not known whether such a
version always exists for general stochastic flows of kernels, even if we restrict ourselves to
those defined by a consistent family of Feller processes.

If (Ks4+)s<t is a stochastic flow of kernels and pg is a finite measure on E, then setting

pldy)i= [ po(do)Koslady) (2 0) (21)
defines an M(FE)-valued Markov process (p;)i>0. Moreover, setting

P&, dif) = B[K, (21, dyr) - Ko g(mn, dyn)]  (F€ B, s<1) (2.2)

4For simplicity, we have omitted two regularity conditions on (Ks,t)s<t from the original definition in [LR04al
Def. 2.3], which are some form of weak continuity of Ks:(z,) in z,s and t. It is shown in that paper that
a stochastic flow of kernels on a compact metric space E satisfies these regularity conditions if and only if it
arises from a consistent family of Feller processes.
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defines a Markov transition function on £". We call the Markov process with these transition
probabilities the n-point motion associated with the stochastic flow of kernels (K ;)s<:. We
observe that the n-point motions of a stochastic flow of kernels satisfy a natural consistency
condition: namely, the marginal distribution of any & components of an n-point motion is
necessarily a k-point motion for the flow. A fundamental result of Le Jan and Raimond
[LRO4al, Thm 2.1] states that conversely, any consistent family of Feller processes on a locally
compact space E gives rise to a stochastic flow of kernels on E which is unique in finite-
dimensional distributions

2.2 Howitt-Warren flows

As will be proved in Proposition [A.5] below, under the condition (I7), if space and time
are rescaled respectively by ¢, and az, then the n-point motions associated with the discrete
Howitt-Warren flow introduced in Section with characteristic measure pj converge to a
collection of Brownian motions with drift § and some form of sticky interaction characterized
by the measure v. These Brownian motions solve a well-posed martingale problem, which we
formulate now.

Let 5 € R, v a finite measure on [0, 1], and define constants (54 (m))m>1 by

B4+(1):=5 and

m—2
A-gf  (m>2). 23
k=0

.(m) =5 +2 [ vlda)
We note that in terms of these constants, (7)) is equivalent to

ot [ (=20 M) o Bitm) (= 1), (2.4

For ) 2 A C {1,...,n}, we define

fa(@) i=maxw; and  ga(@):=[{i€ Arzi= fa(@)}]  (FERT), (2.5)
where | - | denotes the cardinality of a set.

The martingale problem we are about to formulate was invented by Howitt and Warren
[HW09a]. We have reformulated their definition in terms of the functions fa in (235), which
form a basis of the vector space of test functions used in [HW09al Def 2.1] (see Appendix [Alfor
a proof). This greatly simplifies the statement of the martingale problem and also facilitates
our proof of the convergence of the n-point motions of discrete Howitt-Warren flows.

Definition 2.2 (Howitt-Warren martingale problem) We say that an R"-valued process
X = (X'(t))tzo solves the Howitt-Warren martingale problem with drift 8 and characteristic
measure v if X isa continuous, square-integrable semimartingale, the covariance process be-
tween X; and X; is given by

t
(Xi, X;)(t) = /0 Lix,s=x;s3ds  (t=0, 4,5=1,...,n), (2.6)

°In fact, Thm 2.1] is stated only for compact metrizable spaces, but the extension to locally compact
E is straightforward using the one-point compactification of E.
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and, for each nonempty A C {1,...,n},
Fa(X(0) = [ Be(aa(X(e))ds (27)

18 a martingale with respect to the filtration generated by X.

Remark. We could have stated a similar martingale problem where instead of the functions
fa from (235) we use the functions fa(x) := min;ea z; and we replace the 54 (m) defined in

23) by

m—2
f_(1):=p and p_(m):=p— Z/I/(dq) Z ¢* (m >2). (2.8)
k=0
It is not hard to prove that both martingale problems are equivalent.

Remark. When n = 2, condition (2.7)) is equivalent to the condition that

Xi(t) = Bt, Xo(t) —Bt,  [X1(t) — X2(t)] — 4v([0, 1])/0 Lix,(s)=xx903ds  (2.9)

are martingales. In [HW09a], such (X1, X2) are called #-coupled Brownian motions, with
0 = 2v([0,1]). In this case, X1(t) — X5(t) is a Brownian motion with stickiness at the origin.
Such a process can be constructed by time-changing a standard Brownian motion in such a
way that it spends positive Lebesgue time at the origin. More generally, for solutions to the
Howitt-Warren martingale problem started in X7(0) = --- = X,,(0), the set of times such
that X (t) = Xa(t) = -+ = X,,(t) is a nowhere dense set with positive Lebesgue measure.
The measure v then determines a two-parameter family of constants (6(k,1));;>1 (see formula
(A4) in the Appendix), which can be interpreted as the rate, in a certain excursion theoretic
sense, at which (X1, -+, X,,) split into two groups, (X1, -, Xx) and (Xgi1, -+, Xgay), with
k+1=n.

Howitt and Warren [HWQ9al Prop. 8.1] proved that their martingale problem is well-
posed and its solutions form a consistent family of Feller processes. Therefore, by the already
mentioned result of Le Jan and Raimond [LR04a, Thm 2.1], there exists a stochastic flow
of kernels (Kjs;)s<¢ on R, unique in finite-dimensional distributions, such that the n-point
motions of (K,+)s<¢ (in the sense of ([2.2))) are given by the unique solutions of the Howitt-
Warren martingale problem. We call this stochastic flow of kernels the Howitt- Warren flow
with drift 8 and characteristic measure v. It can be shown that Howitt-Warren flows are the
diffusive scaling limits, in the sense of weak convergence of finite dimensional distributions,
of the discrete Howitt-Warren flows with characteristic measures py satisfying (7). (Indeed,
this is a direct consequence of Proposition below on the convergence of n-point motions.)

We will show that it is possible to construct versions of Howitt-Warren flows which are bona
fide transition probability kernels of a random motion in a random space-time environment,
and the kernels have ‘regular’ parameter dependence.

Proposition 2.3 (Regular parameter dependence) For each f € R and finite measure
v on [0,1], there exists a version of the Howitt-Warren flow (Ks;)s<¢ with drift § and char-
acteristic measure v such that in addition to the properties (i)—(iii) from Definition [21:

(i) A.s., / K i(x,dy)Kiu(y, A) = K y(x, A) for alls <t <u, x € E and A € B(E).
E
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(iv) A.s., the map t — Kg4(x, -) from [s,00) to My (R) is continuous for each (s,z) € R?.

When the characteristic measure v = 0, solutions to the Howitt-Warren martingale prob-
lem are coalescing Brownian motions. In this case, the associated stochastic flow of kernels is
a stochastic flow (in the usual sense), which is known as the Arratia flow. In the special case
that 8 = 0 and v is Lebesgue measure, the Howitt-Warren flow and its n-point motions are re-
versible. This stochastic flow of kernels has been constructed before (on the unit circle instead
of R) by Le Jan and Raimond in using Dirichlet forms. We will call any stochastic
flow of kernels with v(dz) = c¢dx for some ¢ > 0 a Le Jan-Raimond flow. In [HWQO9b], Howitt
and Warren constructed a stochastic flow of kernels with 8 = 0 and v = %((50 + 01), which
they called the erosion flow. In this paper, we will call this flow the symmetric erosion flow
and more generally, we will say that a Howitt-Warren flow is an erosion flow if v = codp + 11
with ¢g + ¢; > 0. The paper [HWQO9b] gives an explicit construction of the symmetric erosion
flow based on coupled Brownian webs. Their construction can actually be extended to any
erosion flow and can be seen as a precursor and special case of our construction of general
Howitt-Warren flows in this paper.

2.3 Path properties

In this subsection, we state a number of results on the almost sure path properties of the
measure-valued Markov process (p;)i>0 defined in terms of a Howitt-Warren flow by (21I).
Throughout this subsection, we will assume that pg is a finite measure, and p; is defined using
a version of the Howitt-Warren flow (K ¢)s<¢, which satisfies property (iv) in Proposition 23]
but not necessarily property (i)’. Then it is not hard to see that for any pg € M(R), the
Markov process (p¢)i>0 defined in (2.1) has continuous sample paths in M(R). We call this
process the Howitt- Warren process with drift 8 and characteristic measure v.

See Figures M and [l for some simulations of Howitt-Warren processes for various choices
of the characteristic measure v. There are a number of parameters that are important for the
behavior of these processes. First of all, following [HW09a], we define

o0t) = [ v - g (kIz ) (2.10)

In a certain excursion theoretic sense, (k,l) describes the rate at which a group of k +
[ coordinates of the n-point motion that are at the same position splits into two groups
consisting of k and [ specified coordinates, respectively. In particular, following again notation

in [HW09a], we set
0:=20(1,1) = 2/ v(dq), (2.11)

[0,1]
and we call 8 the stickiness parameter of the Howitt-Warren flow. Note that when 6 is in-
creased, particles separate with a higher rate, hence the flow is less sticky. The next proposition
shows that with the exception of the Arratia flow, by a simple transformation of space-time,
we can always scale our flow such that § =0 and 6 = 2. Below, for any A C R and a € R we
write aA :={ar:x € A} and A+a:={zx+a:x € A}

Proposition 2.4 (Scaling and removal of the drift) Let (K;¢)s<; be a Howitt-Warren
flow with drift 8 and characteristic measure v. Then:
axr,ad) =

(a) For each a > 0, the stochastic flow of kernels (K ,)s<; defined by K,  .(
Ksi(x, A) is a Howitt-Warren flow with drift a='8 and characteristic measure a'v.
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Figure 4: Four examples of Howitt-Warren flows. All examples have drift 8 = 0 and stickiness
parameter § = 2. From left to right and from top to bottom: 1. the equal splitting flow
v = 8/, 2. the ‘parabolic’ flow v(dq) = 6¢(1 — ¢)dg, 3. the Le Jan-Raimond flow v(dgq) = dg,
4. the symmetric erosion flow v = %(50 + 61). The first two flows have left and right speeds
B, P+ = +4 and B_, B+ = £6, respectively, while the last two flows have g_, 54 = £o00. Each
picture shows a rectangle of 1.4 units of space (horizontal) by 0.2 units of time (vertical). The
initial state is Lebesgue measure.

(b) For each a € R, the stochastic flow of kernels (K ;)s<¢ defined by K ,(x+as, A+at) :=
K 4(z, A) is a Howitt-Warren flow with drift B+ a and characteristic measure v.

There are two more parameters that are important for the behavior of a Howitt-Warren
flow. We define

B_=p~— 2/1/(dQ)(1 —q)7 !,
Byi=B+2 / v(dg)g™!

Note that S+ = limy, o0 B+ (m), where (54(m))m>1 are the constants defined in (23]). We
call 5_ and B4 the left speed and right speed of a Howitt-Warren flow, respectively. The
next theorem shows that these names are justified. Below, supp(u) denotes the support of a
measure p, i.e., the smallest closed set that contains all mass.

(2.12)

Theorem 2.5 (Left and right speeds) Let (p;)i>0 be a Howitt- Warren process with drift 3
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Figure 5: Example of an asymmetric flow: the one-sided erosion flow with =0 and v = ¢;.
This flow has left and right speeds f_ = —oo and S = 2, respectively. The picture shows a
rectangle of 3.2 units of space (horizontal) by 0.4 units of time (vertical). The initial state is
Lebesgue measure up to the point 1.9 and zero from there onwards.

and characteristic measure v, and let 5_, B+ be defined as in (Z13). Set r; := sup(supp(pt))
(t >0). Then:

(a) If B+ < oo and rg < oo, then (r¢)i>0 is a Brownian motion with drift 4. If 4 < oo
and ro = 00, then ry = oo for all t > 0.

(b) If B+ = o0, then 1y = oo for all t > 0.
Analogue statements hold for Iy := inf(supp(pt)), with B4 replaced by B—.

It turns out that the support of a Howitt-Warren process is itself a Markov process. Let
Closed(R) be the space of closed subsets of R. We equip Closed (R) with a topology such that

A, — A if and only if 4, Haug A, where A denotes the closure of a set A in [—o0, 0o] and Hang

means convergence of compact subsets of [—00, 00| in the Hausdorff topology. The branching-
coalescing point set is a Closed (R)-valued Markov process that has been introduced in [SS08]
Thm 1.11]. Its definition involves the Brownian net; see formula ([@6]) below. The following
proposition, which we cite from [SS08, Thm 1.11 and Prop. 1.15] and [SSS09, Prop. 3.14], lists
some of its elementary properties.

Proposition 2.6 (Properties of the branching-coalescing point set) Let & = (&;)i>0 be
the branching-coalescing point set defined in (7.0), started in any initial state & € Closed (R).
Then:

(a) The process & is a Closed(R)-valued Markov process with continuous sample paths.

(b) If sup(§o) < oo, then (sup(&:))i>o is a Brownian motion with drift +1. Likewise, if
—oo < inf(&p), then (inf(&))i>0 is a Brownian motion with drift —1.

(c) The law of a Poisson point set with intensity 2 is a reversible invariant law for & and
the limit law of & as t — oo for any initial state &y # 0.
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(d) For each deterministic time t > 0, a.s. & is a locally finite subset of R.

(e) Almost surely, there exists a dense set T C (0,00) such that for each t € T, the set &
contains no isolated points.

Our next result shows how Howitt-Warren processes and the branching-coalescing point set
are related. Note that this result covers all possible values of 5_, 84, except the case f_ = 84
which corresponds to the Arratia flow. In (2I3]) below, we continue to use the notation
aA+b:={ax+b:x e A}.

Theorem 2.7 (Support process) Let (pi)i>0 be a Howitt-Warren process with drift 5 and
characteristic measure v and let B_, B+ be defined as in (Z12). Then:

(a) If —oo < f— < B4+ < o0, then a.s. for allt >0,

supp(pr) = 5(B4 — B-)& + 3(B- + Bt (2.13)

where (&)i>0 s a branching-coalescing point set.

(b) If - = —o0 and B+ < o0, then a.s. supp(p;) = (—oo,r] NR for all t > 0, where
re := sup(supp(pt)). An analogue statement holds when f_ > —oo and B4 = oo.

(c) If B— = —o0 and By = oo, then a.s. supp(pt) = R for all t > 0.

Proposition (d) and Theorem 7] (a) imply that if the left and right speeds of a
Howitt-Warren process are finite, then at deterministic times the process is purely atomic.
The next theorem generalizes this statement to any Howitt-Warren process, but shows that if
the characteristic measure puts mass on the open interval (0,1), then there are random times
when the statement fails to hold.

Theorem 2.8 (Atomicness) Let (p)i>0 be a Howitt-Warren process with drift 3 and char-
acteristic measure v. Then:

(a) For each t > 0, the measure p; is a.s. purely atomic.

(b) If f01 v(dq) > 0, then a.s. there exists a dense set of random times t > 0 when p; is
purely non-atomic.

(c) If f(o 1 v(dq) = 0, then a.s. p is purely atomic at all t > 0.

In the special case that v is (a multiple of) Lebesgue measure, a weaker version of part (a)
has been proved in [LR04b, Prop. 9 (c¢)]. Part (b) is similar to Proposition (e) and in
fact, by Theorem 2.7] (a), implies the latter. Note that parts (b) and (c) of the theorem
reveal an interesting dichotomy between erosion flows (where v is nonzero and concentrated
on {0,1}) and all other Howitt-Warren flows (except the Arratia flow, for which atomicness is
trivial). The reason is that atoms in erosion flows lose mass continuously (see the footnote in
Section [[L3] and the construction in Section [3:4] below), while in all other flows atoms can be
split into smaller atoms. This latter mechanism turns out to be more effective at destroying
atoms. For erosion flows, we have an exact description of the set of space-time points where
(pt)e>0 has an atom in terms of an underlying Brownian web, see Theorem below.
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2.4 Infinite starting measures and discrete approximation

The ergodic behavior of the branching-coalescing point set is well-understood (see Proposition
(¢)). As a consequence, by Theorem 271 (a), it is known that if we start a Howitt-Warren
process with left and right speeds f_ = —1, 84 = 1 in any nonzero initial state, then its
support will converge in law to a Poisson point process with intensity 2. This does not mean,
however, that the Howitt-Warren process itself converges in law. Indeed, since its 1-point
motion is Brownian motion, it is easy to see that any Howitt-Warren process started in a
finite initial measure satisfies lim;_,~ E[p¢(K)] = 0 for any compact K C R. To find nontrivial
invariant laws, we must start the process in infinite initial measures.

To this aim, let Mj.(R) denote the space of locally finite measures on R, endowed with
the vague topology. Let (K ¢)s<: be a version of the Howitt-Warren flow with —oco < f_ and
B+ < oo, which satisfies Proposition (iv). We will prove that for any pg € Mjee(R),

pri= /po(d:L’)Ko,t(:E, -) (t>0) (2.14)

defines an M,.(R)-valued Markov process. If f4 — f_ = oo, then mass can spread infinitely
fast, hence we cannot define the Howitt-Warren process (p;)i>o for arbitrary py € Miec(R).
In this case, we will use the class

M, (R) := {p € Mjoc(R) : /

e_cxzp(da:) < oo for all ¢ > 0}, (2.15)
R

endowed with the topology that u, — p if and only if e‘cxz,un(dzn) converges weakly to
e—cr? w(dz) for all ¢ > 0, which can be seen to be equivalent to u,, — p in the vague topology
plus fe_CIQ,un(dx) — fe_CIQ,u(d:E) for all ¢ > 0. Note that Mj..(R) and Mg(R) are Polish
spaces.

Observe that by Definition 2.1 (i), the Howitt-Warren process (p¢)¢>0 defined in (214
satisfies

Pt :/ps(dx)K&t(:L", ) as. (2.16)

for each deterministic s < t. We will also use (ZI6]) to define Howitt-Warren processes starting
at any deterministic time s € R.

Theorem 2.9 (Infinite starting mass and continuous dependence) Let 3 € R, let v be
a finite measure on [0, 1], and let (Ks)s<t be a version of the Howitt-Warren flow with drift
B and characteristic measure v satisfying property (i) from Proposition [2.3. Then:

(a) For any po € My(R), formula (217) defines an Mg(R)-valued Markov process with
continuous sample paths, satisfying

E[p:(K)] < o0 (t >0, K CR compact). (2.17)
Moreover, if (pt<n>)t23n are processes started at times s, with deterministic initial data pé?,
and s, — 0, then for any t > 0 and t, — t,

pé? = po implies pém = a.s., (2.18)
n—00 " n—oo

where = denotes convergence in Mg (R).

(b) Assume moreover that f4 —f— < co. Then, for any py € Mioe(R), formula (2-13)) defines
an Mioc(R)-valued Markov process with continuous sample paths. Moreover, formula (218)
holds with convergence in Mg(R) replaced by vague convergence in Mioc(R).
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Remark. The convergence in (ZI8]) implies the continuous dependence of the law of p;
on the starting time and the initial law, which is known as the Feller property. Note that
when py is a finite measure, the continuity in ¢ of p; in the space M(R) already follows from
Proposition [Z3] (iv). However, for our purposes, we will only consider the spaces M, and

Mige -

Remark. When ; — f_ = 00, (pt)i>0 may not be well-defined if pg ¢ Mg(R). Indeed, by
Theorem 2.7 if 54 — f— = oo, then for any fixed ¢t > 0, we can find z,, € Z with |z,| — oo
such that P(Kq¢(zn,[0,1]) < &,) < 27" for some &, > 0. Therefore py := > &,'5,, has
o € Mioc(R), and almost surely, p.([0, 1]) = oo.

Remark. Theorems 2.5 2.7, and 2.8 carry over without change to the case of infinite starting
measures. To see this, note that it is easy to check from (ZI4]) that

po < po implies pp<pr  (t>0), (2.19)

where < denotes absolute continuity. Since for each py € Mjoe(R), we can find a finite measure
py that is equivalent to p, statements about the support of p; and atomicness immediately
generalize to the case of locally finite starting measures.

We also collect here a discrete approximation result for Howitt-Warren processes.

Theorem 2.10 (Convergence of discrete Howitt-Warren processes) Let ¢, be positive
constants converging to zero, and let p, be probability measures on [0, 1] satisfying (1.7) for
some real B and finite measure v on [0,1]. Let (p§k>)t20 be a discrete Howitt-Warren process
with characteristic measure py defined as in (L3), where K, (z,-) therein is defined for all
t > 0 by letting the random walk (X)i>o in (I1]) be linearly interpolated between integer times.
Let ﬁ§k> (dzx) = pg?gt(&?,;ldx). If pék> is deterministic and ﬁék> = po in My(R), then for any
T >0,

(ﬁ§k> Jo<i<T e (pt)o<t<T (2.20)

where p is a Howitt-Warren process with drift 5, characteristic measure v, and initial con-
dition pg, and = denotes weak convergence in law of random wvariables taking values in
C([0,T], My4(R)), the space of continuous functions from [0,T] to My(R) equipped with the
uniform topology.

2.5 Ergodic properties

We are now ready to discuss the ergodic behavior of Howitt-Warren processes. Note that for
a given Howitt-Warren flow (Kj;)s<¢, the right-hand side of ([2.I4]) is a.s. a linear function
of the starting measure pg. In view of this, Howitt-Warren processes belong to the class of
so-called linear systems. The theory of linear systems on Z% has been developed by Liggett
and Spitzer, see e.g. [LS81] and Chap. IX]. We will adapt this theory to the continuum
setting here. First we define the necessary notion.

We let Z denote the set of invariant laws of a given Howitt-Warren processes, i.e., Z is the set
of probability laws A on Mo (R) (resp. Mg(R) if B4 —fF_ = oo) such that P[py € -] = A implies
Plps € -] = Aforall t > 0. We let T denote the set of homogeneous (i.e., translation invariant)
laws on Mjoe(R) (resp. Mg (R)), i.e., laws A such that P[p € -] = A implies P[T,p € -] = A
for all a € R, where Typ(A) := p(A + a) denotes the spatial shift map. Note that Z and T
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are both convex sets. We write Z,, 7o, and (Z N 7T ), to denote respectively the set of extremal
elements in Z, 7, and Z N T. Below, C.(R) denotes the space of continuous real function on
R with compact support.

Theorem 2.11 (Homogeneous invariant laws for Howitt-Warren processes) Let €
R, let v be a finite measure on [0,1] with v # 0. Then for the corresponding Howitt- Warren
process (pt)i>0, we have:

(a) (ZNT)e is a one-parameter familly {A. : ¢ > 0} of measures satisfying A.(d(cp)) =
Ai(dp) for all ¢ >0, and

/ Ar(dp) / pdr) d(z) = / o) da, (2.21)
Ja@n) [otanse [oanvw) = [owar [vaay+ LD o)
for any ¢, € C.(R).

(b) If Plpo € -] € Te and E[po([0,1])] = ¢ > 0, then Plpy € -] converges weakly to A..
Furthermore, if E[po([0,1])?] < oo, then for any ¢, € C.(R),

tin 5[ @) ota) [ty vw)] = [acd) [pla) o) [pian o). (223)

(c) If Plpg € -] € Te and E[po([0,1])] = oo, then the laws Plp; € -] have no weak cluster
point as t — oo which is supported on Miee(R).

(d) If A € ITNT, then there exists a probability measure v on [0,00) such that A =
fooo ~(de) Ae.

Remark. When v is Lebesgue measure, it is known that (see Prop. 9 (b)]) A is the
law of cp*, where p* = Z(m,u)GP ud, for a Poisson point process P on R x [0, 00) with intensity

measure dz x v~ e~ "du.

Theorem 21Tl shows that each Howitt-Warren process has a unique (modulo a constant multi-
ple) homogeneous invariant law, which by (2.22]) has zero off-diagonal correlations. Moreover,
any ergodic law at time 0 with finite density converges under the dynamics to the unique

homogeneous invariant law with the same density.
In line with Theorems [Z7] and we have the following support properties for A..

Theorem 2.12 (Support of stationary process) Let ¢ > 0 and let p be an Myoc(R)-valued
random variable with law A., the extremal homogeneous invariant law defined in Theorem [Z11.
Then:

(a) If B+ — B < o0, then supp(p) is a Poisson point process with intensity S+ — .

(b) If B+ — B— = 0, then p is a.s. atomic with supp(p) = R.
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3 Construction of Howitt-Warren flows in the Brownian web

In this section, we make the heuristics in Section [[L3]rigorous and give a graphical construction
of the Howitt-Warren flows using a procedure of Poisson marking of the Brownian web invented
by Newman, Ravishankar and Schertzer [NRS10]. The random environment for the Howitt-
Warren flow will turn out to be a Brownian web, which we call the reference web, plus a
marked Poisson point process on the reference web. Given such an environment, we will then
construct a second coupled Brownian web, which we call the sample web, which is constructed
by modifying the reference web by switching the orientation of marked points of type (1,2).
The kernels of the Howitt-Warren flow are then constructed from the quenched law of the
sample web, conditional on the reference web and the associated marked Poisson point process.

This construction generalizes the construction of the erosion flow based on coupled Brow-
nian webs given in [HWO09b]. For erosion flows, the random environment consists only of a
reference web (without marked points) and the construction of the sample web can be done
by specifying the joint law of the reference web and the sample web by means of a martingale
problem. This is the approach taken in [HWOQ9b]. In the general case, when the random
environment also contains marked points, this approach does not work. Therefore, in our
approach, even for erosion flows, we will give a graphical construction of the sample web by
marking and switching paths in the reference web.

Discrete approximation will be an important tool in many of our proofs and is helpful
for understanding the continuum models. Therefore, in Section B.1l we will first formulate
the notion of a quenched law of sample webs conditional on the random environment for
discrete Howitt-Warren flows. In Section B.2] we then recall the necessary background on
the Brownian web and Poisson marking for the Brownian web. In Section B3] we show
how coupled Brownian webs can be constructed by Poisson marking and switching paths in a
reference web. In Section [3.4] we state our main result, Theorem B.7, which is the construction
of Howitt-Warren flows using the Poisson marking of a reference Brownian web, and we also
state some regularity properties for the Howitt-Warren flows. Lastly, in Section 3.5, we state
a convergence result on the quenched law of discrete webs, which will be used to identify
the flows we construct in Theorem [B.7] as being, indeed, the Howitt-Warren flows defined in
Section earlier through their n-point motions. The statements of this section are proved
in Sections [6 and [7

3.1 A quenched law on the space of discrete webs

As in Section [[L2} let w := (w:).ezz2, . be iid. [0,1]-valued random variables with common
distribution p. Instead of using w as a random environment for a single random walk started
from one fixed time and position, as we did in Section [[2] we will now use w as a random
environment for a collection of coalescing random walks starting from each point in Z2,,. To
this aim, conditional on w, let & = (@ );cz2  be a collection of independent {—1, +1}-valued
random variables such that a, = 41 with probability w, and a, = —1 with probability 1 —w,.
This « will play a somewhat different role from the &*) in Section I3t see the discussion
below Theorem B2 For each (z,s) € Z2,, we let Plos) {s,s+1,...} = Z be the function

even’ ax7g
p‘(xx’s) = p defined by

p(s):==x and p(t+1):=p(t)+ ape. (t > s). (3.1)
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Then p‘(’z 5) is the path of a random walk in the random environment w, started at time s at

position x. It is easy to see that paths pg,p, starting at different points z, 2’ coalesce when
they meet. We call the collection of paths

“ = {pZ z e Zeven (3'2)

the discrete web associated with « (see Figure[f), where starting from this section, for the rest
of the paper, we will use different notation for discrete webs and nets compared to Section [[.2]
to avoid confusion with certain other symbols that we will need. Let P denote the law of w
and let

QY :=P[U* € |uw] (3.3)

denote the conditional law of A* given w. Then under the averaged law [P(dw)Q¥, paths
in U™ are coalescing random walks that in each time step jump to the right with probability
J 11(dg)q and to the left with the remaining probability [ u(dg)(1 — gq).

Figure 6: A discrete web and its dual.

We will be more interested in the quenched law Q¥ defined in (3.3). One has
QY =Q*[p? €] (3-4)

where QY is the conditional law of the random walk in random environment started from
z € 72, defined in Section In particular, by (L),

K2,(a,y) = Q9% o) = o] =P o) =yw]  ((@5), t) € Z20)s  (35)

where (K¢;)s<: is the discrete Howitt-Warren flow with characteristic measure . In view of
this, the random law Q% contains all information that we are interested in. We call Q¥ the
discrete quenched law with characteristic measure p. In the next sections, we will construct a
continuous analogue of this quenched law and use it to define Howitt-Warren flows.

3.2 The Brownian web

As pointed out in the previous subsection, under the averaged law [ P(dw)Q®, the discrete web

U® is a collection of coalescing random walks, started from every point in Z2,. It turns out
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that such discrete webs have a well-defined diffusive scaling limit, which is basically a collection
of coalescing Brownian motions, starting from each point in space and time, and which is called
a Brownian web. The Brownian web arose from the work of Arratia [Arr79, [Arr81] and has
since been studied by Téth and Werner [TW9S8|]. More recently, Fontes, Isopi, Newman and
Ravishankar have introduced a by now standard framework in which the Brownian
web is regarded as a random compact set of paths, and is an element of a suitable Polish
space.

It turns out that associated to each Brownian web, there is a dual Brownian web, which is
a collection of coalescing Brownian motions running backwards in time. To understand this
on a heuristic level, let (a;).cz2 be an ii.d. collection of {1, +1}-valued random variables.
If for each z = (z,t) € Z2,,, we draw an arrow from (z,t) to (z + a.,t + 1), then paths
along these arrows form a discrete web as introduced in the previous section. Now, if for
each z = (z,t) € Z2,,, we draw in addition a dual arrow from (z,t + 1) to (z — a.,t), then
paths along these dual arrows form a dual discrete web of coalescing random walks running
backwards in time, which do not cross paths in the forward web (see Figure [). The dual
Brownian web arises as the diffusive scaling limit of such a dual discrete web.

We now introduce these objects formally. Let R? be the compactification of R? obtained
by equipping the set R? := R? U {(do0,t) : t € R} U {(*,+00)} with a topology such that
(Tn, tn) — (foo,t) if z, — +oo and ¢, — t € R, and (zp,t,) — (x,%00) if ¢, — +o0
(regardless of the behavior of z,,). An explicit way to construct such a compactification is as
follows. Let © : R?2 — R? be defined by

tanh(z)

Oe,t) = (O1(2,1),02(0)) = (T

anh(t)) : (3.6)

and let ©(R?) denote the image of R? under ©. Then the closure of ©(R?) in R? is in a natural
way isomorphic to R? (see Figure [T]).

(*, +00)

\.\—I-OO, 2)

Figure 7: The compactification R? of R2.

By definition, a path w in R? with starting time o is a function 7 : [0, 00] — [—00, 00]U{*}
such that t — (7(¢),t) is a continuous map from [0, 0] to R2. We will often view paths as
subsets of R?, i.e., we identify a path 7 with its graph {(7(¢),t) : t € [0, 00]}. We let II
denote the space of all paths in R? with all possible starting times in [—o0, o], equipped with
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the metric

d(my,m2) :=|O2(0x,) — O2(0x,)| V.  sup ‘@1(7T1(t Vor),t)— O1(me(tV Um),t)

thr-,rl Ao

, (3.7)

and we let IC(IT) denote the space of all compact subsets K C II, equipped with the Hausdorff
metric
dy(Kq, K3) = sup inf d(xy,x2)V sup inf d(xq1,x2). (3.8)
r1€K1 ro€ Ko x2€K> r1€K,

Both IT and IC(II) are complete separable metric spaces. The set II of all dual paths T :
[—00,0%] — [—o00,00] U {*} with starting time 64 € [—00, 0] is defined analoguously to II.

We adopt the convention that if f : R? — R? and A C R2, then f(A) := {f(z): 2z € A}
denotes the image of A under f. Likewise, if A is a set of subsets of R? (e.g. a set of paths),
then f(A):={f(A): A € A}. This also applies to notation such as —A := {—z: 2z € A}. If
A C Il is a set of paths and A C R?, then we let A(A) := {7 € A: (n(0,),0,) € A} denote the
subspace of all paths in A with starting points in A4, and for z € R? we write A(z) := A({z}).

The next proposition, which follows from Theorem 2.1], [FINROG, Theorem 3.7],
and [SSO8, Theorem 1.9], gives a characterization of the Brownian web W and its dual W.
Below, we say that a path 7 € II crosses a dual path # € II from left to right if there exist
or < s <t <d; such that 7(s) < @(s) and 7(t) < 7(t). Crossing from right to left is defined
analogously.

Proposition 3.1 (Charactgrization of the Brownian web and its dual) For each (B €
R, there exists a K(IT) x K(II)-valued random variable (W, W), called the double Brownian
web with drift B, whose distribution is uniquely determined by the following properties:

(a) For each deterministic z € R?, almost surely there is a unique path m, € W(2) and a
unique dual path 7w, € W(z).

(b) For any deterministic com}table dense subset D cC R?, almost surely, W is the closure
inII of {m, : z € D} and W is the closure in 11 of {7, : z € D}.

(c) For any finite deterministic set of points z1,...,z € R?, the paths (ms,...,ms,) are
distributed as a collection of coalescing Brownian motions, each with drift 3.

(d) For any deterministic z € R?, the dual path 7, is the a.s. unique path in ﬂ(z) that does
not cross any path in W.

If (W, W) is a double Brownian web as defined in Proposition [3.1] then we call W a Brownian
web and W the associated dual Brownian web. Note that W is a.s. uniquely determined by W.
Although this is not obvious from the definition, the dual Brownian web is indeed a Brownian
web rotated by 180 degrees. Indeed, (W, W) is equally distributed with (=W, —W).

Definition 3.2 (Incoming and outgoing paths) We say that a path m € 11 is an incoming
path at a point z = (z,t) € R? if o <t and 7(t) = . We say that 7 is an outgoing path at
zifor =t and (t) = x. We say that two incoming paths w1, 72 at z are strongly equivalent,
denoted as m =i, ma, if T = w2 on [t — ¢€,t] for some e > 0. For z € R?, let miy(2) denote
the number of equivalence classes of incoming paths in W at z and let mou(z) denote the
cardinality of W(z). Then (min(2), mout (2)) is called the type of the point z in W. The type
(hin(2), Tout (2)) of a point z in the dual Brownian web W is defined analogously.
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We cite the following result from [TW98| Proposition 2.4] or [FINRO6, Theorems 3.11-
3.14]. See Figure [§ for an illustration.

Proposition 3.3 (Special points of the Brownian web) Almost surely, all points z € R?
are of one of the following types in W/W: (0,1)/(0,1), (0,2)/(1,1), (0,3)/(2,1), (1,1)/(0,2),
(1,2)/(1,2), and (2,1)/(0,3). For each deterministic t € R, almost surely, each point in
R x {t} is of type (0,1)/(0,1), (0,2)/(1,1), or (1,1)/(0,2). Deterministic points = € R? are
a.s. of type (0,1)/(0,1).

AN 0 /S

Figure 8: Special points of the Brownian web. On the left: (0,1)/(0,1). Top row: (1,1)/(0,2),
(2’ 1)/(07 3)7 (17 2)1/(1a 2)1' Bottom row: (Oa 2)/(17 1)7 (07 3)/(2a 1)a (1a 2)1”/(1’ 2)1“'

For us, points of type (1,2)/(1,2) are of special importance. Note that these are the only
points at which there are incoming paths both in WV and in W. Points of type (1,2) in W are
further distinguished into points of type (1,2); and (1,2),, according to whether the left or
the right outgoing path in W is the continuation of the (up to equivalence unique) incoming
path.

Proposition shows that although for each deterministic z € R?, a.s. W(z) contains a
single path, there exist random points z where W(z) contains up to three paths. Sometimes,
it will be necessary to choose a unique element of W(z) for each z € R?. To that aim, for
each z € R2, we let 77 denote the right-most element of W(z). We define 77 in the same way,
except that at points of type (1,2);, we let 71 be the left-most element of W(z). Note that
as a consequence of this choice, whenever there are incoming paths at z, the path 71 is the
continuation of any incoming path at z.

The next proposition, which follows from [NRS10, Prop. 3.1], shows that it is possible to
define something like the intersection local time of W and W. Below, |7| denotes the Lebesgue
measure of a set I C R.

Proposition 3.4 (Intersection local time) Let (W, W) be the double Brownian web. Then
a.s. there exists a unique measure ¢, concentrated on the set of points of type (1,2) in W, such
that for each m € W and # € W,

(({z=(z,t) eER* 0, <t <6, m(t) =z =7(t)})

=lii1016_1|{t€]R:a7r<t<&ﬁ, | (t) — 7 (t)] §€}|7 (39)
E.
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where the limit on the right-hand side exists and is finite. The measure £ is a.s. non-atomic
and o-finite. We let £y and £, denote the restrictions of £ to the sets of points of type (1,2)
and (1,2),, respectively.

We remark that ¢(O) = oo for every open nonempty subset O C R?, but £ is o-finite. To
see the latter, for any path © € II, let 7° := {(n(¢),t) : t € (0oy,00)} denote its interior,
and define the interior #° of a dual path 7 € II analogously. Let D C R? be a deterministic
countable dense set and for z € D, let 7, resp. 7., denote the a.s. unique path in W, resp. W,
starting from z. Then by Proposition B4l /(75 N 72) < oo for each z,2 € D, while by [SSO8|
Lemma 3.4 (b)], £ is concentrated on |J, ;cp (75 N 72).

3.3 Sticky Brownian webs

We collect here some facts about a natural way to couple two Brownian webs. Such coupled
Brownian webs will then be used in the next subsection to give a graphical construction of
Howitt-Warren flows. We first start with a ‘reference’ Brownian web W, which is then used to
construct a second, ‘modified’ or ‘sample’ Brownian web W' by ‘switching’ a suitable Poisson
subset of points of type (1,2); of W into points of type (1,2),, and vice versa, using a marking

procedure developed in [NRST0].
To formulate this rigorously, let z = (x,t) be a point of type (1,2); in W, and let

Win(z) :={mr eW: 0, <t, ©(t) =z} (3.10)

denote the set of incoming paths in W at z. For any m € Wiy(2), let 7t := {(n(s),s) : 0r <
s < t} denote the piece of 7 leading up to z, and let W(z) = {l,r} be the outgoing paths in
W at z, where | < r on (¢,t + ¢) for some € > 0. Since z is of type (1,2)), identifying a path
with its graph, we have m = 7! U for each m € Wi, (2). We define

switch, (W) :== W\Win(2)) U{r" Ur: m € Win(2)}. (3.11)

Then switch, (W) differs from W only in that z is now of type (1,2), instead of (1,2);. In a
similar way, if z is of type (1,2), in W, then we let switch,(W) denote the web obtained from
W by switching z into a point of type (1,2)). If z1,..., 2, are points of type (1,2) in W, then
we let switchy,, . (W) = switch,, o---oswitch,, (W) denote the web obtained from W by
switching the orientation of the points z1,..., 2,. Note that it does not matter in which order
we perform the switching. Recall that a point z is of type (1,2); (resp. (1,2);) in the dual
Brownian web W if and only if it is of type (1,2); (resp. (1,2);) in W. We define switching in
W analogously to switching in W.

The next theorem, which is similar to [NRS10, Prop. 6.1], shows how by switching the
orientation of a countable Poisson set of points of type (1,2), we can obtain a well-defined
modified Brownian web. Recall the definition of the intersection local time measure £ from
Proposition B4 and note that since ¢ is o-finite, the set S below is a.s. a countable subset of
the set of all points of type (1,2).

Theorem 3.5 (Modified Brownian web) Let W be a Brownian web wih drift 3, let { be
the intersection local time measure between VW and its dual and let 0y, ¢, denote the restrictions
of £ to the sets of points of type (1,2); and (1,2), in W, respectively. Let ¢, ¢, > 0 be constants

26



and conditional on W, let S be a Poisson point set with intensity cly + cby. Then, a.s., for
any sequence of finite sets A, 1S, the limit

W W) = An% (switcha,, (W), switcha, (WV)) (3.12)

exists in K(IT) x KC(I1) and does not depend on the choice of the sequence A, 1 S. Moreover,
W' is a Brownian web with drift 3 = B+ | — ¢; and W' is its dual.

Remark. We recall that a countable set S C R? is a Poisson point set with o-finite intensity
wif SN A, a Poisson point set with intensity (A, N -) for some, and hence for every sequence
of measurable sets A, such that p(4,) < oo for all n and u(R?\ |, 4,) = 0. We apply this to
the case that p is the random measure ¢+ ¢4, and the A,, are finite unions of intersections of
forward and dual paths, started from deterministic points, as mentioned below Proposition [3.4]
In particular, when we say that S is Poisson with intensity ¢¢1+ ¢4, this should be interpreted
in this particular sense. Some care is needed when talking about the conditional law of S given
W, since it is not clear whether S (being a countable dense subset of R?), on its own, can be
viewed as a random variable with values in a decent (at least measurable) space. Nevertheless,
it is not hard to see that the triple (W, W, S) (being a marked double Brownian web) can be
constructed as a legitimate random variable on a suitable probability space and that (W', W )
is a.s. a measurable function of (W, W, S).

If W, W) are coupled as in Theorem B3] then we say that (W, W') is a pair of sticky
Brownian webs with drifts 8, 8 and coupling parameter r := min{cj, ¢;}. In the special case
that k = 0 and 8 < ', we call W, W') a left-right Brownian web with drifts 3, 8'. Left-right
Brownian webs have been introduced with the help of a ‘left-right stochastic differential equa-
tion’ (instead of the marking construction above) in [SS08]. Pairs of sticky Brownian webs
with general coupling parameters £ > 0 have been introduced by means of a martingale prob-
lem in [HWO9b] Section 7]. They are, indeed, sticky in the sense that a pair of paths, one from
each web, are Brownian motions with sticky interaction. We will prove in Lemma below
that the constructions of left-right Brownian webs given above and in [SSO§| are equivalent.
We will not make use of the martingale formulation of sticky Brownian webs developed in
[ETW0AE).

For any point z of type (1,2) in some Brownian web W, we call

-1 if z is of type (1,2); in W,

signy(2) = { +1  if z is of type (1,2), in W (3.13)

the sign of z in W. If W, W') is a pair of sticky Brownian webs, then it is known [SSS09,
Thm. 1.7] that the set of points of type (1,2) in W in general does not coincide with the set
of points of type (1,2) in W’. The next proposition says that nevertheless, in the sense of
intersection local time measure, almost all points of type (1,2) in W are also of type (1,2) in
W, and these point have the orientation one expects.

Proposition 3.6 (Change of reference web) In the setup of Theorem [Z3, let ¢ be the
intersection local time measure between W' and its dual and let ¢}, ¢, denote the restrictions
of V' to the sets of points of type (1,2); and (1,2), in W', respectively. Then:

(i) Almost surely, ;= and ¢, = /.
(i) S={z€R?: 2 is of type (1,2) in both W and W', and signyy(z) # signyy(z)} a.s.
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(iii) Conditional on W', the set S is a Poisson point set with intensity c;l] + al, and W =
lima,, 1+s switcha, (V).

Let Wy, W) be a pair of sticky Brownian webs with drifts 8y, 8 and coupling parameter
%, and let 71 and 77 denote the special paths in W(z) defined below Proposition B3l Let

Kl (2, A) =P[x], () € A|Wy]  (s<t, 2 €R, A€BR)), (3.14)

and let K;:t(:E,A) be defined similarly, with ) replaced by 7f. Then, as we will see in
Theorem [B3.7] below, (KsTt) s<t and (K[,)s<; are versions of the Howitt-Warren flow with drift

s,t
[ and characteristic measure v = ¢01 + ¢.0g, where

c = k+max{0,8 — B3} and ¢ =k +max{0,3 - 3'}. (3.15)

In the special case that ¢, = ¢, this was proved in [HWO09D, formula (5)]. In the next
subsection, we set out to give a similar construction for any Howitt-Warren flow.

3.4 Marking construction of Howitt-Warren flows

We now give a construction of a general Howitt-Warren flow based on two coupled webs, which
is the central result of this paper. More precisely, the random environment of the Howitt-
Warren flow will be represented by a reference Brownian web W, plus a set M of marked
points of type (1,2). Conditional on (Wy, M), we will modify Wy in a similar way as in
Theorem B0 to construct a sample Brownian web W, whose law conditional on (Wy, M) then
defines the Howitt-Warren flow via the continuous analogue of ([3]). For erosion flows, the
set M of marked points is empty, hence our representation reduces to (3.14]).

Let Wy be a Brownian web with drift 5y and let v and v, be finite measures on [0, 1].
Let ¢, ¢, and ¢, be defined for Wy as in Proposition B.4], and conditional on Wy, let M be a
Poisson point set on R? x [0, 1] with intensity

4 (dz) ® 2 1{0<q}q_11/1(dq) + 4 (d2) @2 1geqy (1 — q) 'e(dq). (3.16)

Elements of M are pairs (z,q) where z is a point of type (1,2) in Wy and g € [0,1]. Since ¢
is non-atomic, for each point z of type (1,2) there is at most one ¢ such that (z,q) € M, and
we may write M = {(z,w,) : z € M}. We call points z € M marked points and we call w, the
mark of z.

Conditional on the reference web W, and the set of marked points M, we construct
independent {—1, +1}-valued random variables (a,).ecns with Pla, = +1|(Wh, M)] = w,, and
we set

A:={z€ M :a. #signy,(2)}. (3.17)

In addition, conditional on (Wy, M), we let B be a Poisson point set with intensity 214({0})6+
2vp({1})4;, independent of A. We observe that conditional on Wy, but integrating out the
randomness of M, the set AU B is a Poisson point set with intensity

2( /(0 ; qq'n(dq) + V1({0}))€1 + 2(/[0 1)(1 —q)(1—q) 'w(dg) + ,,r({l}))gr

= 211([0,1]) &1 + 204 ([0, 1]) €;..

(3.18)
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Therefore, by Theorem B3] a.s. the limit

= i itch 1
w AH%IEUBSWI'EC A, Wo) (3.19)

exists in IC(II) and is a Brownian web with drift

B := Bo+ 211([0,1]) — 24([0,1]). (3.20)

Theorem 3.7 (Construction of Howitt-Warren flows) Let 8 € R and let v be a finite
measure on [0,1]. For any finite measures vy and v, on [0,1] satisfying

v(dq) == (1 — ¢)n(dg) + g (dg), (3.21)

let By be determined from (3, vy and v, as in (3.20). Let Wy be a reference Brownian web with
drift By and define a set of marked points M and sample Brownian web W as in (310) and
[B19). Let 7l and 7+ denote the special paths in W(z) defined below Proposition [33. Set

K] (2, 4) :=P[x], (1) € A|Wo,M)]  (s<t, z€R, AcB(R)) (3.22)
and define K:t(x A) similarly with 7r( ) replaced by 7T( 5" Then (K Jt)sq and ( st)8<t are

versions of the Howitt- Warren flow with drift 8 and characteristic measure v. In the special
case that vy = vy, the triple Wy, M, W) is equally distributed with OV, M, Wy).

Remark. Since W take values in the Polish space K(II), we may construct a regular version
of the conditional probability P[W € -|(Wy, M)], which is a random probability measure on
KC(IT). A.s., under this random law, the random set of paths WV has the same a.s. properties
as a Brownian web. In particular, for a.e. w in our underlying probability space, the paths
772 and ﬂj in W are well-defined for all z € R2 and we obtain a version of the conditional
probabilities in formula @22)) for all (z,s) € R? and ¢t > s simultaneously. Interpreting
formula (3:22)) in this way (as we will always do), we obtain versions (th)8<t and (K, t)s<t

of our Howitt-Warren flows with different properties, see Proposition .8 below.

Remark. Note that in (B2I]), it is always possible to choose 11 = v, = v. In this case, the
construction of the reference Brownian web and set of marked points arises as the scaling limit
of the discrete construction outlined in Section If wk) = (w§k>) -ez2,,, 1s a collection of
independent [0, 1]-valued random variables with laws py satisfying (7)) and conditional on
w') we construct two independent collections a'¥ = (oz,im)zezgven and &%) = (&im)zezgven
of {—1,+1}-valued random variables with ]P’[ag€> = +1|w®] = w and similar for ¢®,
then the discrete webs corresponding to af? and &%) converge after diffusive rescaling to W
and Wy, and {(z,w;) : 0 < w, < 1} converges to the set of marked points M. The more
general construction in Theorem 3.7 where possibly v # v, and 3y is possibly different from 3
arises as the diffusive scaling limit of discrete constructions where we first choose a reference

(k)

collection of random variables &*) with 6,;1E[&z ] = Bp and then conditional on &%), we
choose independent (w§k>)zezgvm with Plw, € dg|&*® = —1] = pl (dg) and Plw, € dg|&* =
+1] = pk (dg), where generalizing (LJ), p, and u} are any laws such that

Pa*) = —1]p(dg) + P[6™ = +1]uj,(dg) = px(dg). (3.23)
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This more general construction will sometimes be handy. For example, for erosion flows where
v = ¢gdg + ¢101 for some ¢y, ¢; > 0, it is most natural to choose v, = ¢pdg and v, = ¢161. Also,
for Howitt-Warren flows where one or both of the speeds f_, 1 defined in ([2.12]) are finite, it
is sometimes handy to choose either v; =0 or v, = 0.

If Wy, M, W) are a reference Brownian web, the set of marked points, and the sample
Brownian web as defined above Theorem [B.7] then we call the random probability measure Q
on K(IT) defined by

Q:=PWe-|(Wy, M) (3.24)

the Howitt- Warren quenched law with drift § and characteristic measure v. In Section
below, we will show that in some precisely defined way, these Howitt-Warren quenched laws
are the diffusive scaling limits of the discrete quenched laws defined in Section Bl

Since at deterministic points in the Brownian web W there is a.s. only one outgoing path,
the stochastic flows of kernels (KsTt) s<t and (K ;’ ¢)s<t from Theorem [3.7] obviously have the
same finite-dimensional distributions. They are, however, not the same. Each version has its
own pleasant properties.

Proposition 3.8 (Regular parameter dependence) Let (K;t)sgt and (K ;) s<; be defined
as in Theorem[3.7 Then, of the following properties, (K:t)sst satisfies (a)—(c) and (KsT,t)sgt
satisfies (a), (b) and (d).

(a) Setting RQS = {(s,t) € R? : s < t}, the map (s,t,x,w) — Ksi(z, - )(w) is a measurable
map from RZ x R x Q to M;(R).

(b) A.s., the map t — Kg(x, -) from [s,00) to Mi(R) is continuous for all s € R and
z € R.

(c) As., x— Kgi(x, A) is a cadlag function from R to R for each s <t and A € B(R).
(d) A.s., / K (z,dy) Ky (y, A) = K y(z, A) for all s <t <wu, z € R, and A € B(R).
R

Proposition B.8 (b) and (d) show that (KsT,t)sgt yields a version of a Howitt-Warren flow
with the properties listed in Proposition In particular, Proposition B8 (d) makes it a
family of bona fide transition probability kernels of a Markov process in a random space-time
environment.

3.5 Discrete approximation

Recall the definitions of the discrete quenched laws Q in (3:3]) and the Howitt-Warren quenched
laws Q in ([B.24]). In this subsection, we formulate a convergence result which says that if py is
a sequence of probability laws on [0, 1] satisfying (7)), then the associated discrete quenched
laws Qzy, diffusively rescaled, converge to the Howitt-Warren quenched law Q with drift 3
and characteristic measure v. This abstract result then implies other convergence results such
as the convergence of Howitt-Warren flows, Howitt-Warren processes, and n-point motions.
Since the n-point motions of discrete Howitt-Warren flows will be shown in Proposition [A.5
to converge to solutions of the Howitt-Warren martingale problems, this will also verify that
the flows we constructed in Theorem [3.7] are indeed versions of the Howitt-Warren flow.

To formulate our convergence statement properly, we need to identify a discrete quenched
law Q with a random probability law on the space K(II) of compact subsets of the space IT
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of paths defined in Section Recall the definition of the paths p¢ in (3.1]) and the discrete
webs YUY in ([B2). We wish to view U* as a random variable with values in /C(II). To this aim,
we modify our definition of U® as follows. First, for each z = (x,s) € Z2,,, we make p<(t)
into a path in II by linear interpolation between integer times and by setting pg(co) := x*.
Next, we add to U* all trivial paths m, with starting times o, € Z U {—00, 00}, such that 7 is
identically —oo or 400 on [o,,00) N R. With this modified definition, it can be checked that
U“ is indeed a random compact subset of II, as desired.

For € > 0, we let S. : R2 — R? denote the scaling map
S.(z,t) == (ex,2t) ((z,t) € Rz) (3.25)

As usual, we identify paths with their graphs; then S¢(7) is the path obtained by diffusively
rescaling a path 7 with €, and S. (U?) is the random collection of paths obtained by diffusively
rescaling paths in U¢. If QY is a discrete quenched law as defined in (B3] and € > 0, then we
write

S5:(Q¥) == Q¥[S-(U*) -], (3.26)

ie., S:(Q¥) is the image under the scaling map S. of the quenched law of U®. Note that
S:(Q%), so defined, is a random probability law on the space of compact subsets of II, i.e., a
random variable with values in M (K(II)).

Theorem 3.9 (Convergence of quenched laws) Let ¢ be positive constants, converging to
zero and pu, be probability measures on [0, 1] satisfying (1.7) for some real B and finite measure

v on [0,1]. Let w) = (w§k>)zezgven be i.i.d. [0, 1]-valued random variables with distibution py,

let Quy == Q‘*’<k> be the discrete quenched law defined in (3-3), and let Q be the Howitt-Warren
quenched law with drift 8 and characteristic measure v defined in (3-24). Then

P[S:,(Qu) €] = PQe ], (3.27)

k—o0

where = denotes weak convergence of probability laws on M (K(II)).

4 Construction of Howitt-Warren flows in the Brownian net

In this section, we show that when a Howitt-Warren flow with drift § and characteristic
measure v has finite left and right speeds, or equivalently, b := fq_l(l —q)"'v(dg) < oo,
then we can alternatively construct the flow as a random flow of mass in the Brownian net.
Analogous to Theorem B.7], the random environment will now be represented as a Brownian
net N plus a set of i.i.d. marks @ := (@,).cg attached to the separation points S of N, each
with law 7(dq) := b~t¢~ (1 — ¢)"'v(dg). Conditional on (N,®), we can construct the sample
web W by choosing trajectories in N that turn in the ‘right’ way at separation points. The
Howitt-Warren flow is then defined from the law of W conditional on (N,@) as in ([3.22]).

In Sections A THAZ] we recall the necessary background on the Brownian net and properties
of its separation points. In Section [£3] we first state some coupling results between the
Brownian web and Brownian net, which will help shed more light on the marking constructions
of sticky Brownian webs in Theorem In Section [£.4] we then give our main result on the
alternative construction of Howitt-Warren flows with finite left and right speeds using the
Brownian net. Lastly in Section 3], we formulate what we call Brownian half-nets, and state
some properties for the support of the Howitt-Warren quenched law defined in ([3:24]), which
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will imply Theorems and 271 We note that, apart from being used to construct Howitt-
Warren flows with finite left and right speeds, the theory of the Brownian net will also play an
important role for Howitt-Warren flows with infinite left or right speed, such as in the proof
of results in Section A as well as in the proof of Theorems and

4.1 The Brownian net

The Brownian net arises as the diffusive scaling limit of branching-coalescing random walks
in the limit of small branching probability. It was first introduced by Sun and Swart in [SS08]
and independently by Newman, Ravishankar and Schertzer in [NRS10]. A further study of its
properties was carried out in [SSS09]. We now recall the definition of the Brownian net given
in [SSOS].

Recall that in Section B.3] we defined a left-right Brownian web to be a pair of sticky
Brownian webs (W!, W") with drifts 3_ < B4 and coupling parameter x = 0. At present, we
will need the original definition of a left-right Brownian web given in [SSO§|. In Lemma
below, we will prove that both definitions are equivalent.

Following [SS08], we call (I1,...,ly;71,...,7y,) acollection of left-right coalescing Brownian
motions with drifts 8_ < 84, if (I1,...,l,) and (rq1,...,r,) are distributed as collections of co-
alescing Brownian motions with drift S_ and (3, respectively, if pathsin (I1,...,ln;71,. .., 79)
evolve independently when they are apart, and the interaction between [; and r; when they
meet is described by the two-dimensional stochastic differential equation

ALy =112y dB + (1, g,y d B} + B_dt,

(4.1)
dR; = 1{Lt7£Rt}dB; + 1{Lt:Rt}dBf + [ydt,
where B}, B}, B are independent standard Brownian motions, and (L, R) are subject to the
constraint that
L; < R, for all t > inf{s: Ly = R}. (4.2)

It can be shown that subject to the condition (£.2]), solutions to the SDE (1] are unique in
distribution [SS08, Proposition 2.1].

Let W', W" be two Brownian webs with drifts f_ < (., and for determinstic z € R?,
let I, resp. 7, denote the a.s. unique path in W' resp. W" starting from z. Following [SS0g],
we say that (W', W) is a left-right Brownian web if for any finite deterministic set of points
Z1yeeey Zmy 2y oo, 2h € R2) the collection (I, ... omiTors oo T2 is distributed as left-right
coalescing Brownian motions. Elements of W' (resp. W*) are called left-most (vesp. right-
most) paths. Tt is known [SSO8, formula (1.22)] that if (W', W) is a left-right Brownian web
and Wl, W are the dual Brownian webs associated with WL W', then (—Wl, —Wr) is equally
distributed with (W! W").

It was shown in [SSO8] that each left-right Brownian web a.s. determines an associated
Brownian net and vice versa. There, three different ways were given to construct a Brownian
net from its associated left-right Brownian web, which are known as the hopping construction
and the constructions using wedges and meshes, which we recall now.

Hopping: We call t € R an intersection time of two paths m,7’ € Il if 0,00 < t < 0
and w(t) = 7/(t). If ¢ is an intersection time of 7w and 7/, then we can define a new path
7" by concatenating the piece of m before ¢ with the piece of 7’ after t, i.e., by setting
7" ={(n(s),8) : s € [ox, t]} U{(7(5),8) : s € [t,00]}. For any collection of paths A C II, we
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let Hint(A) denote the smallest set of paths containing A that is closed under such ‘hopping’
from one path onto another at intersection times, i.e., Hint(A) is the set of all paths 7 € 1T of
the form

= U {(wk(s),s) 15 € [tk_l,tk]}, (4.3)
k=1

where m1,..., T, € A, 07, =10 < -+ < t,, = 00, and tj, is an intersection time of 7 and 74
foreach k=1,...,m — 1.

Mesh M(r, 1) Wedge W (#,1)

Figure 9: A mesh M (r,1) with bottom point z and a wedge W (7,1) with bottom point z.

Wedges: Let Wl, Wr be the dual Brownian webs associated with a left-right Brownian web
(WL W), Any pair [ € W', # € W' with 707 N\ G7) < j((;_i A 07) defines an open set (see
Figure [])

W(#, 1) = {(z,u) € R*: %,; <u < 6; A6, #(u) <z <l(u)}, (4.4)

where 7. ; := sup{t < 6;A\G; : 7(t) = I(t)} is the first (backward) hitting time of # and I, which

might be —oo. Such an open set is called a wedge of (Wl, Wr) If 7. ; > —oo0, then we call 7 ;

the bottom time, and (I(7,;), 7, ;) the bottom point of the wedge W (7, 1).
Meshes: By definition, a mesh of W', W") (see Figure [) is an open set of the form
M=M(rl) ={(z,t) ER*: 0y < t <7, 7(t) <z < (1)}, (4.5)

where | € W', r € W* are paths such that o; = o, I(07) = r(0,) and 7(s) < I(s) on (07,07 +¢)
for some ¢ > 0, and 7, := inf{t > oy : I(t) = r(t)}. We call ({(0;),0;) the bottom point, o
the bottom time, (I(7;,),7,) the top point, 7, the top time, r the left boundary, and [ the
right boundary of M.

Given an open set A C R? and a path 7w € II, we say 7 enters A if there exist o, < s < t
such that m(s) ¢ A and 7(t) € A. We say 7 enters A from outside if there exists o < s < ¢
such that 7(s) ¢ A and 7(t) € A. We now recall the following characterization of the Brownian
net from [SSO8, Theorems 1.3, 1.7 and 1.10]. Below, A denotes the closure of a set of paths
A C II in the topology on II.

Theorem 4.1 (Brownian net associated with a left-right Brownian web) Let (W!, W)

be a left-right Brownian web with drifts f— < B4 and let Wl,Wr be the dual Brownian webs
associated with W', W*. Then there exists a random compact set of paths N' € K(II), called the
Brownian net, that is a.s. uniquely determined by any of the following equivalent conditions:
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(i) N =HineOWV'UWT) a.s
(ii) N ={m €Il : m does not enter any wedge of (WI,WY) from outside} a.s.
(iii) N = {r € II : w does not enter any mesh of W', W")} a.s.

The set N is closed under hopping, i.e., N' = Hint(N) a.s. Moreover, if D C R? is a determin-
istic countable dense set, then a.s., for each z € D, the set N(z) contains a minimal element
l. and a mazimal element ., and one has W' = {l, : z € D} and W* = {r, : z € D} a.s.

If WL W) and N are coupled as in Theorem EIL then we call NV the Brownian net
associated with (W! Wr). We also call 5_, B, the left and right speed of N.  The Brownian
net with left and right speeds f_ = —1 and 5 = +1 is called the standard Brownian net. We
note tha:c if B_ = B4, then W! = W' = N/, i.e., the Brownian net reduces to a Brownian web.
Since (W, Wr) is equal in law to a left-right Brownian web rotated over 180 degrees, such a
dual left-right Brownian web defines an a.s. unique dual Brownian net N in the same way as
WL W) defines .

If A is any closed subset of R and N is a standard Brownian net, then setting

& = {n(t) : 7 e N(Ax {0})} (t>0) (4.6)

defines a Markov process taking values in the space of closed subsets of R, called the branching-
coalescing point set. We refer to Proposition for some of its basic properties.

4.2 Separation points

Loosely speaking, the separation points of a Brownian net are the limits of separation points
of the approximating branching-coalescing random walks, i.e., they are points where paths in
the Brownian net have a choice whether to ‘turn left’ or ‘turn right’. These points play an
important role in our proofs. In this subsection, we recall some basic facts about them.

Recall from Definition B2 the definition of strong equivalence of incoming paths. Following
[SSS09], we adopt the following definition.

Definition 4.2 (Equivalence of incoming and outgoing paths) We call two incoming
paths w1, € I1 at a point z = (x,t) € R? equivalent paths entering z, denoted by 7 ~ T,
if m(t —ep) = ma(t — €,) for a sequence e, | 0. We call two outgoing paths 71,72 at a point
z equivalent paths leaving z, denoted by 1 ~Z . w2, if m1(t + &,) = ma(t + &5,) for a sequence
en 4 0.

In spite of the suggestive notation, these are not equivalence relations on the spaces of all
paths in II entering resp. leaving a point. However, it is known that:

(i) If W is a Brownian web and 7, w9 € W satisfy m1(t) = ma(t)
for some o, 0, < t, then m = w3 on [t, 00].

(i) If W' W) is a left-right Brownian web and I € W', r € W satisfy
I(t) = r(t) for some oy,0, < t, then [ <r on [t,o0].

(4.7)

Using (7)), it is easy to see that if (W! W) is a left-right Brownian web, then a.s. for all
z € R?, the relations ~Z and ~Z  are equivalence relations on the set of paths in whu wr

34



entering resp. leaving z, and the equivalence classes of paths in W'UW? entering resp. leaving
z are naturally ordered from left to right.

In previous work [SSS09, Theorem 1.7], we have given a complete classification of points
z € R? according to the structure of the equivalence classes in W' UW" entering resp. leaving
z, in the spirit of the classification of special points of the Brownian web in Proposition B.3l
It turns out there are 20 types of special points in a left-right Brownian web. Here, we will
only be interested in separation points.

By definition, we say that a point z = (x,t) € R? is a separation point of two paths
mi,me € 1L if op), 00, < t, m(t) = x = ma(t), and 71 #Z,, m2. We say that z is a separation
point of some collection of paths A if there exist 71,7 € A such that z is a separation point
of m1 and 7. Recall the definition of the dual Brownian net below Theorem Il We cite the
following proposition from [SSS09, Prop. 2.6 and Thm. 1.12(a)]. See Figure

! ! /
lz T, lz T, 7’/ lz
11 l7T z r
T 4 z
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Figure 10: Structure of separation points and a path 7 in the Brownian net turning left at a
separation point z.

Proposition 4.3 (Separation points) Let N be a Brownian net with left and right speeds
B_ < By and let W', W") be its associated left-right Brownian web. Then:

(a) A.s., S = {z € R? : z is a separation point of N} = {z € R? : z is a separation
point of N'}, and S is countable.

(b) A.s., S={zcR?: 2z is of type (1,2); in W' and of type (1,2), in W'}.

(c) For given z € S, letl, and r, denote the, up to strong equivalence unique, incoming paths
in W resp. W* at z and let I, and r’, be the elements of W'(z) resp. W*(z) that are not
continuations of L, resp. r.. Then, a.s. for each z € S, one has I, ~%, 15, L, ~Z 1. and

/ z
lz ~out T'z-

(d) With the same notation as in (c), a.s. for each z = (z,t) € S and for each incoming
path T € N at z, there exists some € > 0 such that l, <7 <r, on [t —¢&,00). Moreover,
each path m € N leaving z satisfies either 1, < m <1/, on [t,00) orl, < 7w <1, on [t,c0).
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Note that part (c) of this proposition says that at each separation point z there is one pair of
equivalent (in the sense of ~7 ) incoming paths {l,,r.} and there are two pairs of equivalent
(in the sense of ~Z,,) outgoing paths: {l.,7.} and {l’,r.}. By part (d), whenever a path
m € N enters z, it must do so squeezed between {l.,r.} and it must leave z squeezed either
between the pair {l,,r.} or between the pair {l},r.} (see Figure [I0). By part (b), these are
the only points in R? where paths in A can separate from each other, and by part (a), there

are only countable many of these points.

4.3 Switching and hopping inside a Brownian net

In this subsection, we show how it is possible to construct a Brownian web inside a Brownian
net by turning separation points into points of type (1,2) with i.i.d. orientations. In the next
subsection, this will be used to state the main result of this section, which is an analogue of
Theorem 3.7 and gives an alternative construction of Howitt-Warren flows with finite left and
right speeds based on a reference Brownian net.

Recall from Proposition 3] (d) (see also Figure [I0)) that if A/ is a Brownian net and 7 € N/
is some path entering a separation point z = (z,¢) of N/, then 7 must leave z squeezed between
one of the two outgoing pairs {l,,r.} or {l’,r,}. We write

sign._(z) := (4.8)

-1 ifl, <7 <7, on [too),
+1  ifl, <7 <r,on [t o00).

Recall the definition of the dual Brownian net below Theorem 1] and recall from Propo-
sition 23] (a) that the set S of separation points of N coincides with the set of separation
points of N. For # € N, we define sign,(z) to be the sign of —z in —A/. The next theorem,
which will be proved by discrete approximation, shows that it is possible to define a Brownian

web ‘inside’ a Brownian net.

Theorem 4.4 (Brownian web inside a Brownian net) Let N be a Brownian net with
left and right speeds f— < [y, let N be its associated dual Brownian net, and let r € [0,1]. Let
S be the set of separation points of N and conditional on N, let o = (v;),es be a collection
of i.i.d. {—1,+1}-valued random variables such that Pla, = +1|N] =r. Then

W:={r e N :sign, (z) = a, Vz € S s.t. ™ enters z}, (49)
W:={# € N :signs(z) = a. Vz € S s.t. & enters z} '

defines a Brownian web W with drift 5 := (1 — r)B_- + rB+ and its associated dual Brownian
web W. In particular, if r = 0 resp. r = 1, then W is the left (resp. right) Brownian web
associated with N'. In general, if { denotes the intersection local time measure between W
and its dual and 1,0, are the restrictions of £ to the sets of points of type (1,2); resp. (1,2);,
then, conditional on W, the sets Sy :={z € S:a, = -1} and S, := {z € S : a, = +1} are
independent Poisson point sets with intensities (81 — B)¢ and (8 — B-)ty, respectively.

For any Brownian web W, we may without loss of generality assume that W is constructed
‘inside’ some Brownian net A as in Theorem .4l This will be very helpful in understanding
marking constructions based on W such as the ‘switching’ construction of sticky Brownian
webs in Theorem or the marking construction of a Brownian net. To reap the full profit
of Theorem [£.4] we need one more result, which we formulate next.
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Let W be a Brownian web with drift . For each point z of type (1,2), let switch,(WV)
denote the web obtained from W by switching the orientation of z as in (B11]), and let

hop, (W) := W U switch, (W) (4.10)

be the compact set of paths obtained from W by allowing hopping at z, i.e., by allowing
incoming paths at z to continue along any of the outgoing paths. More generally, if A is a
finite set of points of type (1,2) in W, then we set

hopa (W) = U switcha/ (W), (4.11)
A'CA

where the union ranges over all subsets A’ C A, with switchyg(W) := W.

Proposition 4.5 (Switching and hopping inside a Brownian net) Let N be a Brownian
net with left and right speeds f_ < [+ and set of separation points S. Conditional on N, let
a = (a)zes be a collection of i.i.d. {—1,+1}-valued random variables such that Plo, =
+1|N]| =r and let W be a Brownian web with drift 5 := (1 —r)B_ + 1S4 defined inside N as
in (f-9). Then, a.s. for each subset S C S and for each sequence of finite sets A, 1 5’, the
limits

W= lim switcha, (W),

AptS’

: 4.12)
":= lim h (
N Jim_hop,, W)
exist in IC(IT) and are given by
N'={m e N :sign, (z) = . Vz € S\S s.t. w enters z}, (4.13)

W =N"n{r e N :sign,(z) = —a, Vz € S s.t. w enters z}.

4.4 Construction of Howitt-Warren flows inside a Brownian net

By combining Theorem .4 and Proposition 5] one can give short proofs of some of the results
we have seen before, such as the marking construction of sticky Brownian webs (Theorem B.5]),
Proposition on changing the reference web, and the equivalence of the definitions of a left-
right Brownian web given in Sections and L1l From Theorem (4] and Proposition 45|
one moreover easily deduces the following result, which is similar to the marking construction
of the Brownian net given in [NRSI0, Sec. 3.3.1 and Thm. 5.5]. For the proofs of all these
results, we refer to Section

Theorem 4.6 (Marking construction of the Brownian net) Let W be a Brownian web
with drift 5 and let ¢;,c, > 0. Let £ denote the intersection local time measure between W
and its dual, and let 1 and ¢, denote the restrictions of € to the sets of points of type (1,2)
and (1,2), respectively. Conditional on W, let Sy and S, be independent Poisson point sets
with intensities ey and c.ly, respectively. Then, for any sequence of finite sets Al 1 S and
AY 1Sy, the limits
(i)  N:= lim hopai jar (W),
n— 00 "

(i) W= lim switcha;, (W), (4.14)
(i) Wr:= li_>m switchp1 (W)
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exist in KC(II) a.s. and do not depend on the choice of the sequences Al 1Sy and Al 1 S,.
Moreover, N is a Brownian net with left and right speeds B_ := 3 — ¢, and By = B+ a,
(WYL W!) is its associated left-right Brownian web, and S := Sy U S, is its set of separation
points. If ¢ + ¢, > 0, then conditional on N, the random variables (signy(z)).cs are i.i.d.
with P[signyy(z) = +1|N] = ¢ /(a + ).

Our final result of this subsection shows how the construction of Brownian webs inside a
Brownian net given in Theorem [.4] can be used to construct Howitt-Warren flows with finite
left and right speeds, providing an alternative to Theorem B.7l Recall that a Howitt-Warren
quenched law with drift 5 and characteristic measure v is a random probability measure Q on
K(IT) with law as defined in ([3.24]).

Theorem 4.7 (Construction of Howitt-Warren flows with finite speeds) Let § € R
and let v be a finite measure on [0, 1] such that the speeds B—, B+ defined in (2.12) are finite. Let
N be a Brownian net with left and right speeds 5_, B+ and let S be its set of separation points.
Conditional on N, let w := (w,).cs be a collection of z' i.d. |0, ] valued random wvariables
with law v(dq) == b"1q7 (1 — q)"'v(dq), where b= [ ¢~ (1 — q¢)~'v(dq), and conditional on
(N, w), let (az).es be a collection of independent {—1 +1} valued random variables such that
Pla, = 1] (N,w)] = w,. Set

W:={reN:sign (z) =a, Vz €S s.t. ™ enters z}. (4.15)

Then setting
Q:=PWe-|WV,w)] (4.16)

yields a Howitt- Warren quenched law with drift 8 and characteristic measure v. In particular,

setting

Kl (2, 4) =P, () e A|V,w)]  (s<t, z€R, AcBR)) (4.17)

and defining Ks'"t(:n A) similarly with 7T( 5) replaced by w" ,5) yields versions of the Howitt-
Warren flow with drift B and characteristic measure v wit pmpertzes as described in Propo-

sition [T.8

4.5 Support of the quenched law

In this subsection, we formulate a theorem on the support of Howitt-Warren quenched laws,
which will imply Theorems and 271 Before we can do this, we need to introduce Brownian
half-nets, which are basically Brownian nets with either infinite left speed and finite right
speed, or vice versa. Recall that a path © € II crosses a dual path @ € II from left to right if
there exist o, < s <t < 65 such that 7w(s) < (s) and 7(¢) > 7(¢). Crossing from right to left
and crossing of forward paths are defined analogously. We will prove the following analogue
of Theorem [4.1]

Theorem 4.8 (Brownian half-net associated with a Brownian web) Let W be a Brow-
nian web with drift 8 and let VW be its dual. Then there exists a random closed set of paths
H_ C II that is a.s. uniquely determined by any of the following equivalent conditions:

(i) Ho ={m € I : 7 does not cross any path of W from left to right} a.s.

(ii) H_ = {r €Il : 7 does not cross any path of W from left to right} a.s.
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Moreover, if D C R? is a deterministic countable dense set, then a.s., for each z € D, the set
H_(z) contains a maximal element 7., and one has W = {r, : z € D}. Analogue statements
hold with H_ replaced by H., ‘from left to right’ replaced by ‘from right to left’ and ‘maximal
element’ replaced by ‘minimal element’.

If H_ (resp. Hy) and W are coupled as in Theorem g then we call H_ (resp. Hi) a
Brownian half-net with left and right speeds —oo, 3 (resp. 3,+00), and we call W the right
(resp. left) Brownian web associated with H_ (resp. Hy).

Let Q be a Howitt-Warren quenched law with drift S and characteristic measure v as
defined as in ([3.24)), or alternatively, in the case of finite speeds, as in (£I06). Then Q is a
random probability law on the space of webs. In particular, if W is a K(II)-valued random
variable with (random) law Q, then for each z € R? we can define special paths 71 and T
in W(z) as below Proposition In analogy with the conditional law Q‘(*’LS) of the random
walk in random environment defined in Section [[.2] in the continuum setting, we define

Qf = Q[Wj € ] (z € R?), (4.18)

and we define Q7 similarly, with 7 replaced by 7. In particular, if Q is defined as in ([8.24]) or
as in (AIG]), this says that QF :=P[r] € -| W, M)] resp. QF :=P[r] € -| (N,w)]. We note
that since typical points in R? are of type (0,1) in W, for deterministic z € R?, the random
variables QF and Ql are equal a.s. It follows that for any deterministic finite measure p on
R?, one has [u(dz) QF = [u(dz) QL.

Theorem 4.9 (Support property) Let Q be a Howitt-Warren quenched law with drift 3
and characteristic measure v, and let f_, B+ be the left and right speeds defined in (212). Then
there exists a random, closed subset N' C 11 such that for any deterministic finite measure p
on R?,

supp(/u(dz) Qj) = N (supp(p)) a.s. (4.19)

If —co < B_ < By < +o00, then N is Brownian net with left and right speeds 3_, 3. . If either
—00 = f_ < B+ < 400 or —00 < f_ < By = +oo, then N is a Brownian half-net with left
and right speeds B_,By. If —oo = f_ < By = 400, then N =1I.

Note that above, supp(u) is a closed subset of R?, but not necessarily of R?, which is why
in general we need to take the closure of N (supp(i)) in the space of paths II. If (x, —00) ¢
supp(p) or if supp(p) = R?, then it is moreover true that A'(supp(p)) = N (supp(p) ), where
supp(u) denotes the closure of supp(u) in R?; see Lemma B3] below.

We note, without proof, that in the setup of Theorem 9] it can be shown that NV =
Usupp(Q), where Usupp(Q) := {7 : 7 € A for some A € supp(Q)} denotes the union of all
elements of supp(Q) C KC(II). We state as an open problem to characterize supp(Q) itself
(rather than just Usupp(Q)).

5 Outline of the proofs

Our results are proved in Sections [6HIT] below. In Section [6] we collect some well-known and
less well-known facts about the Brownian web and net and prove some new results that we
will need further on. In particular, in Section we prove a ‘finite graph representation’ that
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gives a precise description of how paths in the Brownian net move between deterministic times.
Sections then culminate in Theorem [G.15] the central result of the section, which is
about discrete approximation of a Brownian web embedded in a Brownian net and implies
Theorem 4l In Section [6.6] this is then used, together with the finite graph representation,
to prove Theorem and Proposition on the construction of sticky Brownian webs and
related results such as Proposition and Theorem

In Section [[ we prove our main results: Theorem on the convergence of the quenched
laws on the space of webs, and Theorems [3.7] and [£.7] on the construction of Howitt-Warren
flows using a marked reference Brownian web or net. Here we also harvest some immediate
consequences of our construction, such as the existence of regular versions of Howitt-Warren
flows (Proposition 23] and B.8)) and scaling (Proposition 2.4]).

In Section [§ we prove our results on the support of Howitt-Warren flows. In Section Bl we
prove a number of preparatory results about generalized Brownian nets with possibly infinite
left and right speeds. In particular, we prove Theorem .8 on Brownian half-nets and prepare
for the proof of Theorem on the support of the quenched law on the space of webs. In
Section [B.2] we prove Theorem and use it to deduce Theorems and 2.7 on the left and
right speeds and the support of Howitt-Warren processes.

In Section @ we address questions of atomicness. In particular, parts (a), (b) and (c) of
Theorem 2.8 are proved in Sections [0.1] and [@0.3] respectively.

In Section [I0] we prove Theorems and [Z10] on Howitt-Warren processes with infinite
starting mass and the convergence of rescaled discrete Howitt-Warren processes, while Sec-
tion [II] contains the proofs of Theorems 2Z.11] and on homogeneous invariant laws.

The paper concludes with four appendices on the Howitt-Warren martingale problem and
some other technical issues.

The table below gives a complete overview of where the proofs can be found of all results
stated so far. Further results stated in the following sections will be proved on the spot.
Below, cited means that the listed result is cited from other sources.

Result Proved in Result Proved in Result | Proved in
Prop. 23] | Sect.[[3 | Thm. Sect. IT.4] || Thm. T | cited
Prop. 2.4] | Sect. Prop. Bl | cited Prop. 3] | cited
Thm. Sect. Prop. cited Thm. E4 | Sect. [6.5]
Prop. cited Prop. B4 | cited Prop. Sect. [6.6]
Thm. 27 | Sect. Thm. Sect. Thm. Sect. 6.6
Thm. Sect. Prop. Sect. Thm. 7 | Sect. [[.2]
Thm. 29 | Sect.I01 || Thm. 31 | Sect. Thm. A8 | Sect. Bl
Thm. 210 | Sect. Prop. Sect. Thm. Sect. B2
Thm. 21T | Sect. T4 || Thm. Sect. [7.1]

6 Coupling of the Brownian web and net

The main aim of this section is to prove Theorem [£.4] and Proposition [£.5] which will be our
main tools for constructing modified Brownian webs and nets by switching or hopping inside
a reference Brownian web or net. In particular, after proving these theorems, we will apply
them to prove Theorems and on the switching construction of sticky Brownian webs
and the marking construction of the Brownian net.
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In order to prepare for the proofs of Theorem 4] and Proposition BB we first need to
take a closer look at the separation points of a Brownian net, introduced in Section It
has been proved in [SSS09] that for deterministic times S < U, there are only locally finitely
many ‘S, U-relevant’ separation points that decide where paths in the Brownian net started
at time S end up at time U. After recalling some basic facts about these relevant separation
points in Section [6.I] we use them in Section [6.2]to give a rather precise description, by means
of a ‘finite graph representation’, of the way paths in the Brownian net move between time S
and U.

Since discrete approximation will play an important role in our proofs, Sections
are devoted to discrete approximation of the Brownian web and net, and related objects
such as intersection local times and separation points. In Section [6.5] we then use these
results to prove a result about the convergence of a discrete web embedded in a discrete
net to analogue Brownian objects. This result then immediately yields Theorem E4] on the
construction of a Brownian web inside a Brownian net. In addition, it lays the basis for proofs
of other convergence results such as Theorem on the convergence of quenched laws. In
Section [6.6], finally, we use the finite graph representation developed in Section together
with Theorem 4] to prove Proposition and we combine Theorem 4] and Proposition
to prove Theorems and and some related results.

6.1 Relevant separation points

The set of separation points of a Brownian net A is dense in R? and also along any path
m € N. It turns out, however, that for given deterministic times S < U, the set of separation
points that are relevant for deciding where paths in the Brownian net started at time S end
up at time U is a locally finite subset of R x [S,U].

Following [SSS09], we say that a separation point z = (x,t) of a Brownian net N is S, U-
relevant for some —oo < S < t < U < oo, if there exists 7 € N such that o, = S and
7(t) = x, and there exist I € W!(z) and r € W¥(2) such that [ < r on (t,U). (Note that since
we are assuming that z is a separation point, [ and r have to be the paths [, and r, from
Proposition (¢). In particular, [ and r are continuations of incoming paths at z.) The
next proposition follows easily, by Brownian scaling, from [SSS09, Lemma 2.8 and Prop. 2.9].
Part (a) says that the definition of relevant separation points is symmetric with respect to
duality; see also Figure [11

Proposition 6.1 (Relevant separation points) Let N be a Brownian net with left and
right speeds f_ < B4. Then:

(a) A.s. for each —oc0 < S < U < o0, a separation point z = (x,t) with S < t < U is
S, U-relevant in N if and only if —z is —U, —S-relevant in the rotated dual Brownian net

-N.

(b) For each deterministic —oo < S < U < oo, if Rsy denotes the set of S,U-relevant
separation points, then

E[|Rsy N A|] = Qb/A\I/b(t _ WU —t)dedt  (A€B®x (S,U)),  (6.1)

where b= (B4 — _)/2,

Uy (t) := e\;_;tt + 2b®(bV/2t) (0 <t <o0), (6.2)
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Figure 11: An S, U-relevant separation point.

and ®(x) := \/% ffoo e‘y2/2dy. In particular, if —oo < S, U < oo, then Rgy is a.s. a locally

finite subset of R x [S,U].

We will need yet another characterization of relevant separation points. To formulate this,
we first need to recall the definition of crossing times from [SSS09, Def. 2.4].

Definition 6.2 (Crossing and crossing points) We say that a forward path m € 11 crosses
a dual path 7 € 11 from left to right at time t if there exist o, < t_ <t <ty < &4 such that
w(to) < 7(to), 7(ty) < w(ty), and t = inf{s € (t_,t4) : 7(s) < 7w(s)} = sup{s € (t_,t4) :
7(s) < #(s)}. Crossing from right to left is defined analogously. We call z = (x,t) € R? a
crossing point of m € Il and # € 11 if 7w(t) = x = @ (t) and 7 crosses & either from left to right
or from right to left at time t.

Lemma 6.3 (Relevant separation points and crossing points) Almost surely for each
—00< S<U <0 and z € R x (S,U), the following statements are equivalent:

(i) z is an S,U-relevant separation point.
(ii) z is a crossing point of some m € N and 7t € N with oz =S and U = 65.

Proof. If z = (z,t) is an S, U-relevant separation point, then by Proposition there exist
7' € N starting at time o = S and #/ € N starting at time 65 = U such that 7' and 7’
enter z. By [SSS09, Prop. 2.6], z is a crossing point of some r € W' and [ € W Let 7 be the
concatenation of 7’ on [S,t] and r on [t,U] and likewise, let & € A be the concatenation of 7’
on [t,U] and [ on [S,t]. Since by Theorem [A] N is closed under hopping, we see that 7 € N’
and # € N. By the structure of separation points (Proposition 3] (d)), z is a crossing point
of m and 7, proving the implication (i)=-(ii).

Conversely, if z is a crossing point of some m € A and 7 € N witho, = Sand U = 04, then
by the classification of special points of the Brownian net [SSS09, Thm. 1.7] and their structure
[SSS09, Thm. 1.12 (d)], z must be a separation point of A'. By [SSS09, Lemma 2.7 (a)], the
presence of the dual path # implies the existence of I € W!(2), » € W*(z) such that [ < r on
(t,U), hence z is S, U-relevant. |
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6.2 Finite graph representation

In this section, we give a rather precise description of how paths in a Brownian net move
between deterministic times S,U. In particular, we will construct an oriented graph whose
internal vertices are relevant separation points and whose directed edges are pairs consisting
of a left-most and right-most path, such that each path in the Brownian net starting at time
S must between times S and U move through an oriented path in this graph, and conversely,
for each oriented path in the graph there exist paths in the Brownian net following this path.

As a preparation, we need some results from [SSS09] on the special points of the Brownian
net. Almost surely, there are 20 types of special points in the Brownian net, but we will
only need those that occur at deterministic times, of which there are only three. Let A be a
Brownian net with associated left-right Brownian web (W', W"). Recall the notion of strong
equivalence of paths from Definition and the relations ~7 and ~7 from Definition
As remarked there, these are equivalence relations on the set of paths in W' U W" entering
resp. leaving a point z, and the corresponding equivalence classes are naturally ordered from
left to right. In general, such an equivalence class may be of three types. If it contains only
paths in W! then we say it is of type 1, if it contains only paths in W' then we say it is of
type r, and if it contains both paths in W' and W' then we say it is of type p, standing for
pair. To denote the type of a point z € R? in a Brownian net N, we first list the incoming
equivalence classes in W!UWF" from left to right and then, separated by a comma, the outgoing
equivalence classes.

In our case, there are only three types of points of interest, namely the types (o,p), (p,p)
and (o,pp), where a o means that there are no incoming paths in N at z. We note that
by property (@) (i), an outgoing equivalence class of type p at a point z contains exactly
one path in W!(z) and one path in W¥(z). By the same property, at points of type (p,p),
all incoming paths in W' are strongly equivalent and likewise all incoming paths in W' are
strongly equivalent. We cite the following result from [SSS09, Thms. 1.7 and 1.12] and [SSO8|
Prop. 1.8]. Recall the definition of the dual Brownian net below Theorem A1

Proposition 6.4 (Special points at deterministic times) Let N be a Brownian net, let

N be its dual, and let WL WY and (Wl,Wr) be the left-right Brownian web and the dual
left-right Brownian web associated with N and N'. Then:

(a) For each deterministic t € R, almost surely, each point in R x {t} is either of type
(0,p)/(0,p), (p,p)/(0,pP) or (0,pp)/(p,p) in N/N, and all of these types occur.

(b) Almost surely, for each point z = (z,t) of type (0,p), (p,p) or (o,pp) in N and 7 € N(2),
there exist | € W(2) and v € W*(2) such that | ~Z,, v and | <7 <1 on [t,00).

(c) Almost surely, for each point z = (x,t) of type (p,p) in N, for each | € W', r € W' and
m € N entering z, there exists an € > 0 such that | < m <71 on [t —,00).

Let —oo < S < U < oo be deterministic times, let Rgy be the set of S, U-relevant

separation points of A" and set
Rg:=R x {5},
s {sS} (6.3)
Ry:={(z,U):z € R, 37 € N with o = S s.t. 7(U) = z}.

We make the set R := RgU Rgy U Ry into an oriented graph by writing z —;, 2" if 2,2’ € R,
242 1 E€WN2), 1 € WH(2), I ~Ey 1, and | ~Z, 7.
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Figure 12: Finite graph representation.

Proposition 6.5 (Finite graph representation) Let N be a Brownian net with associated
left-right Brownian web W', W") and let —co < S < U < oo be deterministic times. Let
R := RsU Rgy URy and the relation —, be defined as above. Then, a.s. (see Figure[13):

(a) For each z € Rg that is not of type (o,pp), there exist unique | € W'(z2), r € W*(2) and
2" € R such that z =, 2.

(b) For each z = (z,t) such that either z € Rgy or z € Rg is of type (o,pp), there exist
unique 1,1' € WNz2), r,7" € W'(2) and 2',2" € R such that | < v <1 <r on (t,t + &)
for some e >0, z =, 2" and z —p . 2". For z € Ry one has 2/ # 2". For z € Rg of
type (0,pp), one has 2 # 2" if and only if there exists a dual path # € N with 6z = U
such that 7 enters z.

(c) For each m € N with o = S, there exist z; = (x;,t;) € R (i =0,...,n) and l; € W'(2),
r; € WNz) (i=0,...,n—1) such that 20 € Rs, zn, € Ry, 2i =1, r; zi41 and l; <7 <1y
on [ti,ti+1] (’L = 0, ey — 1).

(d) If zi = (zi,t;) € R (i = 0,...,n) and l; € W\(2), s € WN(2;) (i =0,...,n — 1) satisfy
20 € Rg, zn, € Ry, and z; =, r; Zit1 (t=0,...,n—1), then there exists a m € N with
or =8 such that l; < <r; on [t;, tit1].

Proof. By Proposition[6.4] (a), each z = (x,t) € Rg that is not of type (o, pp) must be of type
(0,p) or (p,p), hence there exists a unique pair (I, 7) consisting of one left-most path I € W'(z)
and one right-most path » € W"(z), such that [ ~Z r. Likewise, by Proposition [4.3] for each
z € Rgy there exist exactly two pairs ({,7) and (I',r) such that I,I’ € W!(z), r,7’ € W¥(z),
[~z r and ! ~Z, r, and the same is true for z € Rg that is of type (o, pp), by the properties
of such points. Therefore, in order to prove parts (a) and (b), assume that z € Rg U Rg¢r
and that I € W'(2) and r € W"(2) satisfy [ ~Z, r. We claim that there exists a unique
z' € Rgy U Ry such that z —, 2/

To see this, let 7 := sup{u € (t,U) : l(u) = r(u)} be the last time [ and r separate
before time U. If 7 = U, then there exists some 2’ € R x {U} such that [ and r enter 2’
and hence, by Proposition (a), 1 Nf;; r. On the other hand, if 7 < U, then we claim that
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2= (2/,t') .= (I(7),7) is an S, U-relevant separation point. To prove this, we must show that
there exists some m € N with o, = S and 7(t') = 2/, the other parts of the definition being
obviously satisfied. If z € Rg we may take m = [. If z € Rg s, then there exists some m € N/
with o, = S such that 7(¢) = x. By Theorem ], the Brownian net is closed under hopping,
therefore we may concatenate m with [ to find a path in N starting at time S and entering 2’.
This proves that 2’ is an S, U-relevant separation point. By Proposition (b), the left-most
and right-most paths entering a separation point are up to strong equivalence unique, and
l ler; r. This proves the existence of a 2’ € Rsy U Ry such that z — Z'. The uniqueness
of 2’ follows from the fact that only the last separation point of [ and r before time U can be
S, U-relevant. This completes the proof of part (a).

To complete the proof of part (b), it suffices to show that 2’ # 2" if and only if there exists a
dual path 7 € N with 67 = U such that # enters z. In particular, since by Proposition [6.1] (a)
such a dual path exists for each z € Rgy, this then shows that 2’ # 2" for such z. We
observe that in general, if 2/ = 2", then the paths [ and r starting at z = (x,t) meet before
time U. Conversely, if 77, := inf{u > ¢ : [(u) = r(u)} < U, then [ and r cannot enter a
S, U-relevant separation point before time 7;,, while after time 7;,, by the arguments above,
I and r must lead to the same point in R. The statement now follows from the fact that by
[SSS09, Lemma 2.7], there exists a dual path 7 € N with 67 = U entering z if and only if
there exist | € W!(z) and r € W*(2) such that [ < r on (¢,U).

To prove part (c), set 2o := ((S), S). By Proposition[64](b) there exist unique Iy € W'(z)
and rg € Wl(zo) such that lop ~20 79 and Iy < 7 < ro, hence by what we have just proved
one has zy =y, 21 for some unique z; = (x1,t1) € R. If t; = U we are done. Otherwise, by
what we have just proved, there exist 1,1’ € W!(z1), r,r’ € W!(z1), and 2/,2” € R such that
20 =1 2 and zg —p, 2. By Proposition d3] the path m must either turn left or right at 21,
so setting either (I1,71) = (I,7") or (l1,71) = (I';r) and 23 = (x9,t2) := 2’ or 2" we have that
l1 <7 <rjonlt],ts]. Continuing this process, which terminates after a finite number of steps
by Proposition [6.1], we find a sequence of points zg, ..., 2, and paths lg, 79, ..., lh_1,7n_1 With
the desired properties.

Finally, part (d) follows from [SSS09, Thm. 1.12 (d)] which implies that the concatenation
of the paths lg,...,[l,,_1 defines a path 7 € N with all the desired properties. [ |

We will sometimes need the following extension of Proposition
Corollary 6.6 (Steering paths between deterministic times) Let N be a Brownian net

with associated left-right Brownian web (W', W*) and let —oco < Ty < -+ < T, < oo be
deterministic times. Set

RT1 =R x {Tl},
Ry = {(x,Tm) cx € R, Im € N with o, =T1 s.t. ©7(Ty,) = :17},

Ry, 1y = {z eR?:zisa Ty, Ty 1-relevant separation point,
Im e N with o, =T} s.t. ™ enters z}.

(6.4)

Then all conclusions of Proposition remain valid with Rg replaced by Rr,, Rsy replaced
by Ug”;‘ll Ry, 1., and Ry replaced by Rr,,, except that in part (b), it may happen that 2’ = 2"
for some z € U?;ll Ry, 1,,, o7 2 # 2" for some z € Rg even though there is no path T € N
starting at time T,, entering z.

Moreover, a.s. for each m,7" € N satisfying o, 0n < T1, o Now < Ty, ©(Th) < 7(T1)
and sign_(z) < sign/(z) for all z € Ukm:_ll Rt 1, such that both © and 7' enter z, one has
w(Ty) < 7'(Ty) for k=1,...,m.
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Proof. This generalization of Proposition follows by ‘pasting together’ the finite graph
representations for the consecutive time intervals [T, Ti11], where we use that by Proposi-
tion [6.4] (a), if 7 € N satisfies o, = T1, then the points (w(7),Tx) (k = 2,...,m) must be of
type (p,p) in NV

To prove the statement about the paths 7,7/, by symmetry, we may assume without loss
of generality that o, < T}. In this case, by Proposition (a), the point (7(71),T1) must be
of type (p,p) in N. Let z; = (z;,t;) (i=1,...,n)and l;,7; (i =1,...,n— 1) be defined for 7
as in Proposition (c), and define w_, 7y : [T1,T),] — R by

m_:=1; and w4 :=m;on [t tit1] (t=1,...,n—1). (6.5)

Then 7_(Ty) = m(Ty) = 74+ (Tx) for k =1,...,m and 7— < 7’ on [T1,T),]. |

6.3 Discrete approximation of the Brownian web

In this and the next section, we recall known results about convergence of discrete webs and
nets to Brownian webs and nets and prove some related, new results about convergence of
intersection local times and relevant separation points. In Section [6.5] we then use these
results to prove a new convergence result about Brownian webs embedded in Brownian nets,
which will form the basis for the proof of Theorem on the convergence of quenched laws,
which will be proved in Section [Z.1l

Before we turn our attention to the details of the Brownian web, we first explain two
simple, general principles that we will be using several time in what follows.

Lemma 6.7 (Weak convergence of coupled random variables)

(a) Let E be a Polish space, let (F;)ier be a finite or countable collection of Polish spaces
and for each i € 1, let f; : E — F; be a measurable function. Let X, X}, Yy ; be random
variables (k > 1, i € I) such that X, X}, take values in E and Y}, ; takes values in Fj.

Then
P[(Xi, Vii) € ] = P(X,fuX)) €] viel

6.6
mmplies ]P)[(Xk,(Yk’i)ie]) € ] kf; ]P’[(X, (fi(X))ief) € ']7 o)

where = denotes weak convergence of probability laws on the Polish spaces E x F; and
E x [Lies Fi, respectively.

(b) Let E,F,G be Polish spaces, let f : E — F and g : F — G be measurable functions,
let X, Xy, Y,Yr and Z;, be random variables taking values in E, F' and G, respectively
(k>1). Then

P[(Xk, Yz) € -] = P((X,f(X))e-] and P[(Yi,Zk) € -] = P[(Y,9(Y)) € -]

implies  P[(Xp, Yi, Zi) € -] = P[(X, f(X),g(f(X))) €],

k—00
(6.7)
where = denotes weak convergence of probability laws on the Polish spaces EXF, Fx G,
and E x F x G, respectively.

46



Proof. For part (a), we observe that the assumed weak convergence of (Xj,Y}, ;) for each i € T
implies tightness of the laws of (X, (Ysi)ier). Let (X, (Yi)icr,...) be any weak subsequential
limit. Then (X,Y;) is equally distributed with (X, f;(X)), hence Y; = f;(X) a.s. for each
i € I. Similarly, in the set-up of part (b), the weak convergence of (Xj,Y:) and (Y%, Zj)
implies tightness of the laws of (X, Yy, Zx), while for each weak subsequential limit (X,Y, Z)
one has Y = f(X) and Z = g(Y') as. |

We note that by Skorohod’s representation theorem (see e.g. [Bil99, Theorem 6.7]) the
left-hand side of (6.6) implies that for each i € I, we can find a coupling of the X}, Y}, ; and X
such that (Xj,Ys;) = (X, fi(X)) a.s. By the right-hand side of (6.6]), we can find a coupling
that works for all ¢ € I simultaneously. We will apply this principle many times, e.g. when X
is a Browian web, f(X) is its associated dual Brownian web, g(X) is the set of paths starting
at a given time etc. We will not always be explicit in our choice of the measurable maps f, g
but it is clear from the context that they can be constructed.

Recall from Section Bl that each i.i.d. collection @ = (a;).ezz  of {—1,+1}-valued ran-
dom variables defines a discrete web U* = {p% : z € Z2,.,} as in B.2). As in Section B5 by
linear interpolation and by adding trivial paths that are constantly —oc or 4-oc0, we view U®
as a random compact subset of the space of paths II introduced in Section

Let Z2yy = {(z,t) : x,t € Z, x +1 is odd} be the odd sublattice of Z?. For each (z,s) €
Z2 44, we let ﬁ‘()‘%s) = p, defined by (compare (3.)))

p(s) ===z and p(t—1):=p{) —apei1y  (E<s) (6.8)

denote the dual path started at (z,s) and we let U* = {p@ : z € 72} denote the dual
discrete web associated with 4. We view U* as a random compact subset of the space of
dual paths TI. Tn line with earlier notation, for any A C Z2,, (resp. A C Z2,,), we let U*(A)
(resp. U*(A)) denote the set of paths in U* (resp. U®) starting from A. We define diffusive
scaling maps S¢ as in ([B:25]) and use S.(Aj,...,A,) as a shorthand for (S:(A;),...,S:(An)).

The following result follows easily from Theorem 6.1] on the convergence of
discrete webs to the Brownian web and Proposition Bl on the characterization of the dual
Brownian web.

Theorem 6.8 (Convergence to the double Brownian web) Let ¢, be positive constants,

tending to zero. For each k, let aF) = (Oégﬁ)zezgm be an i.i.d. collection of {—1,+1}-valued

random variables, let Uy = U™ and L?<k> = 1" be the discrete web and dual discrete web

associated with o'¥) | and assume that limy_, EglE[aim] = (B for some 5 € R. Then

P[Se, Uy Upy) € -] = B[OV, W) € -], (6.9)

k—o00

where = denotes weak convergence of probability laws on IC(IT) x lC(f[), W is a Brownian web
with drift 8 and W is its dual.

For notational convenience, let us write
Spo={(v,t) € R?: t =T}, (6.10)

so that, e.g., N(X7) = {7 € N : 6, = T}. We use similar notation for sets of discrete paths.
The following strengthening of Theorem is sometimes handy.
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Lemma 6.9 (Convergence of paths started at given times) In the setup of Theo-
rem 6.8, let T, € Z U {—o0,00} be times such that eiTy, — T for some T € [—o0,+0o0].
Then

]P’[Sak (U<k>,U<k>(2Tk)) S ] k?; ]P’[(W,W(ET)) S ] (6.11)
Proof. It follows from the tightness of the S, (Z/{(k>) and Lemma [B.4 that also the laws of the
K(IT)%-valued random variables S, ((U<k>,Z/{<k>(ETk)) are tight. By going to a subsequence if
necessary and invoking Skorohod’s representation theorem, we may assume that they converge
to an a.s. limit (W, A). It is easy to see that A C W(Xr). If T' = £o00, then W(Er) contains
only trivial paths and it is easy to check that also A D W(Xr). To get this inclusion for
—00 < T < oo, let D be a deterministic countable dense subset of R x {T'}. Since A(z) is
nonempty for each z € D and since W(z) contains a single path for each z € D, we conclude
that A D W(D). Since A is compact and W(Zr) is the closure of W(D), it follows that
A=W(Zr). n

We next formulate a result which says that the intersection local time measure ¢ between
a forward and dual Brownian web as defined in Proposition [3.4] is the limit of the intersection
local time measures between approximating forward and dual discrete webs. Since /¢ is locally
infinite, such a statement on its own cannot make sense. Rather, we will show that the
restriction of ¢ to the intersection of finitely many forward and dual paths is a.s. the weak
limit of the analogue discrete object.

For any K C K(R?), we let

Img(K):={2€ R?:3Ac K s.t. z € A} (6.12)

denote the union of all sets in K. We call Img(K) the image set (or trace) of K. In particular,
if A is a set of paths (which, as usual, we identify with their graphs), then Img(A) = {(n(¢),?) :
t > o, ™€ A}. Similarly, if A is a set of discrete paths, then

Img(A) = {(z,t) € Z2,, : t > 0r, € A}, (6.13)

and we use similar notation for a set A of discrete dual paths, where in this case Img(/l) is a
subset of Z2 4

Proposition 6.10 (Convergence of intersection local time) Let €, be positive constants,
tending to zero. Let o'®) be collections of i.i.d. {-1 —|—1} valued random variables satisfying
limy, o0 5;1E[a§ | = B for some 5 € R, and let Uiy L{< k) be the discrete web and its dual
associated with a'*) . Let W be a Brownian web with drift 3, W be its dual, £ be the intersection

local time measure between W and W, and £, be the restriction of £ to the set of points of type
(1,2),. Let

Ak:{zf%"v m}CZeverU {217”’72£}CZ(2>dd7 (6 14)
A:{Zl,... Zm}CRz :{Zl,...,in}CR2 ‘
be finite sets such that Se, (2F) — z and Ser (2] ¥) — 2, as k — oo for each i =1,...,m and
j=1,...,n. Set
k
(9 =g Y s, (),
ZEIkﬂZr< )
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where

(k) . 2 (k)
Zr T {Z € Zeven . Oé(x’t) - +1}7 A A (615)
I : = {(a;,t) € ngen : (m,t) S Img(Z/{(k>(Ak)), (x,t + 1) S Img(Z/{(k>(Ak))}
Let 0.(A, A) denote the restriction of €, to the set Img(W(A)) N Img(W(A)). Then
P[(Se, Uy 61) € ] = P[(W. (A, 4)) € ], (6.16)

where = denotes weak convergence of probability laws on K(II) x M(R?), and M(R?) is the
space of finite measures on R? equipped with the topology of weak convergence.

Proof. Since

P Sz, Uikys Uiy Uy (D), Uy (A1) € ] = B[W, W, W(A), W(A)) € ],

k—o0

and a.s. (W(A), W(A)) determines £,(A,A), by Lemma (b), proving (6.16]) reduces to
proving

P[(Se, Uy (Bk). Uy (Ar)), ) € -] = P[W(A),W(A), 6(AA)) €] (6.17)
We will make a further reduction.

For k€ N, 1 <i<mand1<j<n,let Uy (zF) = {p} and L?<k>(£'f) = {ﬁ?} Let &
and fg? denote respectively the starting time of p¥ and ﬁg‘?. Similarly, let W(z;) = {m;} and
W(éj) = {#;}, with starting time ¢; for 7; and #; for #;. Let (7%,)1<u<v<m be the time of
coalescence between pX and pF, and let (#%,)1<y<v<n be the time of coalescence between pt
and p¥. Define (Tuv)1<u<v<m and (Tuy)i1<u<v<n similarly for W(A) and W(A) Forl<u<m
and 1 < v <mn, let

(B =er D bs ()L ph (b (1) =gk (O + 1=}

Z::(m7t)€ZgVCn

be the rescaled intersection local time measure of p¥ and p¥ on points with aéi? H = 1, and
similarly let ¢, ,, be the intersection local time measure of 7, and 7, on points of type (1, 2),.
We note that Er(A,A) can be uniquely constructed from (7yy)i<u<v<m, (Tuv)i<u<v<n, and
(lruv)1<u<m,1<v<n. For example, we can go through the indices (uv)i<y<m,1<v<n in numeric
order, and at each step, we add the proper restriction of ¢, ,,, to the construction of £, (A, A) SO
as to exclude overlaps among (4; 4y)1<u<m,1<v<n due to the coalescence of paths. By the same
procedure, €§k> can be constructed from (va)lgu@gm, (725U)1§u<v§n7 and (d@v)lgugm,lgngv-
To prove ([G.I7), it then suffices to prove

P KSsk (P )1<izms (B)1<j<n) s (ERTm ) 1<ucvsm: (ErFay)1<ucvsn, (fﬁffﬁv)lsmm,l@si}) € ]

= ]P’K(m)lgigm,(ﬁj)lsm,(Tuv)1§u<v3m7(?uv)lswvgm(er,uv)KuSm,lsUén) € ] (6.18)

It has been shown in the proof of [STW00, Thm. 8] that
P[S., ((pf)lgigm, (ﬁfhgjgn, (T* )1 <u<v<m, (ﬁfy)lgu<v§n) €

= P[((mi)1<i<ms (Fj)1<i<ns (Tuv)1<ucv<m, (Fuv)1<u<v<n) € *, (6.19)
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where (p¥)1<i<m and (ﬁ?)lgjgn were constructed as a deterministic transformation (via Sko-
rohod reflection and coalescence) of a collection of independent random walks (W})1<;<m

and (Wf)lgjgn- The same transformation was used to construct (m;)i<i<m and (7j)1<j<n

from a collection of independent Brownian motions (B;)i<i<m and (Bj)lgjgn- Furthermore,
this transformation together with the times of coalescence (7Tyy)i<u<v<m and (Tuy)i<u<v<n
are a.s. continuous in (B;)1<j<m and (Bj)lgjgn- The convergence in ([6.19) then follows from
Donsker’s invariance principle. Since ¢, 4, is uniquely determined by ,, and 7, by Lemmal6.7]
to prove (6I8]), it then suffices to show that for each 1 <u <m and 1 <v <m,

P((Se, (v £3): 650) € ] = P[(mus oo, ) € ], (6.20)

T, uv

Without loss of generality, we may assume v = v = 1 in (6.20]). We may also assume that
21 = (w1,t1) and 21 = (#1,%1) satisfy ¢; < #, so that /11 is not a.s. the zero measure, in
which case ([G.20) is trivial. We recall from [STWO00, Thm. 3] (see also [FINROG, (3.6) and
Thm. 3.7]) that, conditional on 71, 7 is distributed as an independent Brownian motion B
with drift 5, starting from z;, and Skorohod reflected away from 7. More precisely, 71 admits
the representation

Bi(t) + L.(t if 71(t1) < 1,
T (t) = 1(t) (t) 1 71 ( 1)A 1 (6.21)
Bl(t)—Ll(t) if o4 <7T1(t1),
where
L.(t) = sup max{0,7(s) — Bi(s)} fort € [t1,t1], L.(t) = L.(t) for t > 1y,
hesst (6.22)
Li(t) = sup max{0, Bi(s) — 71(s)} for t € [t1,14], Li(t) = Ly(t;) for t > 4.
t1<s<t

It was shown in [NRSIO0, Prop. 3.1] and its prooiﬁ that, with the construction of m; as in
([6.21)), almost surely ¢, 11(R x ) = dL,(+), or equivalently,

Ga1(R x [t1,t]) = Le(t)  for all t € [ty,1]. (6.23)
Since ¢, 11 is concentrated on the graph of 7y, it follows that
b1 =dL,om !, (6.24)

i.e., £y 11 is the image of the measure d/L, under the map 7.

(k)

There is a similar representation for p'f, ﬁlf, and £,/,. Indeed, if Wlk is an independent

simple random walk on Z with drift I[E[ozy€> ] and starting from 2§, then conditional on p¥, we

can construct pi as (see e.g. [STWOQ, Sec. 2.2.2] or the proof of [SSS09, Lemma 2.1])

T e AL o
Wi (t) — Ly'(t) if 2y < pr(ty),
where
LFt) = sup max{0,1+4 pi(s) — WE(s)} fort € [t¥,#}],  LE(t) = LF(@¥) for t > ¥,
et A ) (6.26)
LE@t) = tksgpq max{0,1 4+ WF(s) — pi(s)} for t e [t 5],  LF(t) = LF(¥) for t > £},
158

SOur definition of £ in (33) differs from the definition in [NRSI0, (3.2)] by a factor of v/2, which is com-
pensated by the fact that we consider Poisson point process in R? with intensity measure ¢ instead of v/2¢, as

done in [NRST10, (3.8)].
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The constant 1 arises because p} is a walk on Z2,,, and W is a walk on Z2,,,. Let
k ok
Z Lpko=phi+1)=pr@+1y  Tortr <t <17,
i= tk
Then, in analogy with (6.24]),
k _
() = d(Se, Lk o (b)Y, (6.27)

where d(Se, LF)(t) = exdLE (e} %t). To relate L and L¥, note that conditional on p¥,

LY(t+1)— (=Bl )DLEE) = > (LEE+1) - L) — 1-Ee® )1 zre _rra_1=1) (6.28)

ik
1=ty

is a martingale, because L¥(i + 1) — LF(i) # 0 only when p§(i) = p¥(i + 1) = p*(i) + 1,
(k)
and conditional on the later event, LF(i + 1) — L¥(i) = 0 with probability % and
(k)
LF(i + 1) — LE(i) = 2 with probability % By Doob’s maximal inequality, conditional
on ﬁ’f,
E[ sup [LE(t+1)— (1-EP)IE@)]

k ik
th<t<ik

IN

4E[\L’;(£’f) (1 E[ai’”])if(f’f)ﬂ
< 16E[LF ()] (6.29)

We are now ready to prove (620). By (€24]) and (621)), we can replace ¢, 11 by L,, and 6%1
by Se, LF. First let us extend the definition of all processes in discrete time to continuous time
by linear interpolation. Note that (6.25]) and (G26]) remain valid. By Donsker’s invariance
principle, the pair of independent processes S, (p¥, W) converge weakly to (71, By). By
Skorohod’s representation, we may assume from now on this convergence is almost sure by
suitable coupling. If z; < 71(¢1), then trivially

Sek(plf7plf7L ) k?o (ﬂ-l)ﬁ-l)LT) (630)

since Ly = 0, and so is L¥ for all k large. If #1(t;) < x1, then S., (L¥) — L, uniformly on
compacts, because the Skorohod reflection map which defines both L¥ and L, in (6.28) and
respectively (6.22]) is continuous in its arguments. Therefore,

R[S, (0}, 8, L) € ] = Pl(m, 71, L) € ). (6:31)
On the other hand, by (6.29),

E[ sup ep|LE(t+1) — (1 _E[a§k>])if(t)\2] < 16e2E[LF(#})] — 0, (6.32)
th<t<ik k00

because the above inequality implies by triangle inequality that

(1 — E[a")E[(er LE(4))%)7 < El(erLE(}))%]7 + 4y/EE[ex LE(E)]7,

o1



and since E[(g, L¥(#4))?] is uniformly bounded in k as easily seen from the definition of L¥, so
are B[(ex LF(#}))?] and E[ex LF(2})]. Since E[aim] — 0, we conclude from (6.32]) that

P[Se, (LY, L) € ] = P[(Ly, L) € . (6.33)

k—00

By Lemma 6.7, ([6.31]) and (6.33]) imply that

P[Sek(plfvﬁlf7if) € ] — ]P)[(ﬂ-lyﬁ-lyLr) € ':|7 (634)
k—o0
which in turn implies (6:20) and concludes our proof. |

6.4 Discrete approximation of the Brownian net

It has been shown in [SSO§| that the Brownian net arises as the limit of systems of branching-
coalescing random walks, in the limit of small branching probability and after diffusive rescal-
ing. In this section, we review this result and add some additional results on the approximation
of (relevant) separation points by discrete separation points.

Let B_ < B4 be real constants. Let €5 be positive constants, converging to zero, and for
each k, let

R e (O R (6.35)
be an i.i.d. collection of {—1, +1}2—Valued random variables such that ai’m < a§k>r and
&71,211[3[042]€> 1 — B_ and &71,211[3[042]€> T — B4 (6.36)
k—oo k—oo

We let Z/{%k> and Z/{fk> denote the discrete webs associated with a1 and a*)*, respectively.
Then (ng>,u<rk>) is a discrete analogue of a left-right Brownian web as introduced in Sec-
tion We call the collection of discrete paths

k)1 k)r
Viy = {p:p(t+1) —p(t) € {alsy . alors 3 e > o} (6.37)

the discrete net associated with (Z/{%M,Ufm). We observe that except for a rotation by 180

degrees and a shift from Z2, to Z2,,, the discrete dual left-right web (LA{%M,Z/A[{M) is equally

distributed with (Z/{%M,L{{k)). In view of this, we define a dual discrete net 1><k> analogously to

Viky- As in Section 1.3l we view the sets of discrete paths ugm,ugk),wm as random compact
subsets of the space of continuous paths II.
We cite the following result from [SS08, Thm. 5.4].

Theorem 6.11 (Convergence to the Brownian net)
Let €, and V<k>,L{%k>,U<rk>,f/<k>,lfl<lk>,l;l<rk> be as above and let N', W, W', N', WL WY be a Brow-
nian net with left and right speeds f— < B, its associated left-right Brownian web, and their

duals. Then

]P[Sak (V<k>7u<1k>7u(rk>7 v(k)az;{(lk)?a(rkﬂ S ] = P[(N7 W17Wr7-/\7'7 W17 Wr) € ']7 (638)

k—o00

where = denotes weak convergence of probability laws on KC(I1)? x IC(f[)?’.
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The following analogue of Lemma is sometimes handy.

Lemma 6.12 (Convergence of paths started at a given time) In the setup of Theo-
rem 611, let Tj, € Z U {—o0, +o0} satisfy 2Ty, — T for some T € [—o0,00]. Then

P[Se (Vi Vi (Bm)) € -] = PV, N(Z)) €] (6.39)

Proof. By Lemma [B.4l in the appendix, the tightness of the S, (V(k>) implies that also
the laws of the KC(IT)?-valued random variables Se, ((Vixy, Vi) (E1,)) are tight. By going to
a subsequence if necessary and invoking Skorohod’s representation theorem, we may assume
that they converge to an a.s. limit (N, .A). It is easy to see that A C N (X7). To get the other
inclusion, we distinguish three cases. The case T" = 400 is trivial. If —co < T < +o0, let
D!, D" be deterministic countable dense subsets of R? such that D' is also dense in R x {T'}.
Let Heros WD), W' (D")) be the set of paths that can be obtained by concatenating finitely
many paths in W (D!) and W"(D") at crossing times between left and right paths. Arguing
as in the proof of [SSO08, Thm. 5.4], we obtain that

A D TL(E7) N Heros WHDYH, WH(DY)), (6.40)

hence by [SSO8, Lemma 8.1] we conclude that A D N(Xr). Finally, if T = —oo, then let
V<k>(2_oo)‘;f; denote the set of all restrictions of paths in Vi (X_o) to the time interval

[T}, o0]. Since V<k>(2_oo)‘§f; C Vi) (X13,), it then suffices to prove the claim if T} = —oc for
all k. But this is just [SSO8, Lemma 9.2]. n

We will need one more result that is very close in spirit to Lemma and can in fact
be seen as a strengthening of the latter. If A/ is a Brownian net with left and right speeds
B— < B4, then, generalizing ([A0]), for any closed A C R, we may define a Markov process
taking values in the closed subsets of the real line by

gr={rt): e N(Ax{0D}  (t>0). (6.41)

We call €4 the branching-coalescing point set with left and right speeds f—, B4. By combining
[SSO8, Prop. 1.12], Brownian scaling, and the well-known density of the Arratia flow (see
equation (1.6)]), it is easy to check that the density of & is given by

E[lE* N[z 9] = (y—2)W(t)  (t>0, z<y), (6.42)

where b := (B4 — -)/2 and VU, is the function in (62]).
If V is a discrete net defined from an i.i.d. collection of random variables (al,at).cz2  as

even

in ([©.37), then we can define a discrete branching-coalescing point set in analogy with
In particular, we let

Uy p, (1) :=P[Ir € V s.t. 0 =0, 7(t) = 2] (t>0, (z,t) € szen) (6.43)

denote its density, which is a function of ¢ and the speeds b_ := E[al] and b, := E[a!] of the
discrete net V. In what follows, we will need the following fact.

Lemma 6.13 (Convergence of the density) Let e be positive constants, converging to
zero and assume that —1 < by, _ < b 4 <1 satisfy

e by - — B and e 'by . — By (6.44)
k—00 k—o0
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for some f_ < By. Let Uy(t) be the function in (6.2) with b:= (81 — 5-)/2. Then

lim sup |(2€k)_1\1/bk777bk’+(L€;2tJ) —Wy(t)] =0 (6 >0) (6.45)
k—oo s<p<5—1
and 5
lim lim sup / at (2e1) " Wy, 4 (le52t]) = 0. (6.46)
50 koo Jo o

Proof. Fix 6 > 0. First we derive a formula for ¥,_; (), defined as in ([6.43). For (z,t) €
72, .., let p* (vesp. p') be the path starting from (z — 1,t) (resp. (z + 1,t)) in the dual discrete
rightmost (resp. leftmost) web U* (resp. U') associated with the discrete dual net V. Then
by the discrete analogue of the wedge characterization of the Brownian net in Theorem [4.1]
the event in the RHS of (6.43) occurs if and only if p* and p' do not intersect on the time
interval [0, ]. Before p" and §' intersect, the two paths evolve independently, with w
distributed as a random walk (D;);>¢ with Dy = 1 and increment distribution P(AD = 1) =
. (1=b)(A4by) — 1) =~ . (Fb)(A=by) A PV

Vo= 7 , P(AD = —1) =~_ = 7 yand P(AD =0) =79 :=1—v_ — 4.
Therefore

Ty, (t) =P (10 > 1), (6.47)

where PP(-) denotes probability w.r.t. D with Dy = 1, and 7 := inf{i > 0 : D; = 0}.
Let N; be the number of non-zero increments of D up to time ¢, and let D be a random
walk on Z with Dy = 1 and increment distribution P(AD = £1) = 74 : . Then

’Y++’Y
Uy 4, (1) = EP[PP (10 > t|N,)] = EP[PP (10 > Ny)). (6.48)

Note that for any n € N, the law of (D; — 1)o<i<n is absolutely continuous w.r.t. the law of
a simple symmetric random Walk (Xi)o<i<n with Xy = 0, and the Radon-Nikodym derivative

is given by (27+)7L+Xn (29_)" %" . Therefore

Pg(m >n)=1-PP(r <n)=1-PP(D, <0) —PP(D, > 1,7 <n)

_Z (D =m+1) —PP (D, = m + 1,7 < n))

:EZIO B [(294) %% (27-)" 7 (1xumm) — 1(Xummr1<n))]

:é B |(274) 3% (27-)" % (Lxamm) — LXomm)) |

=Z (274) 5% (272) “T By (X, = m) (6:49)
+§::2 274) " (232)"%" (1 - Z>PX(X =™ (020

where we applied the reflection principle to X and used P§ (X,, = —m—2) = P (X,, = m+2).
We now specialize to the calculation of \I/bk by, +(tk) for tj, := {5;2 t], where by _, by 1, ex

satisfy (6.44). Note that to prove (G.44]), it suffices to restrict the integral to t € [e}, 32 51 ]
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Therefore we assume t € [Ei/ 2, 51 from now on, which implies in particular that ¢, — oo

uniformly in ¢ as k — oo. By (648)), where we replace D, D, N. by D¥, D* N*, we have

k Nk k Nk
Uy b )= S BPNE =B (> )+ 3D BPUNE = n)BP (7 > n), (6.51)

3/4

3/4
In—t),/2|<ts In—ty./2|>t3

where for k large, the second term is bounded by
/3 s

_k
PP (INE — /2] > 62) < PP (INE = (s + e )ta] > £7%) < 2¢7 25 =2e73% | (6.52)

where we applied Hoeffding’s concentration of measure inequality [Hoe63] to Nti, which is a

sum of ¢y, ii.d. {0, 1}-valued random variables with mean 1 + 7, - = 5 + BBB* e2(1+0(1)).
1/3
Since as k — oo, E,;le_%tk — 0 uniformly in t € [si/ 2, d71], we can safely neglect the second

term in (©51) when proving (6.45])—(6.46]).
Note that in the first sum in @51), n = ¢, 2¢(3 + o(1)) uniformly in n and ¢ € [¢ 3/2, 61

as k — oo. For ny = 6,;275(% + 0(1)), we have a representation for IP’P (10 > ng) as in (650,
where the first sum in ([G.50) gives

1 n
nker "k m 47}6, ’Yk,— Lk 2
> 230" @) B = m) = () T (o)
m=0 ’ "
25k€—b%(1+o(1))
= T (1+0(1)), 6.53
T (o) (6.53)

where we used

4’yk’:|: = (1:tbk7+)(1:|:bk7_) = 1:]:Ek(26+0(1)),
167k, +7%,— = (1= 05 )1 =i ) =1—5(B2 + 5% +o(1)),
2 + 2% = 1=bpyby  =1-el(B48- +o(1)),

and we applied the local central limit theorem, a strong version of which we need later is

_2?
2e” 2s

{s+x is even} V2rs

uniformly for all |z| < si as s — oo. This can be deduced from [Sto67, Theorem 3].
Analogously, the second term in (G50) gives a contribution to P " (70 > ny) of

(G 2eg) * (1-22) 3 () "R 0o =

Py (X, =xz)=1 (1+o(1)) (6.54)

Ve, T V-
= ep(db+ o(1))e o) 3 arm@tepX (x, = m), (6.55)
m=2

where we note that the sum is bounded by

Z SermpX (X, = m) = EX [ESbEank] _ < 5

meZ
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3
uniformly in ¢ € [¢7,67!] as k — co. Combined with (€51)-(6.53)), this implies (6.486]).

To prove ([6.45), we now restrict to ¢ € [§,67!] and estimate the sum in (E55) more
preicsely. By Hoeffding’s inequality [HoeG3],

m2

P (Xs>m) <e 2. (6.56)

Substituting this bound into (G.55]) then gives

2b 1 _ 77l 2 2
Zeskm 2b+0(1))]P)X nk _ <Z erm(2b+o(1) g, <Ze erm(2b+-o(1))—depm?(1+o0(1)) _ 0(1)
m>n2/4 m>n2/4 m>ni/4

uniformly in ¢ € [6,67!] as k — co. On the other hand, by (6.54),

o Srm(2b+o(1)— m?

Z eekm(2b+o(1))]P>é((Xnk _ ) 1 4 0 2ny,

3/4

2<m<n;,

oo (@VE+o(1) Em (l+o(1))(%m)2 %,

= (1+0(1) )

2§m§n3/4
2\(m+nk)
22
1+ 0(1) /OO 2bv/te—ax? b2t * e 2
— e dz = (14o0(1))e dz (6.57)
VT Jo —bV2t V2T

by Riemann sum approximation. Substituting the last two estimates into (6.55)) and combining

with (@5I)-(G53) then gives ([G45). |

Proposition 6.14 (Convergence of relevant separation points) Let Vi) be a sequence
of discrete nets as defined in (6.39)-(6-37) and let N be a Brownian net with left and right
speeds f— < Bi. Let —oo < § < U < oo and let S, Uy, € Z U {—00,+00} be such that
z—:sz — S and siUk — U. Let Rsy denote the set of S,U-relevant separation points of N
and let Rg?’Uk denote the set of Sy, Ug-relevant separation points of V. Then it is possible
to couple the V,y and N in such a way that

Sgk(v<k>) k;)oN a.s. (6.58)
and moreover
Y. s = D 0 as, (6.59)
zERg: Uy z€Rs,u

where = denotes vague convergence of locally finite measures on R2.

Remark. The convergence in (G59) is stronger than the statement that for each z € Rg s
there exist zp € Rg? Us such that S, (zx) — 2. Indeed, since the counting measure on the
right-hand side of ([G.59]) has no double points, such an approximating sequence is eventually

unique, a fact that wil be important in the proof of Theorem [6.15] below.
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Proof of Proposition [6.14. By Theorem [6.1T] Lemmal[6.12] Lemmal6.7] (a) and the remarks
below it, we can couple our random variables such that

We claim that with this coupling, for each z € Rg s there exist zj, € R<S]1>7Uk with S;, (z) — 2.
To see this, note that by Lemma 6.3 each z € Rgy is a crossing point of some 7 € N and
# € N with o = S and U = 6. By [B80), there exist py € Vyy(Ss,) and py € Vi (Sv,)
such that pp — 7 and p — 7. It follows from the definition of crossing points that for k
sufficiently large, there must exist points z; € Z2,, such that S., (2) — 2 and py crosses Py
in zj. In particular, this implies that the z; must be Sk, Ug-relevant in Vg, .

We next claim that for each —oo <7 < T, < oo and —o0 < z_ < x4 < 400,

EHS%(R;?,U;C) N Al v E[|Rsu NA|], where A= (z_,xy)x (T_,T). (6.61)

To see this, recall that the discrete nets V,y are defined from i.i.d. collections of random

variables (ozgkﬂ, a§k>r)zezgven. We observe that for all z = (z,t) € Z2,, with S, <t < Uy,

]P’[z is S, Ug-relevant in V<k>]
=Pl < oL]P[3m € Vyy s.b. or = Sy, w(t) = z]P[37 € fj(k) st. 6z = Uy, 7(t+1) =z
= 3 (bk, 4 — bk, )W, by (t = Se) W, _p, . (Ur — (t+1)),
(6.62)
where
be,— :=E[a®] and by 4 = E[a?], (6.63)
and Wy (t) is the function in (643). We claim that (6.6I) now follows from Proposi-
tion (b), Lemma [6.I3] and Riemann sum approximation. Without going through the
details, note that after diffusive rescaling, the per unit density of points of S.(Z2,,) in the
plane is %6,;3, and therefore, by Lemma[6.13], formula (6.62]) says that after diffusive rescaling,
the per unit density of relevant separation points at time S < t < U is approximately given
by
%E,;:S : %(Ek,@+ —erf-) - (2e)Up(t — S) - (2ex) V(U — t)
= 2bWy(t — S)Up(u —t) where b:= (f+ —p-)/2,
which agrees with (6.]).
To prove the existence of a coupling such that (6.59) holds, let

vi= 0, and v := 0, (6.65)
> 2

ZERS,UOA Zeka(Rg::),Uk)nA

(6.64)

be random counting measures with atoms at the positions of the sets in (G:61]). By (G.61]), the
laws of the v’s are tight, so by going to a subsequence if necessary and invoking Skorohod’s
representation theorem, we can find a coupling such that in addition to ([E60), also v, = v*,
where = denotes weak convergence and v* is some finite counting measure on the closure A

of A. Since for each z € Rgy there exist zj € R<S]1>,Uk such that S;, (z) — 2, we know that

v < v*. By ([6.61]), we see that moreover E[v(A)] = E[v*(4)], so we conclude that v = v*.

By Lemmal[6.7] (a) and the remarks below it, we can find a coupling such that the measures
in ([©59) converge weakly on (z,, —, zp +) X (T, —, Ty, +) for each n, where x,, _,T,, — | —oo and
T+, Tn 4+ T +00, proving the vague convergence in ([6.59). |
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6.5 Discrete approximation of a coupled Brownian web and net

In this section, we prove a convergence result for discrete webs that are defined ‘inside’ a
discrete net. As a result, we will obtain Theorem L4l Our convergence result also prepares
for the proof of Theorem which will be given in Section [T.1]

For k > 1, let (a®! a®)7) be a collection of {—1, +1}2-valued random variables indexed
by Z2,., as in (6.35)([6.36) and let Vi and L{<lk>,l/{2r,€> be the associated discrete net (as defined
in (6.37)) and discrete left-right web.

Let 7 € [0,1] and, conditional on (a*! at*)r) let alk) = (aim)zezgven be a collection of

independent {—1, +1}-valued random variables such that aim ! < a§k> < aim " a.s. and
P[a<k> = ofb)r | (afP, a<k>r)] =r (z € Z2,,). (6.66)
Then, obviously, under the unconditioned law the collection a(*) = (oz,g€> )zezz,,. is iid. with

Bl — Bi=(1—-1r)B_ + 1By (6.67)

k—o00

We let Uy denote the discrete web associated with a®) . The following theorem implies
Theorem [£.41

Theorem 6.15 (Convergence to a coupled Brownian web and net) Let Uy and Vi
be coupled discrete webs and nets as above. Then
]P’[Sak(U<k>,V<k>) S ] kfgo ]P’[(W,./\/) S '], (6.68)

where N is a Brownian net with left and right speeds B_ < B+ and W is a Brownian web with
drift B. Letting S denote the set of separation points of N', one has a.s.:

(i) W C N and each point z € S is of type (1,2) in W.

(ii) Conditional on N, the random wvariables (signy(z)).es are i.i.d. with P[signy,(z) =

+1|N] =r.

(i) Conditional on W, the sets Sy = {z € S : signy(z) = —1} and S, = {z € S :
signyy(z) = +1} are independent Poisson point sets with intensities (B4+ — ()¢ and
(B — B-)Ly, respectively.

Moreover,
W = {m € N :sign_(z) =signy(z) Vz € S s.t. m enters z}. (6.69)

In the special case that v = 0 (resp. r = 1), the Brownian web W is the left (resp. right)
Brownian web associated with N .

Proof. By Theorems and 6111 the random variables Uy, and Vy,, diffusively rescaled
with e, converge weakly in law to a Brownian web with drift § and Brownian net with left
and right speeds f_, B, respectively. It follows that the laws on the left-hand side of (6.G8])
are tight, so by going to a subsequence if necessary we can assume that they converge weakly
in law to a limit (W, N'). We will show that each such limit point has the properties (i)—(iii)
and satisfies moreover (6.69]). Since property (ii) and formula (6.69) determine the joint law of
(W, N) uniquely, this then proves the convergence in (6.68)). Note that if » = 0 (resp. r = 1),
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then it follows from Theorem that W is the left (resp. right) Brownian web associated
with V.

Proof of property (i). The fact that W C A is immediate from the fact that U,y C Vy, for
each k. To prove that each point z € S is of type (1,2) in W, we first claim that if [ € W'(2)
and r € W'(2') satisfy [ ~Z . r for some 2z’ = (2/,t'), then there exists a path m € W(z') such
that | <7 <r on [t/,00). This follows from the fact that by [SSO8, Prop. 3.6 (b)], there exist
tn 4 t' such that I(t,) < r(t,), while by [SSO8| Prop. 1.8], any path in N started at time ¢,, at
a position in (I(t,),7(t,)) is contained between ! and r. Using the compactness of W, we find
a path m € W(2') with the desired property. Applying our claim to the one incoming and two
outgoing left-right pairs at a separation point z of A/, we find that there must be at least one
incoming path and at least two outgoing paths in W at each such point. By the classification
of special points in W (Proposition B.3)), it follows that z is of type (1,2) in W.

Intermezzo. Before we turn to the proofs of properties (ii) and (iii), we first prove some
prepatarory results. Since we are assuming that S, (Upy, Vir)) converges weakly in law to
(W, N), by Skorohod’s representation theorem, we can find a coupling such that the conver-
gence is a.s. Let 7 C R be a deterministic countable dense set of times and for T € T, set
Ty = |, 2T |. By Proposition 614, Lemmal[G.7] (a) and the remarks below it, we can improve
our coupling such that

Yo b = 5. VS, UeT, S<U, (6.70)
(k) * ko0 z€Rs
#E R0 ’

where = denotes vague convergence of locally finite measures on R?, and RgTZ] U and Rgy

denote the sets of Sj), Upy)-relevant and S, U-relevant separation points of V) and N, respec-
tively.

It follows from (G.70]) that for each z € Rg s, there exist zj, € R‘<Sk[:l>c]vU[k] such that S., (zx) —
z. We claim that such an approximating sequence is eventually unique. To see this, assume
that 2, € Rg;i],U[k] satisfy S;, (2}.) — 2. We can choose > 0 such that the ball of radius ¢
around z does not contain any other S, U-relevant separation points of N except for z. Then
([670) shows that for k sufficiently large, there is exactly one S (x]» Ujx)-relevant separation point
in the ball of radius § around z, hence z, = 2 for k sufficiently large.

Now let S,U € T, S < U, z € Rs v, and let z;, be the eventually unique sequence of points
in Rg?i]’U[k] such that S;, (z;) — 2. We claim that

signyy(z) = +1 if and only if ozi? =41 eventually. (6.71)

(Here, “ozg? = +1 eventually” means that there exists a K such that ozg? =+41forall k > K.)

It suffices to prove that signy,(z) = +1 implies that ozg? = +1 eventually. By symmetry, this

then also shows that signyy(z) = —1 implies that ai? = —1 eventually, proving (6.71]).
If signyy(2) = +1, then there exist 7 € W and I € W! such that 7 crosses Zir} z = (z,1).
It follows that there exist py € U,y and Iy € Z/l<1k> such that S;, (py) — 7 and S¢, ({x) — [, and

points 2, € Z2,., with S., (z) — z such that py crosses [, in 2. Let o, < S’ <t < U’ < 7.
Then the 2 are S [/k}, U [’k]—relevant for k large enough, so by the principle of eventual uniqueness

applied to the times S’,U’ we see that z; = z;, eventually. Since a'¥? = 11 for each k, this

-
z
k
proves (G.71)).
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Next, let 2 € R? and Z, € Z2,, be deterministic points such that S:, (Zx) — 2, let py be
the unique element of Uy (Zx) and let 7 be the a.s. unique element of W(Z). Since Se, (U, pr)
converges weakly in law to (W, ), by Lemmal[G.7] (a) and the remarks below it, we can improve
our coupling such that Se, (px) — 7 a.s. Now as before let S,U € T, S < U, z € Rgy, and let
z1. be the eventually unique sequence of points in Rg?i]ﬂ[k] such that S, (z) — z. We claim

that
m enters z if and only if py enters z; eventually as k — oco. (6.72)

Indeed, if m does not enter z, then 7 dos not enter some open ball around z, so it is clear
that for k sufficiently large, pi. does not enter z;. On the other hand, if 7 enters z, then since
by property (i), z is either of type (1,2); or of type (1,2), in W, there must be either some
# € Wr such that 7 crosses 7 from right to left or some [ € W' such that 7 crosses k from left
to right. By symmetry, it suffices to consider only the first case. In this case, there must exist
Ty € LA{ZM and 2}, € Z2,., with Se, (z},) — 2z such that for k sufficiently large, pj crosses 7y in
2. By the same argument as in the proof of (G.71)) we see that z; = z; eventually, hence py,
enters z; eventually.

Proof of Property (ii). Let © C R be a deterministic finite set, say © = {T1,...,T,,} with

T << T, and set
Rg := {z eER’>:zisa T;, T;+1-relevant separation point for some 1 <7 < m — 1}, (6.73)
RE :={z € Ro : signyy(z) = +1}. .

We let
Vo = Z 0, and Vg = Z 0 (6.74)

z€Rg zGRg

be counting measures with atoms at each point of Rg and Rg, respectively. We wish to show
that R is an r-thinning of Rg. By formula (D.4) and Lemma [CIl of Appendix D] it suffices
to show that (in notation introduced there)

E[(1-f)%6 [N]=(1-rf)® as. (6.75)

for each deterministic f : R? — [0,1] that is continuous and has compact support. Equiva-
lently, we may show that

E[(1— £)"8g(A)] = E[(1—rf)"Og(N)] (6.76)

for each f as before and bounded continuous g : K(II) — R. We now choose deterministic
T} € Z with esz,i — T; for each 1 <7 < m, and we set

R¥) .= {z € ngen : zis a Ty ;, Tj, ;+1-relevant separation point
of Vi for some 1 <i <m — 1}, (6.77)
Rt .= {z € R¥® o, = +1},

and

I/<k> = Z (53%(2,) and V+<k> = Z 55%(2). (678)
)

2€R(k 2z€R* (k)
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By construction, v *) is an r-thinning of %), so

E[1— " " 9] =E[1 - gvi)]. (6.79)

Now ([6.76]) will follow by taking the limit in (6.79), provided we show that there exists a
coupling such that

(i) v = ve, (ii) v+ ® — Vg, (6.80)

k—o0 k—o00

where = denotes vague convergence on R2. The existence of a coupling such that ([G.30) (i)

holds follows from Proposition By (6.71)), we can improve this coupling such that also

([.80) (ii) holds. This completes our proof that R is an r-thinning of Re. Since © is arbitrary

and since each separation point (z,t) is S, U-relevant for some S < t < U, Property (ii) follows.

Proof of Property (iii). Let A, A C R? be deterministic, finite sets and let H(A, A) and

0:(A, A) be the restrictions of ¢ and £, respectively, to the set I := Img(W(A))NImg(W(A)).

~

We note that if A,,, A,, are finite sets increasing to countable limits A, and A, that are dense
in R?, then Img(W(A,,)) N Img(W(A,,)) increases to the set of all points of type (1,2) in W,
so Property (iii) will follow provided we show that for any deterministic finite A, A c R?,
conditional on W, the sets S;N 1 and S, NI are independent Poisson point sets with intensities
(Be — B)G(A,A) and (8 — B_)(A, A), respectively.

Equivalently, this says that the set {(z,—1) : z € SNT}U{(2z,+1) : z € S;NI} is a Poisson
point set on R? x {—1,+1} with intensity (8+ — 8) [ 4(d2)d(,—1) + (B — B=) [ £:(dz)d(, 1)
Thus, by formula (D.2]) and Lemma of Appendix [D] it suffices to show that (in notation
introduced there)

E[(1— f)1(1 - g)% | W] = o= (B+ = B)[f da(A,A) = (8= 5-) [gdbn(A, A) (6.81)

for any deterministic, continuous f, g : R? — [0, 1], where

= Z 0, and v, := Z 0. (6.82)

zesSini zeS:NI

Equivalently, we may show that

E[(1— f)(1 - g)rh(W)] = E[e_(ﬂ-i- = B)[fAb(AA) = (8- B-) [gdb(A, A)h(W)],
(6.83)
for each f, g as before and bounded continuous & : K(IT) — R. Let Ay C Z2,,, and Ay C 7244

even

approximate A and A as in Proposition [6.10] let Zr<k>, I}, and €§k> be as defined in (G.I5]) and
let €fk> be defined similarly, with Z* replaced by Zl<k> ={z € Z%,, : ol = —1}. Let S

be the set of separation points of Vi, and set

V1<k> = Z ds., () and vk = Z 3s., (2)- (6.84)

z€S<k>ﬂIkﬂZI<k> Z€S<k>ﬂ1kﬂzr<k>

We know that conditional on Uy, the sets Sy N Ix N ka> and Sy NI N Z]Sk> are independent

thinnings of the sets [ kﬂZ1<k> and I kﬁZrW, with thinning probabilities by, ; and b, ;, respectively,
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which satisfy

Pl = —1] koo
Efod® — oY

b =Pla{ = +1]af = —1]=

z

(B+ — Bex
(6.85)

bi.x ZZ]P’[aik)l = 1| ai’f) = +1] = — (B — B-)ek.
2]P[Oéz — +1] k—00

Therefore, by formula (D.4]) of Appendix [D we have that

) (k) (k)

E[1=H" (1=g)%" WS, Uey)] = ElL=bea ) 8 (1=byng)® & (S, W] (6.56)

Recall that we are assuming throughout that our random variables are coupled in such a way
that Uy and Vi, diffusively rescaled with e, converge to a Brownian web ¥V and Brownian
net N, respectively. By Proposition 610, Lemma (a) and the remarks below it we can
improve our coupling such that moreover

(P — (A A) and (R — 6(A,A). (6.87)

k—o00 ' koo

Thus, ([683]) will follow by taking the limit k¥ — oo in (6.86]), provided we show that our
coupling can be further improved such that also
(k)

' = vy and v — (6.88)

k—00 " k—oo
where = denotes weak convergence of finite measures on R2. Since z € S;N I if and only if 2
is a separation point of N, signy,(z) = —1, and z is entered by a path 7 € W(A) and a path

7 € W(A), formula (G38) follows from (6.71]) and (G.72)).
Proof of formula (6.69) Let W be defined by

W = {r € N :sign,(z) = signyy(z) Vz € S s.t. 7 enters z}. (6.89)

Then W C W by the fact that W < N. To prove the other inclusion, let 7 be some
deterministic countable dense subset of R. Fix # € W. Choose o7 < s, € T with s, I ox.
For each n, we may choose some 7, € W with o, = s, and 7,(s,) = 7(s). Since 7 € N
is an incoming path at (7(sy), sn), by Proposition (a), this point is of type (p,p) in N.
Using this and the finite graph representation (Proposition [6.5]), we see that m,(t) = 7(t) for
each s, <t € T, hence m, = T on [s,,00). It follows that m, — 7, and therefore, by the
compactness of W, that T € W. [ |

Proof of Theorem (4.4l Let U, and V,y be as in Theorem and let L?<k> and 1><k> be
their associated dual discrete web and net. Then, by Theorems and

P[Sgk (U<k>, V<k>,22<k>, f}<k>) € ] kio P[(W,N, W,N) € '], (6.90)
where (W, NV) are a coupled Brownian web and net as in Theorem .15 and W, N are the duals
of W, N Since (—Uyy, —Viy) is equally distributed with Uy, Viry), we see that (=W, —N)
is equally distributed with (W, N)). Now all statements in Theorem [£4] follow from Theo-
rem (0.9l |
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6.6 Switching and hopping in the Brownian web and net

In this section, we apply Theorem (.4l together with the finite graph representation developed
in Section to prove Proposition on switching and hopping inside a Brownian net. We
then apply Theorem 4] and Proposition to give short proofs of the marking construction
of sticky Brownian webs (Theorem B.5]) and the Brownian net (Theorem [L.6]), Proposition
on changing the reference web, and the equivalence of the definitions of a left-right Brownian
web given in Sections and 4.1l We also formulate and prove a result on the construction
of sticky Brownian webs inside a Brownian net, analogous to Theorem [£.41

Proof of Proposition For each set A C 5, set
Na={m €N :sign,(z) = a, Vz € S\A s.t. 7 enters z},

(6.91)
Wa ={m €N :sign (z) = —a. Vz € A s.t. 7 enters z} N Na.

Since Ngr, Na, , Wsr, Wa,, are contained in the compact set NV, it suffices to prove the following
statements:

1. Wa,, = switcha, (W) and Na, = hopa, (V).
2. NstsNa,,
3. Na, = Ng and Wa,, — W

1. Since hopa, (W) = Uarca, switcha, (W) and Na, = Ua/ca, Wa, it suffices to prove that
Wa = switcha (W) for each finite A C S. By induction, it suffices to prove that Wayy.y =
switch,(Wa) for each finite A C S and z € S. Here, by induction, we have that Wx is a
subset of A/ such that for each z € S the set Wa(2) contains exactly two paths, say 71, 7o, of
which exactly one, say i, is the continuation of a path in the set Wa in(2) of paths in Wa
entering z. By definition, writing z = (z,t), one has

Wesr, Wa,, are closed sets.

switch,(Wa) = Wa\Wa,in(2)) U{r" Umg : T € Wa in(2)}- (6.92)

By the structure of separation points (Proposition (c) and (d)) and the fact that the net
is closed under hopping between paths at intersection times [SS08, Prop. 1.4], it follows that
each path of the form 7/ := 7} U mo with 7 € Wa in(2) is an element of N and satisfies
sign,/(z) = —sign, (2), proving that switch,(Wa) C Wau(z}. Conversely, each 7' € Wau(zy
that enters z is of the form 7/ = n! U my where 7 := 7' Um € WA in(%), showing that
switch,(Wa) D Wauizy-

2. It suffices to prove that if 7 € N enters some point z = (z,t) € S and 7, € N satisfy
7, — 7 and sign, (2) = a whenever , enters z, then sign, (2) = a. By symmetry, it suffices
to treat the case a = —1. We start by noting that there exists an N such that for each n > NV,
the path m, enters z. This follows from the fact that, by Proposition [£3] there exist dual
paths I/ and 7, forming a dual mesh M (I, #.), and each path in A starting in M (I’,#) must

z)'' z z)' z
enter z [SSS09, Lemma 3.3]. Since sign, (z) = —1 for all n > N, we have that m, < r, on
[t,00) for all n > N, hence the same holds for 7 and sign(z) = —1.

3. Since Na,,Wa, C N and N is compact, by Lemma [B.3] in the appendix, the sets
{Na,} and {Wa,, } are precompact, so by going to a subsequence if necessary, we may assume
that Na,, — N* and Wa, — W* for some N*, W* € K(II). We need to show that N* = Ng/
and W* = Wgr. We observe that Wa, ,Na, C Ng so W* N* C Ng. Set

Wa = {m € N :sign,(z) = —a, Vz € A s.t. 7 enters 2z} N Ng. (6.93)
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Then Wa, C Wha,, for all n > m, so letting n — oo we see that W* C Wha,, for each m,
hence W* € 0, Wa,, = W

To prove the opposite inclusions, we must show that for each m € Ny there exist 7, € Na,
such that 7, — 7 and likewise, for each m € Wg/ there exist 7, € Wa,, such that m, — 7. Let
T be some deterministic countable dense subset of R and let m € Ng.. Let T1,...,T,, € T be
such that o <Ty <--- < T, and let Ry, 1, be as in ([64). We observe that at each point
in R? there starts at least one path in Na, = |J Arca, Switchar(W). Therefore, for each n we
can find some m, € Na, such that o, = T} and 7, (T1) = 7(T}1). Provided n is sufficiently
large, we may moreover choose m, with the property that sign, (z) = sign,(z) for each point
z e UZ:ll Rt 1., such that both m,, and 7 enter z, hence by Corollary [6.6] we conclude that
Tn(Ty) = 7(Ty) for k=1,...,m.

Thus, we have shown that for each finite set T' C (o, 00) N'T there exists an N such that
for all n > N there exists some 1, € Na, with 7, = 7 on T. Choosing T;,, 1 (o5,00) 0T,
using the compactness of N, going to a subsequence if necessary, we can find m,, € Na,,
such that m,,  — 7 locally uniformly on (o, 00). Cutting off a piece of 7, if necessary to
make the starting times converge, we have found Na, 3 m,, — 7, proving that N* D Ng.
The proof that W* D W is completely analogous. [ |

Proof of Theorem Let 8 € R and ¢,¢, > 0. In Theorem 4 set 8- := 5 — ¢,
By :=P+a,let ri=c/(eg+ ) if ¢ + ¢ > 0, and choose some arbitrary r € [0, 1] otherwise.
Then W, defined in (£9), is a Brownian web with drift 8 and conditional on W, the set S is a
Poisson point set with intensity ¢jf) + ¢,;¢;. In Theorem [3.5], we may without loss of generality
assume that VW and S are constructed in this way. Then Proposition tells us that the limit
W' = lima 15 switcha,, (W) exists, does not depend on the choice of the A, and is given by

W' = {r € N :sign.(z) = —a, Vz € S s.t. 7 enters z}. (6.94)
By Theorem B4 the dual webs W, W' associated with W, W' are given by

W={# €N :sign.(z) = a, Vz € S s.t. & enters z}, (6.95)
W = {7 € N sign.(z) = o/, Vz € S s.t. & enters z}, .

so Proposition tells us that W' = lima, 15 switcha, (W). Since conditional on A/, the
(—a).es are i.i.d. with parameter 1 — r, by Theorem [£4] the Brownian web W' has drift

B =rb_+(1—-7r)Br=0+0c—c. [

Proof of Proposition (ii) and (iii). We continue to assume that W and W' are defined
inside a Brownian net A as in the proof of Theorem B35 Set S := {2z € S : a, = —1} and
Sy :={z € S:a, =+1}. Then, by Theorem [£4] conditional on W, the set S is a Poisson
point set with intensity ¢} and the set S, is a Poisson point set with intensity c.¢,, and
likewise, conditional on W', the set \Sj is Poisson with intensity ¢.f] and S, is Poisson with
intensity ¢)f.. In particular, this implies that a.s., each point z € Sj is of type (1,2); in W and
of type (1,2), in W. Conversely, if z € R? is of type (1,2); in W and of type (1,2), in W,
then z is a separation point of some paths 7 € W and 7’ € W' and therefore, by the definition
of separation points of N given before Proposition f3] z € S. [ |

Proof of Theorem As in the previous two proofs, without loss of generality, we assume
that W is embedded in a Brownian net N as in ([£9) and that S} := {z € S : a, = —1}
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and S; := {2z € S : a, = +1}. Then, by Proposition 5], ([@I4)) (i) holds and the limits in
([#I4) (ii) and (iii) exist and are given by
W!'={r € N :sign.(z) = —1 Vz € S s.t. 7 enters z},

(6.96)
W'={m € N :sign.(z) = +1 Vz € S s.t. & enters z}.

By Theorem B4, (W! W) is the left-right Brownian web associated with /. Since S| and
S; are Poisson point sets with intensities ¢/} and c.¢,, respectively, each z € S is of type
(1,2) in W and signyy(z) = az, so by construction, conditional on N, the random variables
(signyy(2)).es are i.i.d. with P[signy,(z) = +1|N] =r = /(a + ¢ ). |

To prepare for the proof of Proposition (i), we need a lemma.

Lemma 6.16 (Sticky Brownian webs inside a Brownian net) Let N* be a Brownian
net with left and right speeds 5* < B5 and set of separation points S*. Conditional on N,
let (a,,cl).es be an i.i.d. collection of random variables with values in {—1,+1}2. Set

p—— ::P[(O‘z,a/z) = (_1’ _1) ‘./\/’],

6.97
S__i={ze€ 8" (a,a,)=(-1,-1)}, (6.97)
and let p_,py_,pr4+ and S_1,S+_, 51+ be defined analogously. Set
i) W:={reN":sign.(z) =a, Vz € S* s.t. m enters 2},
(i) { gn.(2) } (6.98)

(i) W'={m e N* :sign (z) =, Vz € S* s.t. m enters z}.

Then W is a Brownian web with drift = (p—— + p—4 )% + (p4— + p+4)B5 and W' is a
Brownian web with drift ' == (p—— + p4+—)B* + (p—+ + p++)B3.

Let ¢ denote the intersection local time measure between W and its dual, let 4y, ¢, denote
the restrictions of £ to the sets of points of type (1,2); and (1,2), in W, respectively, and let
U0, 0, be the same objects defined for W'. Then, conditional on W, the sets

S, S+, S+, Sy (6.99)
are independent Poisson point sets with respective intensities
p——(BL = B0, p—+(By —BL)G,  p+—(BL — BI)l,  pes (8L — B, (6.100)

while conditional on W', the sets in [6.99) are independent Poisson point sets with respective
intensities

p——(BL =BG, p(BL =B, pe—(BL =)0, pey (B — B2 (6.101)
Moreover, one has
. / . .
(l) W= AnTSliTUS%Lf SWItChAn (W)7 (6 102)
(i) W= lim switcha, (W'). ’
AntS_ US4 _

Proof. By Theorem 7] formulas (698) (i) and (ii) define Brownian webs with drifts as
claimed. By Proposition [L5] the limits in (6.102]) exist and coincide with the objects defined
in (6.98). By Theorem[d.4] conditional on W, the sets Sy := S__US_; and S, := S;_US, are
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independent Poisson point sets with intensities (p—— +p_4)(85 —B8%)0 and (p4— +p4+) (55 —
B*)4;, respectively. In particular, this implies that each z € Sy (resp. z € S;) is of type (1,2);
(resp. (1,2);) in W.

We claim that the o-fields generated by, on the one hand, W and S*, and, on the other
hand, A'* and the collection of random variables o = (a,),cg+ are identical. To see this, we
note that by Proposition 5, V' = lima 15+ hopa , (W). Since moreover a, = signy(z) for all
z € S*, this shows that N* and « are a.s. uniquely determined by W and S*. Conversely,
since W is given by (6.98) (i) and S* is the set of separation points of N'*, we see that W and
S* are a.s. uniquely determined by N* and a.

Conditional on N* and «, the random variables (o/,),cs+ are independent, where P[a), =
+1|(N*, )] equals p_1 /(p—— +p_y)ifa, =—1and pyy/(ps— +pss) if @, = +1. Tt follows
that conditional on W and S*, the set S_ is obtained from S__US__ by independent thinning
with probability p_ /(p—— + p—4) and likewise, the set S, is obtained from Sy_ U S, by
independent thinning with probability p;/(p+— + p4++). Since independent thinning splits
a Poisson point set in two independent Poisson point sets, we conclude that conditional on
W, the sets in ([6.99) are independent Poisson point sets with intensities given in (G.I00). By
symmetry, an analogue statement holds for W, i.e., conditional on W, the sets in ([6.99) are
independent Poisson point sets with intensities given in (6.10T]). |

Proof of Proposition (i). By symmetry, it suffices to show that ¢; = ¢]. Let § € R and
c, ¢ > 0. In Lemma [6.16] set 8% := 3 — ¢, B :=F+a+1,and let p__ :=1/(1+ ¢ + ¢;),
p—r=a/l+a+ca) pi—=c/(l+a+c¢), and pyy := 0. Let W, W' be as in ([6.98) and
set S :=S_, US;_. Then conditional on W, the set S is a Poisson point set with intensity
aly + ¢by and W = lima 45 switcha,, (W). Without loss of generality, we may assume that
the sticky Brownian webs in Proposition are constructed in this way.

It follows from (6.I02]) that the o-fields generated by, on the one hand W and S, and, on
the other hand, W' and S coincide. By (6I00) and (EI0I)), conditional on this o-field, the
set S__ is a Poisson point set with intensity ¢ and also a Poisson point set with intensity 4,
i.e., the conditional law P[S__ € -|W,S] is the law of a Poisson point set with intensity ¢
and also the law of a Poisson point set with intensity ¢]. This is possible only if ¢, = £]. |

The following lemma sometimes comes in handy.

Lemma 6.17 (Commutativity of switching) Let W be a Brownian web with drift 3, let £
be the intersection local time measure between W and its dual and let ¢y, £, denote the restric-
tions of £ to the sets of points of type (1,2); and (1,2), in W, respectively. Let ¢, cx, ], ¢, > 0
be constants and conditional on W, let S, S’ be independent Poisson point sets with intensities
aly + cly and cby + ¢y, respectively. Then

lim switch lim switchar (W)) = lim  switchar (W). 6.103
i AH(AMS, A, (W) N ar(W) (6.103)
Proof. Choose 8* < % and p__,...,p44, summing up to one, such that ¢, = p__(5% — %),

o =p—+(BL —BL), & = pr—(BL — BL), ¢ = p+4(Bf — BZ), and B = (p—— +p—4)BL +
(p4+— +p+4)B%. Then, without loss of generality, we may assume that WV is constructed inside
a Brownian net A'* as in Lemma [6.16] and that S =S__US,_ and S’ =S_, US,,. Now
Proposition 5] tells us that both sides of (G.I03]) are well-defined and given by

W' = {m e N* :sign (z) # o, Vz € S* s.t. 7 enters z}. (6.104)
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The following Lemma has been announced in Section

Lemma 6.18 (Equivalent definitions of left-right Brownian web) A pair of Brownian
webs (W' W) is a left-right Brownian web with drifts B_, B+ as defined in Section[-1] if and
only if W', W) is a pair of sticky Brownian webs with drifts f_, B4 and coupling parameter
k =0, as defined in Section [F-3.

Proof. Let N be a Brownian net with left and right speeds S_, 3. and let S be its set of
separation points. Then, by Theorem 4] the left-right Brownian web (W' W") associated
with A is given by

W= {m e N :sign,(z) = =1 Vz € S s.t. w enters z},

(6.105)
Wr={r e N :sign,(z) = +1 Vz € S s.t. 7 enters z}.

Moreover, by the same theorem, if ¢ denotes the intersection local time measure between W!
and its dual, and let ¢ and ¢, denote the restrictions of ¢ to the sets of points of type (1,2);
and (1,2), in W!, respectively, then conditional on W!, the set S is a Poisson point set with
intensity (8 — 8-)f. By Proposition {5 it follows that W = lima, g switcha, (W'), hence
(W' W) is a pair of sticky Brownian webs with drifts 5_, 3, and coupling parameter x = 0
as defined in Section

Conversely, if W! is a Brownian web with drift S_ and if conditional on W!, the set S
is a Poisson point set with intensity (84 — £-)f, and W* = lima, 15 switcha, (W), then by
Theorem F4], we may assume without loss of generality that W' is defined inside a Brownian
net N such that S is the set of separation points of N'. Now Proposition tells us that W*
has the representation in (G.I05)), hence by Theorem B4l (W', W*) is the left-right Brownian
web associated with N. ]

7 Construction and convergence of Howitt-Warren flows

In this section, we prove our main results. We start in Section [[.I]with the proof of Theorem 3.9]
on the convergence of the quenched laws on the space of webs. In Section [72] we then use
this to show that the n-point motions of the sample web constructed in Theorem B solve the
Howitt-Warren martingale problem, thereby identifying the stochastic flow of kernels there as
a Howitt-Warren flow. Here we also prove the construction of Howitt-Warren flows inside a
Brownian net (Theorem 7)) and a result on the exchangeability of the reference and sample
Brownian webs from Theorem B.7if 1y = 1. In Section[7.3], finally, we harvest some immediate
consequences of our construction, such as scaling (Proposition[2.4]) and the existence of regular
versions of Howitt-Warren flows (Proposition 23] and B.8).

7.1 Convergence of quenched laws

In this section, we prove Theorem The measures Sgk(QW) and Q from Theorem are
random probability measures on the Polish space IC(IT). Therefore, by [Daw91, Thm. 3.2.9],
the convergence in ([B.27)) is equivalent to the convergence of the moment measures of S¢, (Q )
to the moment measures of Q.

67



We start by describing these moment measures. Let (Wy, M) be a marked reference web
as in Section [B4] and conditional on (Wy, M), let Wi, W, ... be an i.i.d. sequence of sample
webs constructed as in ([3.19]). Then the unconditional law

P{(Wi,....W,) € -] (7.1)

is the n-th moment measure of Q. Similarly, for each k, conditional on an i.i.d. collec-
tion of [0,1]-valued random variables w(*) = (w§k>)zezgven with law py satisfying (L7, let

k)1
.

ol ., o)™ be independent collections at#)? = (aik>z)zezgven of {—1,+1}-valued random
=U

variables with ]P’[aik” =41 ’w<k>] = w§k>7 and let u<ik> . alk

with a®)? as defined in [B2). Then the averaged law

a be the discrete web associated

P[S-, (ugm,...,u%) €] (7.2)

is the n-th moment measure of S, (Q ). We need to prove weak convergence of the laws in
([T2) to those in ().

Our strategy will be to embed the Brownian webs W;,..., W, in a Brownian net N,
and similarly for the rescaled discrete webs. We will then prove weak convergence in law
for the discrete net and webs to (N, Wy, ..., W,,) much in the same way as we have proved
Theorem [6.15]

We start by recalling how the sample Brownian webs Wy, W, ... are constructed in terms
of the marked reference Brownian web (Wy, M). The basic ingredients of the construction
are the drift By of the reference web Wy and finite measures v, v, on [0,1]. Given Wy, the
set of marked points M = {(z,w,) : z € M} is then a Poisson point set with intensity as
in BI6). To construct Wy, Ws, ..., conditional on (Wy, M), independently for i = 1,2, ...,
we let (a'),en be a collection of independent {—1,+1}-valued random variables with P[al =
+1|(Wo, M)] = w., we set A; := {z € M : o}, # signy,(z)}, we let B; be a Poisson point set
with intensity 211({0})6 + 2 ({1});, independent of A;, and as in (319, we set

W; = An%lfﬁlUBi switcha, Wo) (t=1,2,...). (7.3)
Then the Wy, Wh, ... are conditionally i.i.d. given (Wp, M) and PW; € | (Wp, M)] is the
Howitt-Warren quenched law with drift § and characteristic measure v given by (3.20) and
E2D).

We wish to show that for each n > 1, the Brownian webs Wy, ..., W, from (3] are in a
natural way embedded in a Brownian net. To that aim, for any set of paths A C IT and set of

times 7 C R, we let H7(A) denote the set of paths that can be obtained from A by hopping
finitely often at times in 7, i.e., H7(A) contains all paths of the form

n
= U {(mi(t),t) 1 tig <t <t;} where mi,...,my €A, t1,... th 1 €T,
i=1
to < -+ <tp =00, 07, = o, Omip1 <t 7Ti+1(7fi) = ﬁi(ti) (1 <i1<n-— 1),
(7.4)
where as usual we identify a path 7 with its graph {(m(¢),t) : t > o, }. Moreover, we set

Tpoi= {1, 1"\ {(~1,...,—1),(+1,...,+1)} (7.5)
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and for each n > 2, we define a probability measure A, on I';; by

1 .
M) = [0 -0 ), where k= ({0 =41}, (T6)
where Z is the normalization constant given by

_ flma" (=9
7 = / =0 (dq), (7.7)

with the convention that the integrand in (7)) takes on the value n at the points ¢ = 0, 1.

Below, if A is a set of paths, then A denotes the closure of A in the topology on the path
space II. We note that in (Z8), if D is moreover dense in R?, then A,,(D) = A,,. (This follows,
for example, from [SSO8, Thm. 1.3].)

Lemma 7.1 (Construction of moment measures) Conditional on the marked reference
Brownian web Wy, M), let Wi, W, ... be an i.i.d. sequence of sample Brownian webs defined
as in (7.3). Then, for each n > 1, there exists an a.s. unique Brownian net N, with left and

right speeds B_(n), B+ (n), defined in (2.8) and (2:3) with 5 and v given by (320) and (321)),

such that for any deterministic countable set D C R? and countable dense set of times T C R,

No(D) =H7OW U---UW,)(D) as. (7.8)

Let Sy, be the set of separation points of Ny,. Then each z € Sy, is of type (1,2) in Wy,..., Wiy
and conditional on N, the random variables (d.),es, defined by

@, = (signyy, (2), ... ,signy, (2)) (7.9)
are i.i.d. with law A,, defined in (7.6]). Moreover, one has
W; = {rn € N,, :sign,.(z) = o’ ¥z € S,, s.t. T enters z} (i=1,...,n). (7.10)

Proof. Set C :=J;_,(4; U B;) and let C} and C\ denote the restrictions of C' to the sets of
points of type (1,2); and (1,2), in W), respectively. For each ¥ € {—1,+1}", set

C():={z€C:signy, () =y Vi=1,...,n} (7.11)

and define C1(7) and C(¥) similarly, with C replaced by Cj resp. C;. By our definition of the
sample Brownian webs, conditional on Wy, the sets {C(¥) : ¥ € {—1,+1}"} are independent
Poisson point sets with intensity ¢(7)4 + ¢ (7)4:, where (compare (B.I8]))

a(¥) =21y ¢"(1 — )" g 'n(dq) + 2131y ({0})

(0,1]
= 21{0<ny /qk_l(l — )" *ui(dg), (7.12)
where k := [{i: v, = +1}|.
(V) = 21eany /qk(l —¢)" "1 (dg)

We modify our reference web by setting

W) = lim _switcha,, (Wo)  where C*:=Ci(+1,...,+1) UC(-1,...,—-1). (7.13)

m T
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By Proposition (i), 4 and ¢, are also the intersection local time measures for the modified
reference web W). Since W) is a.s. uniquely determined by W), and the set C*, and since
conditional on Wy and C*, the sets C'(¥) with v # (—1,...,—1),(+1,...,+1) are independent
Poisson point sets with intensity ¢(7)4 + ¢ (7)¢:, by Theorem 6] we can define a Brownian
net N, with set of separation points S,, by (recall (Z.3]))

N, = A1im hopa, (W)) where S, := U cH). (7.14)
mon ’761—‘”

By Theorem 6], conditional on N, the random variables (signwé (2))zes, are ii.d. with

Z»‘y‘ern Cr ('7)
>ser, (a(¥) + (7))
Using this and the independence of the Poisson point sets {C(¥) : 4 € I',,}, it is straightforward

to check from ([B21I)) and (ZI2)) that conditional on N, the random variables in (Z9) are i.i.d.
with law A,, defined in (7.6]). By Lemma [6.17]

(7.15)

Plsignyy (2) = +1[N,] =

W; = i itcha (W h Ot = Ci(7) U C.(7). 7.16
A;%iswwﬁm( 0) where U 1(7) U (¥) (7.16)
yel'n yely,
yi=+1 yi=—1

Therefore, by Proposition 5], we see that ((TI0]) holds.
The speed of W is given by

Bo+al(+1,...,+1) —e(—1,...,-1), (7.17)
and therefore the left speed of N, is given by

Bo+ a4+ = a1, =) = > )

5eln
=B —21([0,1]) + 2 ([0, 1)) + ai(+1,...,+1) = > @)
_f;é(+17...,+1)
=f-2 [ (- +2 [ ng) (1= ()1 -t
/ n—2 / ( nf2:0 <k> n—)2
=3-2[(1-qun(d P2 [ qu(d F=p—-2[wvd k= B_(n),
Ja-om W [ @3 e =5 / (@0 3 d" = 5-(n
(7.18)
where we have used [3.20), (B:21]), (23]) and the fact that
n—1 n—1
> (a0t =090 =Y 4" (7.19)
k=0 k=0

which is true even for ¢ = 1, even though the intermediate step is not defined in this case.
The calculation for 54 (n) is completely analogous.

We are left with the task to prove (8)). The inclusion N, (D) D> Hyr(Wh U ---UW,)(D)
follows from the fact that AN, is closed under hopping at deterministic times, see [SSOS|
Lemma 8.3]. To prove the converse inclusion, by the compactness of N, it suffices to prove
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that for each t; < -+ < t,, with t1,...,tym € T, 2 = (x,t9) € D with ty < t1, and ™ € N, (2),
we can find 7’ € Hyr(WiU- - -UW,,) starting from z such that 7(¢;) = 7'(¢;) fori = 1,...,m. By
the finite graph representation (in particular, by Corollary [6.6]) and the fact that for each sep-
aration point z of N, there exists 1 <,j < n such that signy,, (z) = —1 and signyy, (2) = +1,
we can find a 7" starting at z and satisfying 7 (¢;) = n”(¢;) for i = 1,...,m that is obtained
by concatenating finitey many paths in Wy, ..., W, at separation points of N,. By the fact
that 7 is dense and the structure of separation points (see Proposition [I3]), we can modify
7" a bit such that the concatenation takes place at times in 7. n

Proof of Theorem Let Z/{fk> (i =1,...,n) be the discrete webs in (Z2)), and let V3, be
the discrete net defined by

k kyn
Vi = {p:p(t+1) = p(t) € {afy oo rali 3 VE> 0} (7.20)

By Theorem G.IT], V3, diffusively rescaled, converges to a Brownian net with left and right
speeds given by

k—00

B—(n) :kli_)n;o &?IzlE[aiM PA A ek "] = lim et /,uk(dq)(q” —(1—-q")

n—2 )
= lim ! /Nk(dQ)<(2q —1)=2(1—-q) ) qk) =B- 2/V(dQ) 7", (7.21)
=0 © k=0
B+(n) :klim ElzlE[aim Ly...va "=8+ 2/V(dq) Z (1—q)*,
>~ k=0

where we have used (LT)). Let Sy be the set of separation points of V) and set &i’ﬁ =

(ag€> Lo o 1). Then, conditional on Vy, the random variables (&im)zeS(k) are 1.i.d. with
. — 1 n— ; i
P[al = 7| V)] = Z—k/uk(dq)ql(l ", where l:=[{i:q'=+1}|,  (7.22)

and Zj, is a normalization constant. Using (7)), it is easy to check that this conditional law
converges as k — oo to the law in (Z.0]).

For each i = 1,...,n, the pairs (V<k>,2/{<ik>) are distributed as the discrete nets and webs
in Theorem 6151 so by that theorem, and going to a subsequence if necessary, we can couple
our random variables in such a way that

S., (V<k>,u<1k>,...,ug;€>) — (NS, W), (7.23)

n—oo

where A is a Brownian net with left and right speeds 5_(n), 84 (n), Wi, ..., W, are Brownian
webs with drift 3, such that each separation point of N is of type (1,2) in each W; and

Wi = {m € N :sign,(z) = signyy, (2) Vz € S s.t. 7 enters z} (i=1,...,n), (7.24)

where S is the set of separation points of N. Much in the same way as in the proof of
property (ii) of Theorem [6.I5] we find that conditional on N, the random variables

(signw1 (2),... ’Sigan(z))zes (7.25)

are i.i.d. with common law as in (76]). By Lemma [T this proves the convergence of the
moment measures in (Z.2)) to those in (Z.I]) and hence, by Thm. 3.2.9], the convergence

in (B27]). |
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7.2 Proof of the marking constructions of Howitt-Warren flows

In this section, we prove our main results, Theorems B.7 and [£7] on the construction of
Howitt-Warren flows inside a Brownian web and net. It turns out that we already have most
ingredients of the proofs. The main point that still needs to be settled is to verify that
our construction agrees with the original definition of Howitt-Warren flows based on n-point
motions and the Howitt-Warren martingale problem.

Proposition 7.2 (Identification of n-point motions) Let 5y € R and let vy, v, be finite
measures on [0,1]. Let (Wy, M) be a marked reference web as in Theorem [377 and conditional
on Wy, M), let Wy, ..., W, ben independent sample webs constructed as in (319). For each
deterministic = € R?, let ™ denote the a.s. unique element of W;(z). Then, for each & € R"
and s € R, the process

(Tr(lml,s)(s + t)? co 77(-&”,3) (3 + t))tZO (726)

solves the Howitt- Warren martingale problem with drift 5 and characteristic measure v given

by (320) and (3.21).

Proof. Instead of attempting a direct proof we will use discrete approximation. It is easy to
verify that Theorem implies the convergence of the n-point motions of diffusively rescaled
discrete Howitt-Warren flows to the n-point motions of the quenched law @Q, while by Propo-
sition [A.Bl, the same discrete n-point motions converge to a solution of the Howitt-Warren
martingale problem. The proposition then follows. [ |

Proof of Theorem B.71 We start by checking that the random kernels K S+ , defined as in
[B22) form a stochastic flow of kernels on R as in Definition 21l Indeed, Property (i) follows
from the fact that

/R K, dy) K} (9, d2) = /R B, (1) € dy| (Wo, M) B[, , (u) € dz | (Wo, M)]

z,8)
= /R P, o (8) € dy| (Wo, M) P, ) (u) € dz | (Wo, M), 7, ) (t) = 9] (7.27)
= P[w(frr ®0 (u) € dz| (Wo, M)] =P, (u) € dz| (Wo, M)]  ass.,

where we have used that 7T(+ )(t) and 7T(J; 0 (u) are conditionally independent given (Wp, M)

T,

+
and F(”(Z,s)(t

every point in R x {t} is of type (0,1),(0,2) or (1,1) (see Proposition B.3). Property (ii)
of Definition 2] follows from the fact that the restrictions of (W, M, W) to disjoint time
intervals are independent, which follows from the analogue property for a single Brownian
web which is proved by discrete approximation. Property (iii), finally, is obvious from the
translation invariance of our definitions. Since K;t(x, ) =K : (x, ) a.s. for deterministic

1) (u) = W(J; 9 (u) a.s., which follows from the fact that for deterministic ¢, a.s.

s <t and x € R, the same conclusions can be drawn for K;t.

To identify (K j 1)s<t (and likewise (K;t)sgt) as a Howitt-Warren flow with drift 5 and
characteristic measure v, therefore, it suffices to check that for each deterministic & € R™ and
s < 't, one has (compare (2.2)))

E[K ] (x1,-) - K (xn, )] =PIX], €], (7.28)
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where X7 is a solution the Howitt-Warren martingale problem with drift 8 and characteristic
measure v, started in X§ = Z. Since

E[KH (21, AL) - Kfy(en, An)] = Py, () € Ar..ml () € Ay, (7.29)

where 77(1901 RIEEE 7'('( 7y ,5) AT€ as in Proposition [Z.2] our claim follows from that result. The fact

that Wp, M, W) and (W, M, W) are equally distributed if 4 = 1, follows from the somewhat
stronger Proposition [7.3] below. |

Proposition 7.3 (Exchangeability of reference web) Let (Wy, M) be a marked reference
web as in Theorem [377 and conditional on Wy, M), let (W1, W, ...) be independent sample
webs constructed as in (FI19). Assume that vy = v,. Then the sequence of Brownian webs
(Wo, Wi, Wh, ...) is exchangeable.

Proof. In the set-up of Lemma [T, we will show that if 11 = 1y, then the joint law of
Wo, ..., Wy) is equal to the law of (Wy,..., Wy41), which is clearly exchangeable. To see
this, let C' be defined as in the proof of Lemma [7I] and in analogy with (Z14]), set

N! := lim ho Wo). 7.30

L= Jim hop,, (40) (7.30)
Then N, is a Brownian net with set of separation points C. For i = 0,...,n and z € C, set
ol = signyy (2) and as in [TJ) let @ = (al,...,a?). In a similar way as in the proof of

Lemma [T} we check that conditional on N, the random variables (a9, d.).,ec are i.i.d. with

a(¥) :
P[(a2,@.) = (30,7) |V, = > if 50 =1,
[ N Na] = D o5t(1y—1) AT + X541, 51y & (T)

P[(a2,d.) = (10,7) | V] = () i 70 = 11,

—

F#(—1,...,—1) a(y) + ny’;é(+1,,,,7+1) ()

where ¢(7), ¢;(¥) are defined in (ZI2]). In particular, if v = 14, then

a(y) =c¢(=1,7) and  &(7) = c(+1,7), (7.31)

where we define
d%ﬁwzmeQHu/f*a—@W“*“wmw with ko= |{i:0<i<n, v =+1}.

From this, it is easy to check that N has left and right speeds S_(n + 1),8+(n + 1). By
Lemma [TI] since Wy, ..., W, can be constructed inside N as in (ZI0), it follows that
Wo, ..., Wy) is equally distributed with Wy, ..., Wyi1). |

The next lemma implies Theorem E.7]

Lemma 7.4 (Limit of moment measures) Let fy € R, let v, v, be finite measures on
[0,1], let B and v be given by (3.20) and (321]), and assume the left and right speeds (—, (4
defined in (Z12) satisfy —oco < f_, B+ < oo. Let Wy, M), with M = {(z,w,) : z € M},
be a marked reference web as in Theorem [3.7 and conditional on Wy, M), let (W;)i>1 be
independent sample webs constructed as in (319). Then there exists a Brownian net N,
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which is determined a.s. uniquely by (Wy, M) and has left and right speeds 5_, B+, such that
for any deterministic countable set D C R? and countable dense set of times T C R,

Noo(D) = Hr (| W) (D) aus. (7.32)

i>1

Let So, be the set of separation points of Now. Then Soo C M and conditional on N, the
collection of random variables w = (w;).cs., s i.9.d. with law v defined in Theorem [} A.s.,
each z € So is of type (1,2) in each W; (i > 1). Conditional on (Nuo,w), the random variables
(ai)’;egoo defined by of := signyy, (z) are independent with Pla), = +1|(Nw,w)] = w., and
one has

Wi = {m € Ny :sign_(z) = ol Vz € Sy s.t. m enters z} (i>1). (7.33)

Proof. This is very similar to the proof of Lemma [Z.1] so we will only sketch the main line of
proof. By the assumption that the speeds 5_, 84 are finite, conditional on Wj, the set M is
a Poisson point set with intensity c¢f) + ¢.f;, where ¢}, ¢, < oo are given by

o= 2/q_1V1(dq) and ¢ = 2/(1 —q) v (dg). (7.34)
In analogy with (TI3)), we set

W = hITn _switcha,, (W) with C*:={z € M:w, =1}U{z € M; 1w, =0}, (7.35)
where M), M, denote the restrictions of M to the sets of points of type (1,2); and (1,2), in
W, respectively. Then, conditional on W}, the set {(z,w,) : z € M\C*} is a Poisson point
set on R? x (0, 1) with intensity

0(d2) ® 2¢ M 1 geyra(dg) + £e(dz) ® 2(1 — q) " go<gyr(da). (7.36)

Next, in analogy with (ZI4), we define a Brownian net N, with set of separation points
Soc := M\C* by Ny := lima, 15, hopa  (Wy). Then Proposition implies (33]), while
a calculation similar to (TI8]) shows that the left and right speeds of N, are the constants
B-, B4 from @2.12).

By Theorem [L6] and (Z.36]), conditional on Nu, the random variables (signyy (2)).enn o+
are ii.d., where P[signy, (2) = +1|Nx] = /(¢ + ¢) and ¢ = 2 [ ¢ enn(dg), ¢ =
2 [(1 = ¢) M jo<qyn(dg). Using this, 32I) and (Z.36), we see that conditional on N, the
collection of random variables w = (w,),eps is i.i.d. with common law 7 from Theorem [£7]
Since (N,w) is determined a.s. by (W, M), and since conditional on (Wy, M), the random
variables (O‘Zz)lzzegoo are independent with Pla’ = +1| (W, M)] = w., the same statement holds
for the conditional law given (N, w). The proof of (7.32), finally, is completely analogous to
the proof of formula (Z.8)) from Lemma [T |

Proof of Theorem [.7. In Lemma [ (N ,w) is determined a.s. by (Wp, M). Moreover,
by (Z33]), the conditional law P[W; € - | Wy, M)] is a function of (Noo,w) only. It follows
that PW; € - | Wy, M)] =PW; € - | (N, w)]- ]
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7.3 Some immediate consequences of our construction

Proof of Proposition B.8] (b)—(d). Let Q be the Howitt-Warren quenched law defined in
(B24). Then Q is a random probability law on the space K(II) of compact subsets of the space
of paths. We will be interested in a.s. properties of Q that hold for almost every realization of
(Wo, M). Let W be a random variable with law Q. Since averaged over the law of (Wy, M),
the set W is distributed as a Brownian web, it follows that for a.e. realization of (Wy, M),
the compact set W C II will satify all the a.s. properties of a Brownian web, such as the
classification of special points. In particular, we can define the special paths 7T+ and 7l for
each z € R?. Then

Kly(2,A) = Qr(, ,(t) € A] and K[ (2, 4):=Qx[, (t) € A] (7.37)

(z,s (z,s

are well-defined for every s <t, x € R, A € B(R).
To prove part (b), it then suffices to note that for every s < ¢,, t, — t, x € R and
continuous f: R — R,

[ K ) 50) = QU ()] 2, QUG (0] = [ Kfwdn)s), (739)

n—oo

where we also use the symbol Q to denote expectation with respect to the probability law Q,
and we have used the continuity of ¢ — 71(4; 5 The same proof works for K.

The proof of part (c¢) is similar, where this time, for any s < ¢, R 3 z,, |  and A € B(R),

Kf(an, A) = QI (1) € Al - Qi () € Al = K (an, 4), (7.39)

(zn,s
where we have used that by [SSO8, Lemma 3.4 (a)], under @, there is a random m such that

W(J;n 9 (t) = W(J; 5 (t) for all n > m. The existence of left limits follows in the same way.
To prove part (d), we observe that for all s <t <wu, x € R and 4 € B(R),

/ Q[], o () € Al 7], (0) = y]Q[r], , (t) € dy
/Q €A|7T(x5 ) =y|Q[r (T’)(t)edy] (7.40)
— [,y € AJer, . € d).

where we have conditioned on the value of F(Tx 5) (t), used the fact that 7T(Ty n is the continuation

of any incoming path at (y,t), and in the last step we have used that under the law Q, for
any y € R that may depend on the marked reference web (W, M) but not on the sample web
W, the path W(Tyﬂt) is independent of w(Tx’S) (t). To prove this independence, for any ¢; < to,
let W]|;? denote the restriction of W to the time interval [t1,to], i.e., W[i2 := {x[;> : m € W}
where 7T|E = {(m(u),u) : u € [t1,t2] N [0x,00]} is the restriction of a path 7 to [t1,t2]. It
follows from the marking construction in Theorem B.7 that for all t1 < to < {3, W\ﬁ and W\g
are independent under Q. Since W(Ty’ " is a function of W|2°, for each ¢ > 0, we conclude that
W(Tx’s) (t—e¢) is independent of 7T(Ty7t) under Q for each € > 0. Since W(T@s)(t) = lim._,o W(Tx’s) (t—e),
it follows that w(Tx’S) (t) is independent of 71'2% " under Q. ]

The proof of Proposition (a) needs a bit of preparation. We start by proving the
statement for the Arratia flow.
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Proposition 7.5 (Measurability of special paths) There exists a measurable function
KII) x R? 3 (A, 2) — 7f (A) € IT such that if W is a Brownian web, then almost surely, for
all z € R? the path 7} (W) = mF is the special path in W(z) defined below Proposition [Z.3.

An analogue statement holds for .

Proof. Tt suffices to define 7 (A) on the measurable set of all A € K(II) such that A(z)
contains a single path 7, for each z € Q2. For any r € R, define ||, T 7 by |r], = sup{r’ €
Z/n :r" < r} and similarly, set [r], := inf{r" € Z/n : " > r}. Then (A, (2,t)) = T([a],.1t]m)
is a measurable function. If W is a Brownian web, then applying Lemma to the dual web
W we see that for each ¢ € R, there exists at most one x € Q such that W(x,t) contains more
than one path. It follows that for each (x,t) € R?, there is at most one n for which the limit
lim,,— 00 T[] s [ ) does not exist, hence the double limit

Tl = 0 A (o L) (7.41)
is well-defined and gives the right-most path in W(x,t). Since pointwise limits of measurable
functions are meaurable, restricting ourselves to a suitable measurable subset of IC(II), we see
that 7 depends measurably jointly on z and the Brownian web W.

To also prove the statement for FZ, we note that the dual W of a Brownian web W is a
measurable function of W and that by what we have just proved, both the left-most and right-
most dual paths 7, and 7] depend measurably jointly on z and W. For any z = (z,t) € R?,
set 7, :=inf{s:s>0, 77 (t —s) =71 (t —s)} and

= <%(ﬁ;(t — %Tz) +af(t - %Tz)),t — %TZ>
Then 2’ depends measurably jointly on z and W and 71 is the restriction of 7T:7 to [t,o0). N

Lemma 7.6 (No simultaneous incoming paths) Let W be a Brownian web and let x,y €
R, x # y be deterministic positions. Then a.s., there exist no time t € R such that there exists
paths w,7" € W with op, 00 <t, w(t) =z, ©'(t) = y.

Proof. By [SS08, Lemma 3.4 (b)] it suffices to prove the statement for paths m, 7’ started at
deterministic points. The statement then follows from the fact that two-dimensional Brownian
motion a.s. does not hit deterministic points. [ |

Proposition 7.7 (Measurability of quenched laws on path space) Let QF and Q! be
the quenched laws on path space defined in ({.18). Then R? x Q 3 (z,w) — QF (w) € M (II)
is a measurable map. An analogue statement holds for QI.

Proof. The quenched law Q is a random variable taking values in My (K(II)), i.e., a measur-
able map 3 w — Q(w) > M;(K(II)), where (w,F,P) is our underlying probability space.
Since QF = Qo+ !, where (A4, 2) — 7 (A) is the measurable map from Proposition [73]
the statement follows from Lemma [C.3]in the appendix. The same argument applies to QI.I

Proof of Proposition [3.8] (a). Define a continuous map II x R 3 (m,t) — ¢y(m) € R by
(7)) :=m(oyx V t). Then, since

K, ) =Qf, ovi =Qo(ronf )7 (sit,z €R, s <), (7.42)

(z,s
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the statement follows from Lemma in the appendix. The same argument applies to
Kl (x, -). o

Proof of Proposition 2.3l Immediate from Proposition B.8] (b) and (d). n

Proposition 241 is a direct consequence of the following proposition, which is formulated
on the level of quenched laws on the space of webs.

Proposition 7.8 (Scaling of quenched laws) Let Q be a Howitt-Warren quenched law
with drift 3 and characteristic measure v. Define scaling maps S, : R2 — R? (a > 0) as in
(B2Z3) and let T, : R?> — R? (a € R) be defined by Ty(x,t) := (x + at,t). Then:

(a) For each a >0, S,(Q) is a Howitt-Warren quenched law with drift a=*3 and character-
1

istic measure a” V.
(b) For each a € R, T,(Q) is a Howitt-Warren quenched law with drift 5+ a and character-
1stic measure v.

Proof. To prove part (a), choose €5 and py such that (7)) holds and set ¢} := aeg. Then,
by Theorem B.9} S, (Q(x)) converges weakly in law to Q while, since the py, satisfy (LT)) with
e, replaced by ¢} and § and v replaced by a~'B and a~'v, respectively, Sa; (Q<k>) converges
weakly in law to a Howitt-Warren quenched law with this drift and characteristic measure.
Obviously, Su (Q)) = Sa(S,(Qr))) also converges to S4(Q), so the latter is a Howitt-Warren
quenched law with drift ¢!/ and characteristic measure a~'v.

To prove part (b), let (Wy, M, W) be a marked reference Brownian web and sample Brow-
nian web as in Theorem Bl Then T,(W) is a Brownian web with drift 5y + a. It follows
from Proposition 3.4 that T, (¢) is the intersection local time measure of T,(Wy) and its dual.
It follows that conditional on Wy, the set To(M) = {(Tu(2),w;) : (z,w;) € M} is a Poisson
point set with intensity as in ([B.16)), with ¢, and ¢, replaced by Ty (41) and T,(¢;). Since T,(W)
is constructed from T,(Wp) and T,(M) in the same way as W is constructed from (W, M),
in particular, it follows that P[T,(W) € -| (Wy, M)] is a Howitt-Warren quenched law with
drift 8 + a and characteristic measure v. [ |

Proof of Proposition 2.4l Immediate from Proposition [Z.8 n

8 Support properties

In this section, we will first prove Theorem on the characterization of Brownian half-nets,
establish its connection to Howitt-Warren flows and prove some of its basic properties. We will
then prove Theorem on the image set of the support of the Howitt-Warren quenched law
Q, from which Theorems and 2.7 on the support properties of Howitt-Warren processes
follow immediately.

8.1 Generalized Brownian nets

Proof of Theorem [4.8. Let v, € H_ and v, — 7 in II. If v ¢ H_ so that it crosses some
m € W from left to right, i.e., y(s) < m(s) and 7(t) < ~(t) for some s < ¢, then ~,, crosses 7
from left to right for all n large, a contradiction. Therefore H_ is a.s. closed.
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The two characterizations of H_ in Theorem A8 (i) and (ii) are equivalent, because if
~v € II crosses some m € W from left to right, then by the non-crossing property of paths in
W and W, ~v must also cross some 7 € W from left to right, and the same is true if W and
W are interchanged.

It only remains to show that for each deterministic z = (x,t) € R?, if 7, denotes the a.s.
unique path in W starting from z, then 7, is the maximal element in H_(z). Certainly m, €
‘H_(z). Note that z is a.s. of type (0, 1) in W by Prop.[B.3] and hence for any positive sequence
end 0, T(aqe, ) — Tz asn — o0 If y € H_(z), then it cannot cross w4, 1) € W((z +€n,t))
from left to right. Therefore v < (4., ) on [t,00) for all n € N, which implies that v < 7,
on [t,00). Therefore 7, is the maximal element in H_(z). |

For any —oo < - < 4 < oo with - < 0o and —oo < (4, we define a generalized
Brownian net with speeds 5_, 84+ to be a Brownian net with these speeds if 5_, 84 are both
finite, a Brownian half-net with these speeds if one of f_, 8, is infinite, and the space of all
paths II if both speeds S_, 5+ are infinite.

Consider a reference Brownian web W, and set of marked points M as in Theorem 3.7 and
conditional on (Wy, M), construct an i.i.d. sequence Wy, Wy, ... of sample Brownian webs as
in (C3). For each n > 1, let AV, denote the Brownian net containing W, ..., W, introduced
in Lemma [TJl Recall that N, has left and right speeds 5_(n), 8+ (n) given by (2:3), which
converge as n — oo to the speeds S_, S+ given by ([2.12]).

Lemma 8.1 (Generalized Brownian net associated with Howitt-Warren flow) Let
Bo € R and let vy, v, be finite measures on [0,1]. Let Wy, M), with M = {(z,w,) : z € M},
be a marked reference web as in Theorem [3.7 and conditional on Wy, M), let (W;)i>1 be
independent sample webs constructed as in (319). Then there exists a generalized Brownian
net Noo with left and right speeds given by (Z12), which is a.s. uniquely defined by (Wy, M),
such that for any deterministic countable set D C R? and countable dense set of times T C R

Noo(D) = Hr (| W) (D) aus. (8.1)

i>1

Proof. We treat the cases when N, is a Brownian net, a Brownian halfnet or the space of
all paths II separately. If the speeds _, 54 from ([2.I2]) are both finite, then the statements
follow from Lemma [7.4]

If only one of the speeds 5_, 54 from (212 is finite, then by symmetry, we may without
loss of generality assume that —oo < f_ and g3 = co. We claim that without loss of generality,
we may further assume that v, = 0. To see this, let M; and M, be the restrictions of M to
the sets of points of type (1,2); and (1,2), in W, respectively. As a first step, we reduce our
problem to the case that 11({1}) = 0 = v,({0}). If this is not yet the case, then define W and
C* as in (Z.35) and replace Wy by W) and M by M\C*.

Next, we observe that conditional on W, the set M, is a Poisson point set with intensity
arly, where ¢, :=2 [(1 — q)7'14(dg) < oo by our assumption that —oo < B_. Let

W = lim switcha, (Wp). (8.2)

m r

Using Proposition [B.6] it is not hard to see that conditional on W), the set {(z,w,) : z € M}
is a Poisson point set on R? x (0, 1] with intensity

6(dz) © (210<qyq 'mi(dg) +2(1 — q) " '1e(dg)) = £i1(d2) @20~ (1 — q) ' {ocqyv(dg), (8.3)
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where we have used (321 and the fact that 11({1}) = 0 = 1,({0}). By Proposition and
Lemmal[6.I7] conditional on (W)}, w), the random variables (O/Z)ZZZG}V[ defined by o := signyy, (2)
are independent with Pl = +1| (W}, w)] = w,, and

W; = Am#igu& switcha,, Wy) (i > 1), (8.4)
where A, = {z € M : o! # signwé(z)} and B; is an independent Poisson point set with
intensity 2u1({0}). Thus, replacing our reference web Wy by W, we have reduced our problem
to the case that 1, = 0 and 1(dq) = (1 — q)~'v(dgq).

In light of this, assume from now on that 1, = 0. Then B20) tells us that g = Gy +
211([0,1]) = Bo+2 [(1—q)"tv(dg), hence By = B, the left speed from (ZIZ). Let N be the
Brownian halfnet with left Brownian web Wy. Let N,, (n > 1) be the Brownian nets defined
in Lemma [Tl We recall from formulas (ZI3) and (ZI4) in the proof of that lemma that N,
is constructed by switching and then allowing hopping at subsets of the set C' := J,(A4; U B;).
Since points in A; U B; are of type (1,2); in W), it follows that paths in N, cannot cross paths
in W, from right to left, hence N,, C Nx.

Let WL, W) be the left-right Brownian web associated with N,,. Let z = (z,s) € R?
be deterministic and let 7,77 denote the a.s. unique elements of W. (2), Wr (z), respectively.
Since N, C Ny 41, one has [7 | 12° and r? 1 r2° for some functions [° : [s,00) — [—00,00) and
7% ¢ [s,00) — (—00,00]. Since A;, C N for each n > 1, we have 79 < 12°, where 7 denotes
the a.s. unique element of W, starting at z. Since 70(t) and I°(t) are normally distributed

z

with the same mean for each ¢t > s, we must have 70 = [2°. On the other hand, since the r7?
are Brownian motions with drifts tending to infinity we must have r3°(¢) = oo for all ¢ > s.

We are now ready to prove (8I]). Since W; C N,, C N for each i < n and since by
[SSO8, Lemma 8.3], a Brownian net is closed under hopping at deterministic times, we see that
HT(Uisy Wi) = Ups1 HrWiU---UW,) C U, Mo € Noo and therefore Hy (U;» Wi) (D) C
Noo(D). To prove the other inclusion, we first observe that N;,(D) = Hyr(Wy U --- UW,,)(D) C
H7(Ujsq Wi)(D) for all n > 1, hence |5 No(D) C Hy(U;»q Wi) (D). Since N3 C N, C -+
and since by Theorem 4], each N, is closed under hopping at intersection times, it follows that
also | J,,~1 NV, is closed under hopping at intersection times, i.e., Hint(U,>; Nn) = U,;>1 Na-
In view of this, we have Hint(U,,>1 Nn)(D) = Ups1 No(D) C Hr (U= Wi) (D), so it suffices
to show that Noo(D) C Hint(U,,>1 Nn)(D). By Lemma below, it suffices to show that
each path m € Ny (D) with —oco < ™ < o0 on [o,,00) can be approximated by paths in
Hint(Upoy No) (D).

Let 7 be such a path, ¢ > 0 and T" < oo. Let zy = (x¢,%o) denote the starting point of
7 and inductively choose times ¢ (k > 1) and paths I, € Wh(m(tx),tx) (K > 0) such that
trp = inf{t > t)_1 : w(t) — lp_1(t) > e}. (See Figure [I3l) Since paths in Ny, do not cross
paths in Wy from right to left, we can moreover choose the [; such that [ <« for each k > 0.
The continuity of m and the equicontinuity of Wy imply that t,, > T for some m > 1. Let
D' C R? be a deterministic countable dense set. Choose z; = (w,t},) € D’ (k > 1) such that
ty < t), < tpg1, T < l—1(t),), and m — l_1 < 2¢ on [t;_1,t}] and choose ny such that the
right-most path r7* in N, (z) crosses i, before time 541 and before m — [_1 exceeds 2.
Then the concatenation of the paths lo, 77!, l1,772,...,rl™, I, approximates the path 7 on
[to, T] within distance 2. We are not quite done yet, however, since the paths I € W, are
not elements of (J,~; Np.

To finish the argument, we will show that each path in W, can be approximated by paths
in (J,,»; NV, and in case zg is a deterministic point, that ly can be approximated by paths in
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Figure 13: Approximation of paths in generalized Brownian nets. On the left: a Brownian
halfnet with finite left speed. On the right: the case when both the left and right speeds are
infinite.

Un>1 N(20). Indeed, this follows from the fact, proved above, that for each deterministic
z € R?, the left-most path [” in N, (z) converges to the a.s. unique path in Wy(z), and the

fact that Wy = Wy(D’). Replacing the paths Iy, ...,l, by sufficiently close approximating
paths [j),...,Il, € U, > N, with [{) also starting at zo, we see that these approximating paths
are crossed by the paths ryl, ..., r2m and hence 7 can be approximated by a concatenation of
0. T2 U2, I This completes the proof for case —oo < S and 1 = oo, where
we have identified N, as a Brownian half-net.

The proof for the case f— = —oco and 4 = oo is similar, but easier. In this case,
for an arbitrary path = € II with starting point zg = (x,t9) € D, we inductively choose
times ¢ (k > 1) and paths 7, € Wi(nm(tg),tx) (k& > 0) such that ¢, = inf{t > ¢ :
|T(t) — me—1(t)] > e}. If mp(tr) < m(tr), then we use a right-most path 72} of the Brownian

net N, := HrWyU---UW,) to connect m to mpyq and if 7(tgx) < mg(tx), then we use a
left-most path (2% of N,. ]

The proof of Lemma has a useful corollary.

Corollary 8.2 (Paths going to infinity) Let N be a generalized Brownian net with infinite
right speed. Then, for each deterministic z = (x,t) € R?, there a.s. exist paths r» € N(z) with
r2(u) 1 oo for all u > t.

Proof. If NV is a Brownian half-net, then we may take for r” the a.s. unique right-most paths
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in the Brownian nets N, as in the proof of Lemma Rl If N/ = II the statement is trivial. R

Lemma 8.3 (Hopping with left-most paths) Let N be a generalized Brownian net with
left speed —oo < [_ and let W' be its associated left Brownian web. Then, a.s. for each m € N
and 1 € W' with 7(t) < I(t) at t := o, V 0y, the following statements hold:

(i) The path 7' defined by oy := oy, ™ := 7 on [ox,t] and 7™ := 7w Al on [t,00) satisfies

e N.

(ii) The path ©" defined by o = oy, © =1 on [oy,t] and 7" := 7wV 1 on [t,00) satisfies

e N.

Proof. Set 7 := inf{u >t : w(u) > I(u)}. Since paths in A/ cannot cross paths in W' from
right to left, one has 7’ = 7 on [0, 7] and 7’ = [ on |1, o0], and also, 7’ = [ on [0y, 7] and
7" =7 on [1,00]. Therefore, if N is a Brownian net, then the statements follow from the fact
that A is closed under hopping at intersection times (see Theorem ). We do not know if
Brownian half-nets are closed under hopping at intersection times, so in this case we check
directly that the paths 7/ and 7" do not cross paths in W' from right to left and hence (by
Theorem 8] are elements of N. If I’ € W' satisfies I'(s) < 7’(s) for some s € [0, 00), then
I < 7" on [s, 7] by the fact that 7 € N while I’ < " on [1,00) by the fact that I’ cannot cross .
If I' € W! satisfies I'(s) < 7(s) for some s € [0, 7], then I’ <1 < 7" on [s,00) by the fact that
I’ cannot cross I, while if ! € W! satisfies I'(s) < 7”(s) for some s € [r,00], then I’ < 7 < 7
on [s,00) by the fact that I’ cannot cross 7 from left to right. |

Lemma 8.4 (Finite paths) Let N be a generalized Brownian net and let N, := {m € N :
—00 < T < 00 on [oy,00)}. Then a.s. for each z € R%, Nan(2) = N(2).

Proof. We need to show that for each m € N (z) there exist m, € Ngy(z) with m, — 7. In
case both the left and right speeds of A/ are infinite, and hence N/ = II, we may simply take
ml = —nV (nAm,). Otherwise, by symmetry, we may without loss of generality assume that
the left speed of N is finite. Let W! be the left Brownian web. Write z = (z,t) and for n
large enough such that —n < 2 < n and ¢ < n, choose [, l,J{ e W! with O = 0y 1= t such

that I, < —n and n <[} on [t,n] and set 7, := [, V (7 An). Then 7, € N' by Lemma R3]
—00 < Ty, < 00 on [t,00), and 7, — . ]

In Lemmas[.1], [C.4land B] we have seen objects of the form A (D) where N is a generalized
Brownian net and P C R? is a deterministic countable set. Naively, one might guess that
N (D) = N(D), where D denotes the closure of D in R2. It turns out, however, that this is
not always true. In particular, it may happen that (¥, —oo) € D but N (%, —o0) ¢ A (D). Our
next result shows that this is indeed all that can go wrong. It is not very difficult, but rather
tedious, to give a precise decription of N (D)(x, —00) in terms of the shape of D near (x, —00).

Since we will not need such a precise description, we will settle for the following lemma.

Lemma 8.5 (Closure of paths started from a countable set) Let N be a generalized
Brownian net, let D cC R? be a deterministic countable set, let N (D) denote the closure of
N (D) in 11 and let D denote the closure of D in R2. Then

N (D\{(x,~0)}) C N(D) C N(D) as. (8.5)

If D is dense in R?, then moreover N (%, —oc0) C N(D).
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Proof. Since N is closed and since convergence of paths implies convergence of their starting
points, the inclusion N (D) c N(D) is trivial. As a next step, we will show that Ny, (D) C
N(D), where D denotes the closure of D in R? and Ny, is defined in Lemma If Vis a
Brownian net, then the statement follows from [SSO8, Lemma 8.1]. If A/ = II, the statement
is trivial, so it suffices to treat the case when A is a Brownian half-net with, say, a finite left
speed. We need to show that any path in Nﬁn(ﬁ) can be approximated by paths in N(D).
We use the steering argument from the proof of Lemma (see Figure [[3]), where in this
case, for any zp = (zo,tp) € D, we choose for Iy the left-most path in Wo(z0), which by the
fact that paths in A cannot cross paths in Wy from right to left is guaranteed to stay on the
left of any path m € A starting from z5. To apply the proof of Lemma [l we only need to
show that such an [y can be approximated by paths in (J,,~, N, that moreover start in D.
Since in the proof of Lemma it has already been shown that any path in Wy (D) can be
approximated by paths in | J,~; N, (D), by a diagonal argument, it suffices to show that Iy can
be approximated by paths in_Wo(D). By the structure of special points in a Brownian web,
such an approximation is possible unless there exists a dual path [ e Wo entering 2y and an
e > 0 such that {z = (z,t) : |z — 20| <&, © <I(t)} ND = 0. But by Lemma BH below, such a
dual path a.s. does not exist for any zy € D.

This completes the proof that Ng,(D) € N(D). By Lemma B2, it follows that also
N (D) c N(D). Obviously, the trivial path starting at time (x, c0) is an element of N(D) if and
only if there exists D > 2z, — (*,00). To complete the proof that N (D\{(*, —00)}) C N (D),
by symmetry, it therefore suffices to show that if 7 € N(D) starts at some z € {—oo} x R,
then 7 can be approximated by m, € N (D). Let D > z, = (zp,tn) — 2z = (—o0,t). If the
left and right speeds of N are —oo and +oo, then N' = IT and the claim is trivial. If the right
speed of NV is finite, then N/ (z) contains a single path 7 with 7(-) = —o0 on [t,o0), which can
be approximated by choosing m, to be the rightmost path in N (z,). Now suppose that the
left speed of N is finite while the right speed is +o00. If either ¢, < t or m(t,) < 2, then we
can simply take 7, := 7, V 7, where 7/, is the leftmost path in N(z,) and 7, € N(z,) by
Lemma If t,, > t and 7(t,) > x,, then we construct a 7, € N(z,) by first following a
path in N (z,) which crosses to the right of 7 before time t,, + §,, for some §,, (with §,, | 0 as
n — o00), and then hop onto a leftmost path [, with o, < t,, 4+, and l,,(t,, + ) > 7(t, + ).
By Lemma B3] 7/, € N(z,) . We can then define 7,, € N(2,) to equal 7, up to time t,, + 0y,
and define 7, := 7/, V7 = [, V 7 from time ¢, + &, onward. Then 7, € N(2,) and 7, — 7 as
n — oo. This completes the proof of (8.3]).

To prove that also NV (*, —co) C N (D) if D is dense in R?, by (&3], it suffices to prove that
each path 7 € A(x, —00) can be approximated by paths m, € N (R2\{(*, —o0)}). In view of
this, taking for m, the restriction of 7 to [—n, co] completes the proof of the lemma. [ |

A statement very similar to the lemma below has been demonstrated in the proof of [SSO8|
Lemma 8.1].

Lemma 8.6 (The Brownian web does not skim closed sets) Let W be a Brownian web
and let K C R? be a deterministic closed set. Then a.s. there exist no zy = (zo,t9) € K and
7w € W entering 29, such that {z = (x,t) € R? : |z — 2| <&, x < w(t)} N K = 0 for some
O<e<t—oy,.

Proof. It suffice to prove the statement for paths m started from a deterministic point and

for deterministic £ > 0. By cutting K into countably any pieces of diameter at most /4 and
using translation invariance, we can reduce the problem to the following statement: let 7 be
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a Brownian motion started at time zero in the origin, let K be a deterministic closed subset
of R?, let ¢ > 0 and let U := {(x,t) : t > &, < 7(t)}. Then the event that U N K = () but
U N K # 0 has probability zero. To see that this is the case, set 7°(t) := 7(t) — 7(¢) (t > ¢).
Then, conditional on the path (7°(t));>c, there is at most one value of m(¢) for which the
event {UNK =0, UNK # 0} occurs. Since 7(e) is independent of (7°(¢))¢>- and normally
distributed, we see that the conditional probability of {UNK = (), UNK # 0} given (7°(t))1>-
is zero, hence integrating over the distribution of (7°(t));>. yields the desired result. ]

Let NV be a generalized Brownian net with left and right speeds 5_, 34 (which may be
infinite). Then, generalizing (£.6]) and ([6.41]), for any closed subset A C R, setting

= {rt):meNAx {0}  (t>0) (8.6)

defines a Markov process taking values in the space of closed subsets of R, which we call the
branching-coalescing point set with left and right speeds 5—, B+.

Lemma 8.7 (Edge of a branching-coalescing point set) Let A be a deterministic non-
empty closed subset of the real line and let (5{4)120 be the branching-coalescing point set with
left and right speeds B_, 31 defined in (88). Set vy := sup(&) (t > 0). Then:

(a) If B+ < o0 and rg < oo, then (r¢)i>0 is a Brownian motion with drift B1. If B+ < oo and
rog = 00, then ry = oo for all t > 0.

(b) If B4 = o0, then ry = oo for all t > 0.
(c) If B = —o0 and By < 0o, then & = (—oo, 7| N R for all t > 0.
(d) If B = —o00 and By = oo, then & =R for all t > 0.

Proof. To prove part (a), let W' be the right Brownian web associated with A. If sup(4) <
00, then let r be the a.s. unique path in W" started from 9 = sup(A). Now r is a Brownian
motion with drift 5, r € N, and 7 < r for any path in N started from A x {0} by the fact
that paths in A cannot cross paths in W' (see Theorem 8] (i) and [SSO8, Prop. 1.8]). If
sup(A) = oo, then choose x,, € A with z, T oo and let r, be the a.s. unique paths in W*
started from (z,,,0). Then Pinf{r"(¢) : 0 <t <T} < N] — 0 as n T oo for each N,T < o0,
hence sup,, rj* = oo for all ¢ > 0 a.s.

Part (b) is an immediate consequence of Corollary

To prove part (c), we first consider the case that sup(A) < oco. Let W' be the right
Brownian web of N and let r be the a.s. unique path in W* started from ro = sup(A). It
has been shown in the proof of part (a) that &' C (—oo,7] for all £ > 0. To prove the other
inclusion, it suffices to show that for each ' € W* started from {(z,t) : t > 0, z < r;} and
e > 0 there exists a path m € N started at time zero from 7(0) = sup(A) such that = =/
on [0,/ +¢,00). Let D C R? be a deterministic countable dense set. By Corollary B2, we can
find some path 7’ € N (D) that starts on the right of  and crosses both r and " before time
o +e. Let m be the concatenation of r, 7’ and r/. Then 7 € N by LemmaR3] 7(0) = sup(A),
and m = 1’/ on [0, + £,00). The proof in the case sup(A) = oo is similar, where now instead
of r we use a sequence of paths r" started from points (x,,0) with A > x,, 1 co.

Part (d), finally, is trivial since in this case N’ =1I. |
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8.2 Support properties of Howitt-Warren flows and quenched laws

We are now ready to prove Theorems and 2.7 on the support properties of Howitt-Warren
processes and Theorem on the support of quenched laws. We start by preparing for the
proof of the latter. In line with notation introduced in Section L5 we set QF := Pr} €
- |(Wo, M)], where Wy, M) is the marked reference Brownian web as in Theorem B.7] and 7
denotes the right-most path in the sample Brownian web W started from z.

Lemma 8.8 (Support of quenched laws on the space of paths) Conditional on a
marked reference Brownian web (Wy, M), let (W;)i>1 be an i.i.d. sequence of sample Brownian
webs as in (7.3), and let N be the generalized Brownian net associated with Wy, M) defined
in Lemmal81 Then, for any deterministic z € R2,

supp(QF) = Noo(2) a.s. (8.7)

Proof. Given the marked reference Brownian web (W, M), we note that Q7 is the conditional
law of the a.s. unique path in W, starting at z, for each n € N. Since (W, (2))nen are i.i.d.,
and W, (z) C No(z) a.s., the inclusion supp(Q7) C N(z) is trivial.

To prove the other inclusion, by Lemma B1] it suffices to show that

HrWy U---UW,)(2) Csupp(QTF) as. (8.8)
for each n > 1. Fix 1 < ig,...,%, < n and t1,...,t,, € T with t;1 < --- < t,,, and set
tg := —00, tyy41 := +00. Let W be the concatenation of W,,...,W; on the time intervals

[to,t1], .-y [tm, tmy1], 1.e., W is the set of all paths = € II such that for each £k = 0,...,m
there is a 7’ € W, with m# = 7’/ on [0, 00] N [tg, tx+1]. Since conditional on the marked
reference web (Wy, M), restrictions of a sample Brownian web W; to disjoint space-time
regions are independent, we see that the conditional distribution of W equals that of the W;’s.
In particular, conditional on (Wy, M), the a.s. unique path in W(z) is distributed with law
Qf. Since 1 <ig,...,i, <nand ty,...,t,, € T are arbitrary, this proves (RS]). |

Proof of Theorem Without loss of generality, we may assume that p is a probability
measure. In the set-up of Lemma [ let (Z;);>1 be an i.i.d. sequence of R2-valued random
variables with law p, independent of the marked reference Brownian web (Wp, M) and se-
quence of sample Brownian webs (W;);>1. Then, conditional on (W, M), for each i,j > 1,
the random variable WJZF; has law [ 4(dz)QF, where 71 denotes the rightmost path in W;

z

started at z. Since W; C N and Z; € supp(u) a.s., we see that WJeri € N (supp(p)) a.s. and

hence supp( [ 1(dz)QF) C Noo(supp(u)) a.s. ,
To prove the other inclusion, set D := {Z; : j > 0}. Since W}'J_Z € supp([ u(dz)Q7) a.s. for

each i, j > 1, and conditional on (Wy, M, (Z;);>1), the random variable WJeri has law QJZFJ_, we
see that Supp(QZ_) C supp( [ 1(dz)QF) a.s. for each j > 1. On the other hand, by Lemmal[88]
we have supp(@Jer) = Nwo(Zj). Therefore Noo(D) = U; No(Z;) C supp([ u(d2)QF) as.,

which by Lemma BH implies that N (supp(p)) C supp( [ p(dz)QF) a.s. (Recall that supp(p)
is the support of y in R?, not R?, which is why Lemma can be applied here.) |

Proposition 8.9 (Support of Howitt-Warren process) Let (W, M) be a marked refer-
ence Brownian web, let N be the generalized Brownian net associated with (Wy, M) defined
in Lemma [81], and for each closed A C R, let (fiA)tzo be the branching-coalescing point set
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associated with N defined in (84). Then, for each deterministic finite measure py on R,
almost surely
supp(pr) = &7 (8> 0), (8.9)

where (pt)e>o is the Howitt- Warren process defined as in (2.1) with Koy = Kaft or K&t, where
(KJ))s<t and (KsT,t)sgt are the versions of the Howitt-Warren flow defined in Theorem [3.7.

Proof. In line with notation introduced in (G.I0Q)), let TI(Xg) := {w € I1 : 0, = 0}. For each
t > 0, define a continuous map v : II(3g) — [—00, 0] by ¢ (7) := 7(t). Recall that if E, F
are Polish spaces, p is a finite measure on F, f : F — F' is a continuous function, and f(u)
denotes the image of p under f, then supp(f(u)) = f(supp(x)). Then by Theorem E3,

supp(p) = supp (Ve ( [ po(d2)Qf, o)) = ve(supp( [ po(dz)Q(, )))

supp(o0) (8.10)

= P (Noo(supp(po) x {0})) = &P (t>0).
By the remarks above Theorem [L9] replacing Q?;c 0) with Q& 0) makes no difference. [ |
Proof of Theorems and 2.7 Tmmediate from Lemma and Proposition |

9 Atomic or non-atomic

In this section, we use our construction of the Howitt-Warren flows in Theorems B and [27] to
prove Theorem on the atomicness/non-atomicness of the Howitt-Warren processes. Parts
(a), (b) and (c) are proved in Sections [0.1], 0.2 and @3] respectively.

9.1 Atomicness at deterministic times

To prove Theorem (a) on the atomicness of any Howitt-Warren process (pt)¢>0 at deter-
ministic times, we need the following lemma.

Lemma 9.1 (Coincidence of points entered by a path) Let W, W') be a pair of sticky
Brownian webs and for t € R, let I(t) := {w(t) : # € W, o < t} and let I'(t) be defined
similarly with W replaced by W'. Then for each deterministic t € R, a.s. I(t) = I'(t).

Proof. By symmetry, it suffices to show that I(¢) C I'(t). As in the proof of Theorem
(in Section [6.6]), we may without loss of generality assume that W and W' are embedded in
a Brownian net A/ with associated left-right Brownian web (W! Wr) and set of separation
points S in such a way that

W={reN :sign,(z) = a. Vz € S s.t. 7 enters z},

(9.1
W' ={r € N :sign,(z) = —a. Vz € S s.t. 7 enters z},

where conditional on NV, the (a;).eg are i.i.d. {—1, +1}-valued random variables. Then I(t) C
{n(t) : m € N : o, < t}, and hence by the structure of special points in the Brownian net
at deterministic times (see Proposition [6.4]), for each z = (z,t) with x € I(¢), there exist
1 € W' and r € W' such that [ ~7 r. Since paths in N are contained between left-most and
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right-most paths [SSO8, Prop. 1.8], any path in N started between [ and r must enter z. In
particular, it follows that there are paths in W' that enter z. [ |

Proof of Theorem [2.8] (a). Let (Wp, M, W) be a reference web, a set of marked points, and
a sample web as constructed in Theorem B7l For ¢ € R, let Iy(t) := {m(t) : m € Wh, o < t}.
By Theorems B7 and B, (W, W) is a pair of sticky Brownian webs, while by Theorem B.7]
we have the representation

P / po(dx)B[, (1) € - | (W, M)]. 9.2)

Lemma[@.dlimplies that a.s. {W(Tx 0) (t)}zer C Io(t), which is a countable set. Therefore p; must
be atomic with atoms in y(t). ]

The proof of Theorem 2.8] (a) shows that at deterministic times, p; is concentrated on the
countable set Iy(t) of points where there is an incoming path of the reference Brownian web.
The following lemma, which will be needed in the proof of Theorem below, tells us which
points in Iy(t) carry positive mass.

Lemma 9.2 (Position of atoms at deterministic times) Let py be a deterministic finite
measure on R, let (p)i>0 be a Howitt-Warren process constructed as in (Z2) and let Iy(t) :=
{m(t) : m € Wh, or <t}. Then for each deterministic t > 0, one has

{z e R: p({x}) > 0} = Io(t) N supp(p) a.s. (9.3)

Proof. The inclusion C follows from our proof of Theorem (a). If both the left and right
speeds of the Howitt-Warren flow are finite, then by Proposition [20] (d) and Theorem 27] (a),
supp(p¢) consists of isolated points, hence {z € R : p;({z}) > 0} = supp(p;), which by the
inclusion C implies that we have in fact equality in ([@.3]).

If at least one of the speeds of the Howitt-Warren flow is infinite, then by Theorem 2.7 (b)
and (c), either supp(p:) = R or supp(p:) is a halfline. To prove the inclusion D in ([©.3)
in this case, let us fix a typical realization of the reference web and set of marked points
(Wh, M), which together with py determines (ps)s>0 by ([@.2). Let us take x to be any point
in Iy(t) Nsupp(p;). We will treat the cases that x lies in the interior or on the boundary of
supp(p;) separately.

Assume for the moment that z lies in the interior of supp(p;). We fix a regular version of
the conditional law P[(W, W) € -| (Wy, M)] of the sample Brownian web W and its dual W
given the marked reference web (Wy, M). As discussed in the first remark below Theorem [3.5]
for a.e. w in our underlying probability space, the sets of paths (W,W) have the same a.s.
properties under this conditional law as a double Brownian web and we can define probabilities
for special paths such as 7, ml simultaneously for all z € R%. Let 7 and #} denote the left-
most and right-most elements of W(z). For each y € R, let 7, := sup{s < t : fr(_y’t)(s) =
ﬁz;’t)(s)}, and let I(t) := {n(t) : m € W, o < t}. By the structure of special points of the
Brownian web (Proposition B3]), a.s. 7, < ¢ for all y € I(t), which equals Iy(t) by Lemma 0.1
In particular, for all x € Iy(t) that lie in the interior of supp(p;) and for all ¢,, 1 ¢, we must

have
JEEOP[TI <tn | Wo, M)] =1. (9.4)

Since we have assumed that either the left or right speed of the Howitt-Warren flow is infinite,
supp(ps) is either a halfline for all s > 0 or the whole line for all s > 0. In the halfline case,
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Prop. and Lemma further imply that the boundary of supp(p;) is continuous in t¢.
Therefore if z lies in the interior of supp(p;), then we can choose t,, depending on z such that

P[r < tn, (ﬁ(_:at)(tn)’ﬁz;,t) (tn)) C supp(ps,) | (Wo, M)] > 0. (9.5)

Note that every path in W started from (7_(t,,), 74 (t,)) X {t,} must pass through x. There-
fore, by Prop. B8 (d),

) = [ o (@0 onte) B[ [otans )y (0000
> B[, (70 (tn)s 0 () | (W0, M)] > 0.

If = lies on the boundary of supp(p;), then by symmetry, it suffices to consider the case
that 5_ = —o0, B4 < oo and supp(p;) = (—o0o, z|. In this case, as in the proof of Lemma 1]
we can without loss of generality assume that (Wy, M, W) are constructed as in Theorem B.7]
with 1 = 0. In this case, W) is the right Brownian web associated with the Brownian halfnet
Ns from Lemma Bl hence by Proposition B9l supp(p;) = (—oo,7’(¢)] (¢t > 0) where 7°

is the a.s. unique path in W) starting at time zero from sup(supp(pg)). Set 7~ := a

(9.6)

wo(t),t)”
Since (W, W) is distributed as a left-right Brownian web when averaged over the law of

(W, M), by Proposition [64] any path 7 € W entering x = 7°(t) must satisfy 7(s) = 7%(s)
for some o, < s < t, and hence, since paths in W cannot cross paths in W from left to right,
7 i=sup{s < t:7%(s) < 7#7(s)} <t a.s. It follows that for deterministic ¢, 1 t,

lim Pl <t | Wo, M)] = 1. (9.7)

In particular, we can choose n (depending on (Wp, M)) large enough such that this probability
is positive. Again by Proposition applied to (W, W), we have #~(t,) < 7%(t,) a.s. on
the event 7/ < t,. Now the argument proceeds as in the case when z lies in the interior of
supp(pt), with the interval (fr(_x’t) (tn),fr;r )(tn)) replaced by (77 (t,), 70 (t,)). ]

x,t

9.2 Non-atomicness at random times for non-erosion flows

The proof of Theorem 2.8 (b) is a bit involved. When v(0,1) > 0 and 4 — f— < oo, the
Howitt-Warren process (p):>0 can be constructed from a Brownain net as in Theorem 7] In
particular, at each separation point of A, mass splits binarily. We can then use the fact that
separation points are dense in space and time to split each atom in pg infinitely often to reach
a random time ¢ when p; contains no atoms. This is closely related to, and in fact implies,
the fact that the branching-coalescing point set &, whose properties are listed in Prop. 2.0
admit random times when & has no isolated points. When Sy — f_ = oo, it turns out that
as long as v(0,1) > 0, the picture of binary splitting of mass is still valid, although more
work will be required. To avoid repetition, we will prove Theorem (b) directly under the
general assumption v(0,1) > 0, which we assume from now on. Who wants to see a similar,
but simpler proof should read the proof that there exist random times when &; has no isolated
points in [SSS09, Prop. 3.14].

Let (Wp, M, W) be a reference web, a set of marked points, and a sample web with
quenched law Q as in Theorem B.7, where we take 1, = v, = v. We will use the version of
Howitt-Warren flow (KsTt) s<t in Theorem B.7] to represent the Howitt-Warren process

o= [ @)K o) = [pulda)Bll, o (0) € 109,00 = [pu(n)Qe], (0 € 1. ©08)
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where KT satisfies Prop. (i)', which implies that ([Q.8]) holds a.s. for all s < ¢.

The heuristics outlined before require two ingredients. First we need to establish the
existence of bottlenecks, i.e., points in space-time where most of the mass in py must enter.
Secondly, at such bottlenecks, mass is split binarily. When the flow can be embedded in a
Brownian net, separation points provide the bottlenecks. In general, choose € (0,1) such
that v([n,1 —n]) > 0. Then

Al i =A{z: (z,w;) € M,w, € [n,1 —n],z is of type (1,2); in Wy} (9.9)

will provide the bottlenecks we need, and we will show that an atom of size 1 entering any
z € Al will be split into atoms of size no larger than 1 — /4.

Lemma 9.3 (Bottlenecks) Let pg = dy, the delta mass at 0. Then a.s. w.r.t. (Wy, M), for
any 6 > 0, we can find a point z = (x,u) € Al with u € (0,8) such that p,({z}) >1—4.

Proof. By Theorems [B.7 and B, (Wy, W) is a pair of sticky Brownian webs with drift 5 and
coupling parameter x = 2r([0,1]). In particular, by Propositions and [Z3] if 7° resp. 7
denotes the a.s. unique path in Wy resp. W starting from the origin, then (7% 7) solves the
Howitt-Warren martingale problem, which is equivalent to (2.6]) and (29]). Without loss of
generality, we will assume 5 = 0.

Our basic strategy is to first explore backward in time and find a z = (z,u) € A? that
uses only information about (Wy, M) above time u, and then get a lower bound on p,({z})
by using the fact that the increments of (7% 7) on the time interval [0,u] are independent
of (Wy, M) restricted to the time interval (u,00). The actual proof will consist of a direct
analysis of (7%, ), using additional information from (Wy, M) when necessary.

Fix any ¢ > 0. For each 0 < s < t, consider the following subset of (1,2); points along 7

Iy ={ly,v):s<v <t y= m(v) = ﬁ-?ﬂ-O(u)_l_&u)('U) for some u € (v,t]},

where fr?ﬂo(u) ) is any path in the dual reference web Wy starting from (70(u) +e,u). Tt

+e,u
was shown in [NRSI0, Lemma 7.2] that [, 4 contains exactly the points of intersection on the
time interval [s, ] between 7° and a backward Brownian motion #° starting at (7%(t) + ¢, 1),
which is Skorohod reflected between (7°(r))o<,<; and (7°(r) 4+ €)o<r<¢. In particular, after

reversing time and centering, the triple

(ZT)OST’St = (Wo(t —r)— Wo(t)v ﬁ'o(t —r)— 770(0? el(‘[ﬁf—r,t}))0<r<t
€
[t—r,t]
I [Et—r, 1 and is a finite continuous increasing process. Also note that (7%(t —r) — 7%(r))o<,<¢ is
distributed as a standard Brownian motion.

By the definition of A} and our construction of M in Theorem B, conditional on Wy,

AN Iﬁm is a Poisson subset of Iﬁm with intensity measure 21{261[50’t]}£1(dz) f[n,l—n] ¢ 'v(dg).

In particular, A N Ifo 1 is a.s. a finite set. If AN I[‘EO 1 # (), then let

is a strong Markov process, where ¢)( ) is the intersection local time measure of the set

o= sup{r € [0,4] : (x°(r),r) € A7 N Ionhs

and denote the corresponding point in A? N I[EO 1 by 25t = (25, 751). If A? N I[EO g = (), then
we set 75! = 0 and 25! = (0,0). Therefore

]P)I:Tevt > 0|W0] _ 1 o e—C'r],uél(I[soyt])’ Where 67771/ = 2/ q_ll/(dq)
[n,1-n]

88



Now observe that we can construct 75 by setting ¢t — 75 := t Ainf{r > 0 : ¢,, Vﬁl(I[t i) = L},
where L is an independent mean 1 exponential random variable. In particular, conditional
on L, t — 715t is a Stopping time for the process Z. Therefore, conditional on 7! and
(Z, Jo<s<t_ret, the law of (7°(s), m(s))g<s<ret remains the same as before because conditional

on 7t (7 0)0< s<r=t is a Brownian motion independent of (Z Jo<s<t—r=t , and 7 is constructed
by sw1tch1ng among the truncated paths {(v(s))sy<s<ret : 1Y€ Wo,o:y = 50 < 75!} using
independent Poisson processes, which are all independent of ( s)o<s<t—r=t. Lherefore

P[5 > 0,70(r") = n(r")] = E[lreesoy PIr°(r5") = n(75%) [ 7, (Ze)o<sctoret]]
= IE[l{7'5”5>0} ¢(T€7t)]7

where ¢(r) := P[z°(r) = 7(r)]. Note that |7°(s) — n(s)| is distributed as a Brownian motion
starting at 0 and sticky reflected at 0. It was shown in [SSS09, Lemma A.2] that ¢(r) =
P[|7%(r) — m(r)| = 0] is monotone in r and increases to 1 as 7} 0. Therefore

P[5! > 0,7°(r*) = w(r")] = ¢(1)(1 — E[fe” "), (9.10)
Note that almost surely,
U(Ii ) — 6({(7°(s),5) = s € [0,1]}),
e—0

where the right-hand side is easily seen to be a.s. infinite using the fact that 61(1[0 t]) >
ZLtE J&(Iez 1)e2, 52]) and €~ 61(I[(Z._1)82 iaz])’ i € N, are i.i.d. with the same distribution as
O(Ik 0,1 }) Therefore ([@.I0]) implies

lim lim P et 0 O0(ety et — 1.
i T [75 > 0,7°(r5") = 7(75)]

Since
P[ro > 0, 7°(r%") = 7(75")] = E[Lgresy Plr"(751) = (7| (Wo, M)]]

E[Lresoyprec ({7°(759)})],
and pre: ({7 (75%)}) € [0, 1], it follows that for any § € (0,1), we must have

: : et . 0/ et > — — 1.

12%115161[[”[7' >0, prec ({7 (759} > 1-6] =1
Therefore for any sequence (g,,,t,) — (0,0), a.s. with respect to (Wp, M), the event {r¢min >
0, prenin ({70(75t)}) > 1 — §} must occur infinitely often by Borel-Cantelli. The lemma
then follows. B

Next we show that mass entering any z € A? must be split into smaller atoms.

Lemma 9.4 (Splitting of mass) Almost surely w.r.t. Wy, M), for each z = (z,u) € A/
and for any €,0 > 0, we can find h > 0 such that if (pt)i>v is defined as in (338) with
pu = Oz, the delta mass at x, then for allt € (u,u+ h), we have p([x —e,x +¢€]) > 1—6 and

|ptloo := supyeg pe({y}) < 1—n/4.
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Proof. As we will see, the bound p;([x —¢,z+¢]) > 1—6 will follow from the weak continuity
of p; in t > u. To show the splitting of mass, |pt|c < 1 — n/4, the key is to show that for
a typical realization of (Wp, M), z is of type (1,2), (resp. (1,2);) in the sample web W with
probability w, (resp. 1 —w,). To prove this, we will embed the reference and sample webs W)
and W in a Brownian net, whose separation points contain all of A}

Recall from Theorem [B.7] that W is constructed from (W, M) by switching paths in W
at a countable collection of (1,2) points A U B, where A is a random subset of the marked
points in M, with z included in A independently for each (z,w,) € M with probability w,
if z is of type (1,2); in Wy, and with probability 1 — w, if z is of type (1,2),; while B is an
independent Poisson point set on (1,2) points with intensity measure 2v({0})¢ + 2v({1}),.
Note that conditional on Wy, AU B U A] is a Poisson point process on (1,2) points of W,
with intensity measure

20([0,1))£:(d2) + 2(v([0,m)) + /

¢~ v(dg) + v((1 = n,1])) A(d2).
(n,1—n]

By Theorem [£.0] if we allow hopping at all points in AU B U A?, then we obtain a Brownian
net A with left and right speeds

B-=5-2(0.1) ad 8y =5+2(u((0m)+ [

a'v(dq) +v((1—n,1))).
[n,1=7]

Clearly Wy and W are subsets of N, and all points in A? are separation points of N'. In
particular, a.s. each point in A is of type (1,2) in W. Given z = (z,u) € A/, let 7, resp. m
denote the left resp. right of the two outgoing paths in W at z, and recall from after Prop.
that 7. picks from 7 and 7, the natural continuation of any paths in W entering 2. By
@R), given p, = b, we have py(-) = Plxl(t) € -|(Wo, M)] for all ¢ > u. Since 7} is a.s. a
continuous path starting at z, for any €, > 0, we can choose h > 0 sufficiently small such
that p(jz — e,z 4 ¢]) = P[rl(t) € [# — e, 2+ €]|(Wo, M)] > 1 — 6 for all t € [u,u + h]. This
establishes the first part of the lemma.

Since z € A/, we have (z,w;) € M for some w, € [,1 —n]. By our construction of W
in Theorem B.7] and the natural coupling between sticky Brownian webs and Brownian nets
given in Lemma [6.16 we note that conditional on (Wy, M) and A U B\{z}, W is uniquely
determined except for the orientation of paths in WV entering z, which is then resolved by
an independent random variable a, with Pla, = 1] = w, and Pla, = —1] = 1 — w,. More
precisely, we set signy,(z) = a., and = 77 when o, = 1 and = m, when a, = —1.
Therefore with p, = J,, we have for all t > u,

pi() = WP (t) € | (Wo, M)] + (1 — w2 Pl (t) € - |(Wo, M)]. (9.11)
Almost surely, 7, < 7 on (u,u + h) for some h > 0. Therefore for h > 0 sufficiently small,

Plr; (t) <7 (t) for all t € (u,u+ h)| (Wo, M)] > (9.12)

DO | =

We claim that this implies sup,cg pr({y}) < 1 —n/4 for all ¢ € (u,u + h). Otherwise if
pt({y}) > 1 —n/4 for some t € (u,u+ h) and y € R, then by (@.11]), we must have

Pl (t) # y|(Wo, M)] < 422 si and Pl () # y|(Wo, M)] < 1 — i

(1 —w,) =
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since w, € [n,1 — n]. This implies that

1
Pl (t) <7 (t) | Wo, M)] <Pl (t) # yl(Wo, M)] + Plrz (£) # y|(Wo, M)] < 3
contradicting (@I2]). This completes the proof of Lemma |

Lemmas and immediately imply the following.

Lemma 9.5 Let pg = 6, for some x € R, and let n € (0,1) satisfy v([n,1 —n]) > 0. Then
for any £,0,h > 0, a.s. there exists (u,v) C (0,h) such that pi([x — e,z +¢]) > 1 — 0 for all
t € [0,v] and [pt|oo := supyer pt({y}) < 1—n/5 for all t € [u,v].

Now we can prove the existence of random times when p; is non-atomic, if v(0,1) > 0.

Proof of Theorem [2.8] (b). It suffices to show that for each interval (u,v) with 0 < u <
v € Q, as. there exists ¢ € (u,v) such that p; has no atoms. Denote A := sup,cg pu({y}), and

let p; be defined using (K t)s<t as in (8.

By Theorem 28] (a), which we have already established, p, is a.s. atomic. Since pq is
assumed to be a finite measure (for infinite pg, see the remark after Theorem[29]), for any e > 0,
we can find a finite set of atoms of p, at {x1, -+ ,xx} with A = p,({z1}) > pu({x2}) >
such that p,(R\{z1, - ,2zx}) < el For t > u, let

i [ Kl (@, )pu(de), and o7 = p,({e K] (@) for 1<i<k.
¢{w1, -z}

We can find 91, -+, > 0 such that
[ — 0,25 + 0] N [xj — 05,2 + ;] =0 for all i+ j.

By Lemma 0.5 we can choose (u1,v1) C (u,v) with uy,v; € Q such that
k .
Zpgz) (R\[x; — 0i, ;i + 6;]) <eX forall t € [ug,v], (9.13)

and

sgppt ({y}) (I —=n/5)A  for all t € [uy,vy].

Y

Our construction guarantees that uniformly in ¢ € [ug,v1], apart from the mass from p? and
from ([@I3) (with a total mass of at most 2e\) which we do not attempt to control, the atom of
pu at x7 is split into atoms contained in [z1 — 7, x1 + 1] with size no larger than (1—7/542¢)A,
the atom of p, at x;, for 2 < i < k, stays within [z; — ;, x; + ¢;] and can only gain a mass of
at most 2e\, and there is no merging and formation of new atoms with size larger than 2e\.
By choosing ¢ > 0 sufficiently small and iterating a finite number of times (say m times) the
same argument, we can split all the atoms of p, at {z1, -, 2z} and find u,,, v, € Q such that
supyeg pe({y}) < (1 —n/6)A for all ¢ € [uy,, vy]. By repeating the whole argument above, for
each n € N, we can inductively find v, v € Q with v < v" Y < 4™ < v( n < (=) <y,

such that sup,eg pt({y}) < 1/n for all ¢ € [w™, 0] Any t € ,,en[u™,v™] # 0 then gives
a time when p; contains no atoms. In fact, [, cn[u u(™ v(™] contains a single point since p; is
a.s. atomic at deterministic times by Theorem (a). |
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9.3 Atomicness at all times for erosion flows

In this subsection, we prove Theorem (¢). In fact, we will prove the following stronger
result. Note that below, when we apply Theorem B.7, we deviate from the canonical choice
M= =U.

Theorem 9.6 (Atomicness of erosion flows) Let p = (p)i>0 be a Howitt- Warren process
with drift 8 € R and characteristic measure of the form v = codg + ¢161, with co,cq1 > 0,
started in some deterministic, finite nonzero measure py on R. Let p be constructed as py =
fpo(da:)K0T7t(a;, -), where (K;t)sgt is the Howitt-Warren flow constructed as in Theorem [3.7]
using a reference Brownian web Wy with drift By = 8 — 2co + 2¢1, v = codg and vy = c101.
Then a.s., py is purely atomic at each t > 0 and

{(z,t) e R?: ¢t >0, pi({z}) >0}

9.14
:{($,t)€R2:t>0, z € supp(p), Im € Wy s.t. op <t and w(t) = x}. (6-14)

Remark. Note that if ¢y and ¢; are both strictly positive, then by Theorem [2.7] (¢), supp(p:) =
R, and hence the right-hand side of ([@.I4]) is just the set

{(x(t),t) : t >0, T €Wy, or <t}. (9.15)

We state as an open problem whether in this case, Wo‘go, the restriction of Wy to the time
interval [0, 00|, can a.s. be uniquely reconstructed from (p;);>0. In fact, it seems likely that
Wo‘go consists of all paths 7 € II starting at o, > 0 such that p,({m(¢)}) is locally uniformly
bounded away from zero on (o,00). Note that Wo‘go cannot be reconstructed from the set
in (@3], since switching the orientation of finitely many points of type (1,2) does not change
this set.

Recall that for an erosion flow, Q! := ]P’[WI € - | Wo| as defined in ([@I8) is the quenched
law of a Markov process in a random environment. Theorem [0.6] says that conditional on W,
this Markov process has the property that at all fixed times ¢ (that may depend on W, but not
on W), the motion is located in the countable set Iy(t) of points where there is an incoming
path from Wy. This type of behavior is reminiscent of the FIN diffusion defined in [FIN02],
which is concentrated on a random countable set at each deterministic time.

Our proof of Theorem [0.6lis based on the following lemma, which controls the speed of mass
loss of an erosion flow along a path 7 € W,. The proof of this lemma is somewhat involved.
The intuitive idea behind it is that, for erosion flows, mass must dissipate continuously, which
is contrary to the case v(0,1) > 0 where mass undergoes binary splitting. However, a crude
estimate on the loss of mass from 7¥ will show that all mass is lost instantly. Indeed, we
conjecture that (p;({7°(t)}))i>0 as a function of time has locally unbounded variation, which
means that in each positive time interval an infinite amount of mass leaves and rejoins 7°.
Nevertheless, formula (@.16) below shows that the decrease of this process is, in a sense, Holder
continuous for any exponent vy < 1/2.

Lemma 9.7 (Atomic mass along a reference Brownian web path) In the set-up of
Theorem [2.8, assume that pg = & and let ©° be the a.s. unique path starting from the origin
in the reference web Wy. Then a.s. with respect to Wy, for each v € (0,1/2), there exists a
constant 0 < Cy yy, < oo depending on v and Wy, such that

po({7°(0)}) = p({7°()}) < Coet?  forall 0<t<1. (9.16)
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Moreover, for any & > 0, there exists a deterministic constant 0 < Cs, < oo, such that the
random constant C., yy, satisfies

C
P[Cyw, > u] < % A1 for all u > 0. (9.17)

Proof. To prove ([0.16)), we will apply a one-sided version of Kolmogorov’s moment criterion,
Theorem [EI] to the process X; := p;({m%(t)}). Note that we cannot expect the gain of
mass at 7 to be continuous due to the merging of atoms. Therefore the standard version of
Kolmogorov’s moment criterion is not applicable.

Let 7 denote the a.s. unique path starting from the origin in the sample web WW. Then by
construction,

X, = Q[n(s) = 7%(s)] = P[n(s) = 7°(s)|Wo] a.s. for all s > 0.
For any 0 < s <,

Xo=Xe = Pn(s) = 7%(s)[Wo] — Pln(t) = 7°(t)|Wo]
< Pln(s) = 7°(s), m(t) # 7°(t) Wol.

Let (W);)ien be i.i.d. copies of the sample web W conditional on W, with W;(0,0) = {x'}.
Then for any k € N,

E[((X, — X)) 1)*] < Plai(s) = 7%s), 7 (£) # 7°(¢) for all 1 < i < k). (9.18)

Since (Wi)lgigk are constructed from W, by independent Poisson marking and switching of
(1,2) points of Wy with intensity measure 2c¢l1+2c; £y, if we allow paths in W to hop at all such
marked points, then by Theorem LGl we obtain a Brownian net N' = N (k) with left and right
speeds _ = B_(k) = fo — 2kc1, By = B4 (k) = Bo + 2kcy. By Proposition A5, Wy, --- , Wy
are all contained in A. Since the Poisson marked (1,2) points of W, are a.s. distinct for
different W;, at each separation point z of A/, we must have sign,(W)p) = sign, (W;) for all but
one i € {1,--- ,k}. Note that at this place, we make essential use of the fact that we have
an erosion flow; in fact, this is the only place in the proof of Theorem where we will use
this. Let Ny; = N, (k) be the number of s, t-relevant separation points along 70 on the time
interval (s,t). Then the event in the RHS of ([@.I8]) can only occur if Ng; > k.
We will next bound P[Ny; > k] and show that

E[((Xe— X)T)] SP[Noy > K] < Ci(t—s)7  (0<s<t<1)

for some C} depending only on k. We can then apply the one-sided Kolmogorov’s moment
criterion, Theorem [E.I] to deduce (Q.I6]).

Let (W', W") be the left-right Brownian web associated with A, and let W, Wr) be
the corresponding dual left-right Brownian web. Note that (W', W,) and (Wy, W') each
form a left-right Brownian web. For any deterministic 0 < s < t < 1, the s,t-relevant
separation points along 7 which are of type (1, 2); in Wy can be constructed by first following
71 € Wr(n0(t),t), starting on the right of 7°, until the first time 7; when 7, crosses 7 from
right to left. This gives the first s, t-relevant separatlon point (m ( 1), 1) of type (1,2), along

70, We then repeat the above procedure by following 75 € Wr(%(71), 71) until the first time
7o when 79 crosses 7V from right to left. Iterating this procedure until time s exhausts all s, t-
relevant separation points of type (1,2); along 7%, the total number of which will be denoted
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by N!, and is a.s. finite by Proposition (b). By [SSS09, Lemma 2.2] and its proof, if we
define # = 7 on [r1,t], # = 73 on [r9, 1], ..., then 7 is distributed as a Brownian motion B!
with drift —3, starting from (7°(t),t) running backward in time and Skorohod reflected to
the right of 7°. More precisely, (7(t — v)),>0 solves the Skorohod equation

di(t —v) = dB'(v) + dAl(v), 0<v<t-—s,

(9.19)

di(t —v) = dB'(v), t—s<w,
where Al(v) is an increasing process with fg_s 1{,:(t_v)¢ﬂ0(t_v)}dAl(v) = 0, and 7 is subject
to the constraint #(v) > 7(v) for all 0 < v < t — s. Furthermore, by [SSS09, Lemma 2.2],
conditional on 70, the set of s, t-relevant separation points of type (0,1); along 7 is distributed
as a Poisson point process along 7° with intensity measure 2kcodAl(v) on the projected time
interval [s, t], where 2kcy is the difference between the drifts of Wy and W,., and its appearance
in the intensity measure can be deduced from the fact that Brownian nets of different left-right
speeds are related by changing the drift and performing diffusive rescaling. In particular, V. ;t
is distributed as a Poisson random variable with mean 2kcoAl(t —s). Therefore for any k; > 0,

© 4 ) 1 )
PNy > k)= TE[e_%COAI(t_S)(2kcoA1(t — )] < =E[(2keoAl(t — )] (9.20)
’ Jj=k J: i=k J:

The Skorohod equation ([@.I9) admits a pathwise unique solution (see e.g. [KS91, Sec. 3.6.C])
with Al(t — ) = — infogvgt_s(Bil(v) — 7%(t —v)). By the independence of B' and 7°, B'(v) —

70(t —v) is distributed as —v/2B'(v) — 2kcgu for a standard Brownian motion B! starting from
0. Therefore

At —s) =t —s sup (V2B'(v) + 2kcovv/t — s) < Vit — S(\/§ sup B'(v) + 2kcov/t — s).

0<v<1 0<v<1

Letting ¢, denote the function ¢y, (2) :== >,y %zj, we observe that ¢, (A2) < Ay (2) for
all z> 0 and 0 < X\ < 1. Substituting these bounds into ([@.20), we see that we may estimate

P[Nslﬂg > k) < (t— 3)kl/2E[¢kl(\/§ sup B'(v) + 2kco) | forall0 <t—s<1.
0<v<1

Since supp<, <1 Bl(v) is equally distributed with | B'(1)|, which has finite exponential moments,
it follows that
PN}, > k] < Crpy(t—s)f/2  forall0<t—s<1

for some Cky, depending only on k and k and ¢p. If we let N, denote the number of
s, t-relevant separation points along 7 which are of type (1,2), in Wp, then similarly, Ngy
is distributed as a Poisson random variable with mean 2kc; A'(t — s), where A™(t — s) =
SUPg<p<t_s (BT (v) —7°(t —v)) for an independent Brownian motion B* with drift —3_ starting
from 79(t). Also, for any k, > 0,

P[Ng; > k] < Cp, (t — s)k:/2 foral0<t—s<1

for some C} 1, depending only on k£ and k, and c;.

Observe that if we impose the partial order < on Cy([0,¢ — s]), the space of continuous
functions with value 0 at 0, where f,g € Co([0,t — s]) satisfies f < g if f(v) < g(v) for all
v € [0,t—s], then conditional on B! and B*, Al(t—s) is increasing in (7%(t—v) —7°(£)) pefo,i—s)»
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while AT(t—s) is decreasing in (7°(t —v) — 7 (t)),efo,1—s- This implies that for any ki, ky > 0,
PN}, > ki|n®, BY] is increasing in (7%(t — v) — 7°(t))yej04—s)» While P[NE, > k|x®, B"] is
decreasing in (7%(t — v) — Wo(t))ve[o,t—s], and hence the same holds for P[Nsli > ky|7°] and
P[NE, > ke|n%]. Since the Brownian motion (7°(t — v) — 7"(£))yef0,—s satisfies the FKG
inequality w.r.t. the partial order < (see e.g. [Bar05]), and the events {N!, > ki} and {NI, >

k. } are independent conditional on 7V, we have

P[Ney > ki, Niy 2 k] = E[P[Ng, 2 ki|n°[P[NS, > ki|n°]]

k1 +kr

< P[NL, > RPN}, > k] < Chop Cho ™2

Since Ng; = N} + T Nj 4, substituting this bound into ([@.I8]) then gives

[SIEa

k
E[((X, — X)) < PNy, > k] < > PINL, >0, N5, >k —i] < Cy(t — s) (9.21)
=0

for some C} depending only on k.

We can now apply the one-sided Kolmogorov’s moment criterion, Theorem [E.1l which
implies that for any v € (0,1/2) and ¢ > 0, if we choose k sufficiently large in ([@.21]) such that
(k/2—1)/k >~ and k/2 —1 — vk > §, then there exists a random constant C, )y, such that

Xo— X; = po({7°(0)}) — pe({7°(1)}) < Cymt” for all t € Q2N [0,1], (9.22)

where the distribution of C. yy, satisfies (Q.17).

To extend ([@22) to all t € [0, 1], we note that p.(-) is a.s. weakly continuous in ¢, which
implies that j;(-) := p¢(7%(¢) +-) is weakly continuous in ¢ because 7° is a.s. continuous. Since
{0} is a closed set, p;({0}) = p({n°(¢)}) is upper semi-continuous in ¢. Approximating any
t € [0,1] by a sequence t,, € Q2 N [0, 1], we can then use ([@.22]) to deduce (Q.16]). ]

Proof of Theorem By the third remark after Theorem 2.9 it suffices to consider the
case po is a probability measure. Let Io(t) := {n(t) : # € Wh, o < t}. We start by proving
that

Plp:(Ip(t)) =1 ¥Vt > 0] = 1. (9.23)

The proof of Theorem [2.8] (a) in Section showed that
Plpi(lp(t)) =1 =1 (t > 0). (9.24)

Fix some deterministic s > 0. For each z € R, let p(*) denote the Howitt-Warren process
started at time s from pgm) ‘= {,, constructed from the same reference web Wy as p. Then
Pt = Dweln(s) ampgm) (t > s), where a, = ps({z}). If z is deterministic or if =z € Iy(s),

then there is an a.s. unique path in Wy((z, s)); let ﬂ?x 5) denote this path. Then, for each
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deterministic € € (0,1) and u > s,

P inf pullo(t) <1 —s} <P| inf > ({0 <1-¢|

te(s,ul te[s,ul

i ze€lo(s)
§]P’ 1nf Z axpt m)(t)})gl—a]
EIO
<P| Z amtengfupt (EAOPESEE
xEIo()
—B[ Y ar s (1 () (0D) 2 <]

“zelp(s) t€[s.u]
- = 6
<eB[( 3 @ sw (11—, 01)) ]
" zelo(s) te[s,ul

<< B[ 3wl sw (1- 5 ({nl, (01)°]

:xEIo(S) te(s,ul
=< B[ swp (1= pl” Uy ()]

where in the last inequality we applied the Holder inequality w.r.t. the probability law given
by the (as)zery(s), and in the last equality we used the spatial translation invariance of Wj.
By Lemma [0.7 with v = 1/3,

E{ sup (1— pt ({77(0 5) (t)}))6] < E[Cﬁ‘hwo (u—3s)*] = C(u—s)? (9.25)

te[s,ul

for some finite C' > 0, since C, )y, has finite moments of all orders by (@I7)). Therefore, by
our previous calculation, uniformly for all deterministic 0 < s < u,

IP[ inf py(Io(t)) <1 — g] < Ce~S(u — )2 (9.26)

te(s,ul

It follows that for each n > 1,

P| inf Lt) <1l—g| <) P f Io(t) <1—¢| <Ce 527 (9.27
ot pifo(®) 6} Z Lekllgnm , pildo(®) < 6]_ e (9.27)

Letting first n — oo and then ¢ — 0 shows that that a.s. pi(Ip(t)) = 1 for all ¢ € (0,1], and
similarly for all ¢ > 0. This completes the proof of ([@.23]). In particular, this shows that almost
surely, p; is atomic for all £ > 0.

To complete the proof, we need to show that almost surely, for all ¢ > 0,

{2 €R: pu({2}) > 0} = Io(t) Nsupp(pe). (9.28)

The inclusion C follows from ([@23]). The inclusion D is trivial for the Arratia flow, for
which the characteristic measure v = 0. To prove it for erosion flows with v = ¢gdg + ¢161
(co + ¢1 > 0), by Lemma [B7] and Proposition 89, we only need to consider the cases that
either supp(p;) = R for all ¢ > 0, or supp(p;) is a halfline whose moving boundary is a path
in Wy. Let T C (0,00) be a deterministic countable dense set. Then for each t > 0 and
x € Ip(t) Nsupp(p;), we can find a time s € T and y € Ip(s) Nsupp(ps) such that W(Oy’s) (t) = =z,
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where ﬂ?y 5) denotes the a.s. unique path in W) starting from (y, s). Since by Lemma [0.2] we

have {z € R : ps({z}) > 0} D Iy(s) Nsupp(ps), it suffices to prove that if 7° is a path in Wy
and ps({7%(s)}) > 0 for some s € T, then p;({z°(¢)}) > 0 for all t > s.

By translation invariance, and the fact that Iy(s) is independent of the restriction of W
to [s, o0, it suffices to prove that almost surely, if 7° is the unique path in Wj starting from
the origin and pg = &, then p;({7%(¢)}) > 0 for all £ > 0. To see this, set

Vo= K1, (r%(s), {7°(1)})  (0<s<t) (9.29)
and observe that ¢ 114, < s, (0 < s <t <w). It follows from (9.25]) that

P[ inf s, < 1/2] < C(u — s)? (9.30)

te(s,ul
for some finite C' > 0, and therefore

on

P| inf =0 < P inf _ygeng < 1/2] < C27™ 9.31

[tel][%,l} voe=0] < ; [te[(k_lig*n,kr"] Y-z < 1/2] < 931

Letting n — oo shows that a.s. p({7°(t)}) = 1o+ > 0 for all ¢ € [0,1] and similarly for all
t> 0. |
Proof of Theorem 2.8 (c). Immediate from Theorem |

10 Infinite starting mass and discrete approximation

In this section, we prove Theorems Z.OHZT0, which will be based on our construction of the
Howitt-Warren flows in Theorems 3.7 and 4.7

10.1 Proof of Theorem

We first prove part (b), assuming 4 — f— < oo. By Theorem A7, we have the following
representation for a Howitt-Warren process with drift 5 and characteristic measure v:

P / palde) K7, (z, ) = / polda)Plrs, (1) € |(W,w)]  forall s <t, (10.1)

where N is the Brownian net with left and right speeds 5_ resp. B4, w := (w,),es are ii.d.
marks attached to the separation points S of N/, and 71&8) is the rightmost path starting from
(x,s) in the sample web W conditional on the random environment (N,w). By construction,
W C N as., therefore for any L > 0, ngt(x, [—L,L]) = 0 if |z| is sufficiently large. This
implies that if pg € M, then a.s. p; € My, for all t > 0.

Let s, tg, t, pg? and po be as in Theorem By the representation (I0.1]), proving

[2I8]) with vague convergence in Mj,.(R) amounts to showing that, for all f € C.(R),
[ @l ) V)] =3 [ ) ES g Vo] s (102)

Note that the sample web W constructed in Theorem E.7] and from which we draw 7T(+ ¥ is

.y

distributed as a Brownian web with drift 3. Therefore for each (r,s) € R?, a.s. (z,s) is of
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type (0,1) in W, and hence W(J;n o) 7T(x 5 for any (n, $n) — (x,s). By Fubini, a.s. w.r.t.
(N, w), there exists a set A,y C R with full pg measure such that for all x € Ay ), (z,0)
is of type (0,1) in W a.s. w.r.t. the quenched law Q :=P(W € -|(N,w). This implies that

¢(N,w)(m73;t) E[f( (gcs ( ))’(va)]
is continuous at all z € Ay ), s = 0 and ¢t > 0. Since W C N a.s. and f has compact
support, there exists L > 0 such that
PN w) (T 805 tn) = E[f(ﬂ'+ )(tn)) | (/\/,w)] =0 for all |x| > L,n € N. (10.3)

(m7sn

Choose —L1 < —L and Lo > L to be points of continuity of pg. Note that restricted to
(—=Lq, Lo), pg? converges weakly to pg. The convergence in (I0.2]) then follows from the
continuous mapping theorem for weak convergence. The almost sure path continuity of (p;):>0
follows from (I0.2]) by setting s,, = 0 and pg,t) = po. This proves part (b).

We now prove part (a). When 1 — - = oo, (I03]) may fail and we need to control in
any finite region the inflow of measure from arbitrarily far away. By Theorem B we have
the representation:

pr = /ps(d:E)K;:t(l‘, )= /ps(dx)P[ﬂavs)(t) € - |(Wo, M)] for all s < t. (10.4)

Here (W)y, M) are the reference web and its associated set of marked points as in Theorem B.7]
where for definitiveness we can choose v = 1, = v, so that W, and the sample web W are
both Brownian webs with drift 8. In particular, 7T+ .0 is distributed as a Brownian motion
with drift § starting from z at time 0. Without loss of generality, assume § = 0. Since
po € Mgy(R), it is then easy to check that for any ¢ > 0,

)2
E[/ (dy \/—/po (dz) / —ey? o~ 57 dy < Cl/l)o(da:)e_cw2 < 00

for some C,Cy > 0, which implies (2.I7) and that p; € Mg4(R) almost surely.
By the representation (I0.4]), proving (ZI8]) with convergence in M,(R) amounts to show-
ing that, for all ¢ > 0 and all bounded continuous function f : R — R, we have

—C7'('+ n 2
[ ok ) B e T o0, M)

(10.5)
= /e_”zpo(dx) esz[f(ﬂ(J;’o) (t))e_m(tc,())(t)2 | Wo, M)] a.s.,
where € > 0 is chosen small. Denote
—C7'('+ 2
Sonon) (@, 5:) 1= S E[f (s (1) O | (Wo, M)]. (10.6)

As before, a.s. w.r.t. (Wo, M), there exists Any, pg) C R with full pg measure such that

Sowo, M) (T, 83 ) is continuous at all ¥ € Ay, ar), s =0 and t > 0. Our assumption pg? — po

in Mg (R) implies that e—ee? ,og:? (dz) converges weakly to e~ po(dz). Therefore (I follows
from the continuous mapping theorem for weak convergence, provided we show that a.s. w.r.t.
(W07 M)7

sup [P owe, M) (U, us V)| < 00 for all ¢t > 0, (10.7)
yeR,0<u<v<t
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so that we can apply the bounded convergence theorem. We verify (I0.7]) by Borel-Cantelli.
Without loss of generality, assume |f|o = 1. Fix ¢ > 0. For each m € Z, we have

3em? —ent ()2
E|  sup [powya)(y,usv)|| < Ce™™E| sup e —ww < 0. (10.8)
vElm,m+1] ’ vElm,m+1]
0<u<v<t 0<u<v<t

Now consider m > L for some fixed large L. By the coalescing property of paths in the sample
web W, if 71(3 /a,0) € W starting from (3m/4,0) stays within [m/2,m] on the time interval

[0, 2], then infyci, mi1)0<u<o<t 7T£Z7u) (v) > m/2. Therefore

Cm2

—emt 2 3m m _em? _m? _cm®
E[ sup e ° () (V) } S]P< sup ‘Fgm/470)(3)_ T‘ > Z) +e 1 <(Ce 32:4e 4,

y€[m,m+1] 0<s<t
0<u<v<t
and hence
(L 2 _(c_ 2 _ 2
E[ sup |¢(WO7M)(y,u;v)|] < Ce(mm=3Im" 4 O (173m° < 0y Cam (10.9)
yE€[m,m+1]
0<u<v<t

for some C1,Cy > 0 depending only on ¢ and ¢ if we choose £ > 0 sufficiently small. Thus

P( sup |¢(W0, (y,u U)| > 1) < 016—02m2‘

y€[m,m+1]

0<u<v<t
By Borel-Cantelli, a.s. w.r.t. (Wp, M), there exists a random Ny > L sufficiently large such
that supy>n, o<u<o<t [Ponp, M) (¥, u;0)| < 1. Similarly, a.s. there exists N_ < —L such that

SUP, <N o<u<v<t |PWo,Mm) (¥, u;v)| < 1. Combined with (I0.8]), this implies (I0.7), and hence

(IQ35). The almost sure path continuity of (p;)i>0 in Mg(R) follows from ([I0.5) by setting
sp =0 and ,og? = po- |

10.2 Proof of Theorem [2.10!

The proof is similar to that of Theorem 2.9 The complication lies again with infinite ﬁ§k> and
pt. Without loss of generality, assume that the Howitt-Warren process (p;)¢>0 has drift 8 = 0.
First we note that there exists a countable family of bounded continuous functions {f, }nen
such that a sequence of ﬁnite measures & € M(R) converges weakly to & € M(R) if and only
if [ fo(z)ék(dz) — [ fu(z)é(dz) for all n € N, see e.g. ﬂm Proof of Prop 3.17]. Since
& — £ in Mg(R) is equlvalent to weak convergence of e~ &, (dz) to e’ ¢(dx) for all ¢ > 0,
to prove the weak convergence in (2:20) on path space with uniform topology, it suffices to
show that for any finite sets K C (0,00) and A C N, we have

(P& @ = [ p@pl @) = (Funlt) = [ e f@iplaa)

ceK,neA n—oo cEK,nGA’

(10.10)

where = denotes weak convergence of C([0, 7], R)¥I*Alyalued random variables.

Forany ¢ > 0andn € N, F,,, € C([0,T],R) a.s. by Theorem 2.9 By similar reasoning, ﬁ§k>
has a.s. continuous sample path in M, (R) and hence Fé’fg € C([0,7T],R). Since ﬁék> converges
weakly to pg as Mgy (R)-valued random variables, the Skorohod representation theorem for

weak convergence (see e.g. [Bil99] Theorem 6.7]) allows a coupling between (ﬁék>)k€N and po
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such that ﬁék> — po in Mg(R) almost surely. Therefore we may assume that (ﬁék>)neN and pg

are deterministic and ﬁék> — po-

Recall from (3.3]) and Section B.5 the discrete quenched law Qg associated with a discrete
Howitt-Warren flow with characteristic measure py, and recall from (3.25]) and Theorem
the diffusive scaling map S. and its action on a quenched law Q. We have the representation

o = [ ()5 Qo) 1) <

(k)

where for (z,s) € Se, (Z2ien), Tias) is the unique path starting from (z, s) in a discrete sample
web W) with quenched law Se,.(Qxy)- Similarly, by Theorem [3.7],

pi= [ (@)l (0) € ).
with the quenched law Q defined as in ([B:24]). For any L > 0, we can then write

Fi8) @) = FAERH @) + RS 00 ()

c,n c,n

Fen(t) = FLPP(@) + FLPP (@),

where for any I C R,
Fla(t) = /I po<dx>@[fn<w(;,0) <t>>e—%,o><t>2}_

To prove ([I0.I0), it suffices to show that for any € > 0, ¢ > 0 and n € N, we can choose L
large such that

hmsupE“F =L LI o] <e, (10.11)
k—00
E[|FL M ] <e, (10.12)
where | - |» denotes the supremum norm on C([0,7],R), and furthermore,

(FC<,I:L>7[_L’L})CEK7HEA kf; (FC[;LL’L})CEKJlEA (10.13)

with = denoting weak convergence of C([0, 7], R)K+/A_valued random variables.
Fix 0 < ¢ < inf K and define

k),c,n 22 k —ent® 5
qﬁé@im (z,t) =€ (SakQ<k>)[fn(ﬂ(<m?0)(t))e @0 ® }7

2 + 2 (10.14)
65" (1) = e Q fal(, gy () w0 @],

Then

EE Ok =] [ e @] < [ e manlog e

IN
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Note that (ban(m,t) is exactly vy a0 (z,s;t) in (I0E) if we set s = 0 and f = f,. Since
2® po(dz) is a finite measure, ([01Z) then follows from (II(EQI) Note that ([I0.9]) is based

n

on Brownian motion estimates, and analogues of (I0.9]) for qbQ “™ can be established using

random walk estimates, which are furthermore uniform in k € N Such a uniform estimate
and the fact that e_””2 po(dz) converges weakly to e~ pg(dz) then imply (I0IIL). We omit
the details here.

Lastly, we prove ([I0.I3]), where we may assume that —L and L are points of continuity
of po(dz) so that restricted to [—L,L], e %" py(dx) converges weakly to e <*"py(dz). By
Skorohod representation, the weak convergence of S;, Qy to Q in Theorem B.9] can be turned
into a.s. convergence in M (K(II)) via a suitable coupling, which we now assume. Then the
discrete sample web W) with law Se, Qry converges weakly to the sample web W with law
Q, where the convergence can again assumed to be a.s. in IC(II) by Skorohod representation.
Then for each ¢ > 0 and k,n € N,

L
b= pibl = | [ e anl e - [ e s e

_L ()

First we claim that a.s. w.r.t. Qqy and Q, for a.e. x € [~L, L] w.r.t. the measure e‘”zpo(dx),
if z, — x for some sequence j € €;Zeyven, then for each ¢ > 0 and n € N,

(k),c,n c,n
[Pqu, " (k) = ¢g" (2 oo — 0. (10.15)

Indeed, since the law of W averaged over the randomness of Q is that of a Brownian web,
each deterministic (z,0) is a.s. of type (0,1) in W, and by Fubini, a.s. w.r.t. Q, the same is

true for e=***py a.e. z. Therefore W) — W as. in K(II) implies that ﬂ((];i 0 7T(x o) N

C([0,T],R), which when plugged into the definitions in (I0.I4)) then implies (IQI5). If we re-
gard (15(5 M (z,-) and ¢fQ§"(:E, -) as mappings from R to C([0, 7], R) and note that |¢gi};n($, Voo

and |¢g" (= ( ")l are bounded uniformly in Qy, Q and z € [~L, L], then the continuous map-

ping theorem for weak convergence implies that \Fc(@’[_L’L] — Fc[;lL’L}\OO — 0 a.s. for each

c € K and n € A, which then implies (I0.I3]). |

11 Ergodic properties

In this section, we prove Theorem ZTTHZ.T2]on homogeneous invariant laws for Howitt-Warren
processes. By the observation that p; in (Z1I]) depends linearly on the initial condition pg, the
Howitt-Warren process falls in the class of linear systems, the theory of which for processes
on Z¢ was developed by Liggett and Spitzer, see e.g. [LS81] and Chap. IX]. We will
adapt the theory of linear systems to our continuum setting. The main tools are duality, second
moment calculations, and coupling, which will be developed in successive subsections. Duality
is used to give a simple construction of the family of ergodic homogeneous invariant laws.
Second moment calculations determine spatial correlations for the homogeneous invariant
laws, and are used to prove the uniform integrability of the Howitt-Warren process (p)i>0
over time, as well as to show that certain spatial ergodic properties of the initial measure pg
are preserved by the dynamics even in the limit £ — oo. The last point will be crucial for
proving convergence to homogeneous invariant laws, which is based on coupling arguments.
Most of our arguments are adapted from [LS81] and Chap. IX], to which we will refer
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many of the details. The main difference in our proof lies in the second moment calculations
of Lemma [IT.6] for which we need to devise a different and perhaps more robust approach

than the one used in [LS81] [Lig05].

11.1 Dual smoothing process

Similar to the linear systems on Z<¢ studied in [LS8I] [Lig05], the Howitt-Warren process
(pt)e>0 is dual to a function-valued smoothing process with random kernels. Analogous to the
construction of the Howitt-Warren process from the Howitt-Warren flow (K : )s<t as in (2.10),
we can define a function-valued dual process ((;)i>0 by

/K—tO z,dy)Co(y /Q Co(m (0))] for all z € R, (11.1)

where Q is the quenched law of a sample web W defined as in Theorem B.7, and 7T(x 5 is

the a.s. unique rightmost path in W starting from (z,s). A natural state space for (¢;)¢>0 is
Dy(R), the space of bounded cadlag functions on R. Note that 7T(J; B t)(O) is cddldg in x. With

this observation, it is easy to see that if (y € Dy(R), then (; € Dy(R) for all ¢ > 0.
We have the following duality relation between (p;)i>0 and (¢¢)e>0-

Lemma 11.1 (Duality) Let pg € Mioc(R), or pg € Mg(R) if B4 — - = oo in (ZI3). Let
Co € Dp(R). Assume that either py is a finite measure or (y has bounded support. Then for

allt >0,
dis
[ a@etan ™ [ @i, (11.2)
Proof. Follows from the definition of p; and (;, and the equality in law between Kaf , and
KTy, n

The advantage of working with the smoothing process ((;):>0 is that there is a natural
martingale associated with it.

Lemma 11. 2 (Extinction vs uniform integrability) Let (o € Dy(R) have bounded sup-
port. Then [(]; == [ ((x)dx is a martingale which a.s. has a limit [(]s as t — co. Further-
more, either [Cloo = 0 a.s. for all (o € Dyp(R) with bounded support, or ([Clt)i>0 is uniformly
integrable for all {y € Dp(R) with bounded support. We say the finite smoothing process ¢ dies
out in the first case, and survives in the second case.

Proof. By separating (p into its positive and negative parts and by the linear dependence of
¢t on (p, we may assume ¢y > 0. Note that for 0 < s < ¢,

€= [ lade = [[ 52w dn)a(was
// K*, (@ d2)K7, oz dy)oly dx-//(s _o(,dz)d.

By the independence of KT, __ and (KT, 0)0<u<s, Kft’_s is independent of (¢, )o<u<s. By the

(11.3)

translation invariance in law Of K_t’_s(:n, -) in x, we note that fE[Kft’_s(x, )]dx is simply
the Lebesgue measure. Therefore

E[[Cle | (Clu)oguss] = / C(EIKY, (z,d2)ldz = / Co(2)dz = [Cls,
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which proves the martingale property of [(];. Since [(]; is furthermore non-negative, a.s. it has
a limit [(]oo

The dichotomy between a.s. extinction and uniform integrability of ([¢];)i>0 follows from
a similar argument as in the proof of Thm. IX.2.4.(a)]. Given (o(x) = 1y 1 (),
let A := E[[(]]. First we claim that for any {4y € Dy(R) with bounded support, we have
E[[¢]so] = A[¢]o. By the linear dependence of (» on ¢y and the translation invariance of the
kernels (K s‘" ¢)s<t, the claim holds for all {p which are linear combinations of characteristic
functions of finite intervals. Since all {y € Dy(R) with bounded support can be approximated
from above and below by such functions, and [(]», depends monotonically on (p, the claim
holds for all (; € Dy(R) with bounded support. The dichotomy amounts to showing either
A=0or A=1.

Note that the RHS of (IL3)) can be 1nterpreted as [C]i—s = f Ct s(x)dz for a smoothing
process ¢ defined from the time-shifted kernels (K., —s)TZO with 1n1t1a1 condition (y = (.
In particular, a.s. [(];—s tends to a limit [(]o as t — oo. Letting ¢ — oo in (IL3) then gives
[(loo = [CN]OO Therefore by Jensen’s inequality,

Efe" =] = E[e" ] > E[G—E[[E]oo \§o=Cs}] = E[e ¢,
where we now take the limit s — co and obtain by the bounded convergence theorem that
Ele~ 6] > E[e=Alee], (11.4)

Since (o > 0 by assumption in ([II3]), we have [(]oo > 0. Assume further that [(]p > 0. If
[€loo = 0 a.s., then A = 0. If [(]oc > 0 with positive probability, then because A € [0,1], (IT4)
can only hold if A = 1. [

Lemmas [T.1] and [[T.2] imply the weak convergence of the Howitt-Warren process p; with
initial condition pp(dz) = cdz to a homogeneous invariant law. Recall the set of invariant
laws Z and T from Theorem [ZTT]

Lemma 11.3 (Construction of homogeneous invariant laws) Assume that po(dz) =
cdx for some ¢ > 0. Then there exists A € ZNT such that

Lp) = A (11.5)

where L(-) denotes law and = denotes weak convergence of probability laws on Mie.(R). If
the finite smoothing process ¢ survives, then [ p([0,1])Aq(dp) = ¢; otherwise A, = &y, the delta
measure concentrated in the zero measure on R. Furthermore, A.(d(cp)) = A1(dp).

Proof. Since po(dz) = cdz, by the translation invariance of (K (7, -))zer in space, we have
E[pi(dz)] = edx for all t > 0. In particular, for any bounded interval I C R, (pe(I))e>0 is
a tight family of random variables, which implies that (p¢)¢>0 is a tight family of Mo (R)-
valued random variables (see e.g. [Res87, Lemma 3.20]). In fact (p)¢>o is also a tight family of
M, (R)-valued random variables (recall (ZI5)). This follows from the additional observation

that for any a > 0, ( e pt (dz ) />0 is a tight family of real-valued random variables,

because
SUPE[/E_anPt(dZE)] = c/e‘“m2d$ < 0.
>0
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Let ¢; be the dual smoothing process with initial condition (; € C.(R), the space of
continuous functions with compact support. If p; converges weakly to a M (R)-valued random
variable p* along a subsequence t,, T oo, then by Lemmas[IT.Jland [IT.2] we must have equality
in distribution between [ (o(z)p*(dz) and ¢[(]s. Since the law of [(]o does not depend on
t, T 00, and ¢y can be any function in C.(R), the law of p* is uniquely determined (see e.g.
[Res87), Prop. 3.19]). Together with tightness, this implies that p; = p* as Mg(R)-valued
random variables, and we denote A, := L(p*). The fact that A, € Z then follows from the Feller
property of (pt)¢>0 implied by Theorem 2.9} and clearly A. € 7. Since E[p*([0,1])] = cE[[¢]0]
with (o = 1[4}, the dichotomy between [ p([0,1])Ac(dp) = ¢ and A, = &y follows from Lemma
The scaling relation between Ay and A, is trivial. |

When the characteristic measure v for the Howitt-Warren flow is not zero so that the flow
is not purely coalescing, the possibility of A. = dg in Lemma [IT.3] can be ruled out by showing
the uniform integrability of p;([0,1]) in ¢t > 0. This can be accomplished by the second moment
calculation in Lemma [[T.6] below. In any event, we can deduce the extremality of A, in ZN7T

using Lemmas [[1.1] and IT.31
Lemma 11.4 (Extremality of A.) For all ¢ > 0, we have Ac € (ZNT)e.

Proof. The proof is the same as that of Lemma IX.2.9]. We include it here for the
reader’s convenience. Assume that A, = apg + (1 —a)pus for some o € (0,1) and py, e € ZNT
with [ p([0,1])pi(dp) = ¢, where ¢ = acy + (1 — @)cg. Then for any (y € C.(R) and i = 1,2,

[T ) = [l oW i) = [ Bl S COm )
> E[e~ /) ¢@po(da)ui(dpo)] = Rleei [ Celx)da] (11.6)

- E[e—c—ﬁ fCo(:v)pt(dx)|p0 = — e~ [ o@e(d2) g (dp),

t—o0

Where we used the fact that pu; € ZNT, duality, Jensen’s inequality, and Lemma [IT.3] Denote

fe_“fc‘) ®)Ac(dp). Since A = apy + (1 — a)us, (ILB) implies that
6(1) > ad(Z) + (1 - )p(2). (11.7)

If A. = dp, then the extremality of A, is trivial; otherwise we can find {y € C.(R) such that ¢
is strictly convex, which implies equality in (IT7) and hence ¢; = ¢o = ¢. Therefore we have
equality in (IL7) for all ¢y, € C.(R), and we can then deduce from (I1.6]) that

/e_fgo(x)po(dx)m(dpo) — /e_fCO(x)P(dx)Ac(dp%

which implies that u; = A. [ |

We remark that Lemmas IT.3] and IT.4] can also be deduced from the convergence to
invariant laws proved below using coupling. However, the proof by duality illustrates a useful
tool.
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11.2 Second moment calculations

Following [LS81] and [Lig05], we first introduce for each ¢ > 0 the subset of translation
invariant probability laws 7. C T, where I' € T is in 7¢ if and only if [ p([0,1])I'(dp) = c,
[ p([0, 1)/’T'(dp) < 55, and

/ /\/ﬁe ztp(dx)_‘:)Q P(dp) =2 0. (11.8)

For a Howitt-Warren process with initial law L(pg) € 7., we can perform second moment
calculations for p; as t — oo (see Lemma [I1.6]). Furthermore, if £(pg) € 7Tc, then any weak
limit of p; as ¢ — oo is also in 7. (see Corollary [T.9)), which will be crucial for proving the
convergence of L£(p;) to the homogeneous ergodic law A.. First we note that

Lemma 11.5 If T € T, [ p([0,1))T(dp) = ¢ > 0 and [ p([0,1])*I'(dp) < oo, then T € T..
Conversely, any I' € T. is a mizture of laws in To satisfying the conditions above.

Proof. Our assumption implies that

/ (W — c)2F(dp) P 0 (11.9)

by the Lo ergodic theorem. By the layercake representation,

1 a2 p(Vtdy)
/]R 27rte swp(de) —c = \/ﬂ/ \/zy cdy)
\/7
- E/R/o 1{Z<6%3}dz<7p( \;Edy)—cdy)

[—v—2tIn z,+/—2t1n 2])
—c)2v—2Inz dz,
\/277/0 2v/—2tIn z C> neds
2v/—2Inz

where we note that N dz is a probability distribution on [0, 1] independent of ¢. Sub-
stituting this representation into the left hand side of (II.8]), applying the Holder inequality
with respect to ¥ \/ﬁnz dz, and applying (IT.9) then proves (IT8). A more general argument

using Bochner’s theorem can be found in the proof of [Lig73, Theorem 5.6] or [Lig05, Corol-
lary 11.8.20]. The second statement in Lemma [[T.5 follows from the ergodic decomposition of
I'e7.. n

Lemma 11.6 (Second moment calculation) Let (p;)i>0 be a Howitt- Warren process with
drift p € R and characteristic measure v # 0. If L(po) € T1, then for all ¢, € C.(R), we

have
i B[ [ owinidn) [vwnian)] = [o@ar v+ LT 1

Proof. We may assume ¢, € C.(R) are non-negative. Since such functions can be ap-
proximated from above and below by finite linear combinations of indicator functions of finite
intervals, it suffices to prove (ILI0) for ¢ = 1;, and ¢ = 1y, for some finite intervals I; and
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I5. Since 2¢1) = (¢ + )% — ¢? — 92, it suffices to consider only I} = I, and we may even take
I, =10,1], so that (ITI0) reduces to showing

g&Ememﬂ:1+§R%TB. (11.11)

By Theorem B.7], we have the representation

o //Q®2 (D70, (1) € 10, 1J2>po(d:v),oo(dy)], (11.12)

where Q%2 denotes the 2-fold product measure, and 7T(1—S resp. w(’t are rightmost elements

in two independent sample webs W! resp. W2, both with quenched law Q. With respect

E[Q®?], (71 F(z,0), 7 ( 0)) is the two-point motion of the Howitt-Warren flow with drift
and characteristic measure v, and hence solves the Howitt-Warren martingale problem under
conditions (2.6) and (2.9). In particular, R; := 77( 0) (t)— 71(1;5) (t) is an autonomous Brownian

motion with stickiness at the origin, and conditional on (Ry)i>0, St := 7T( 0)( ) + 7r( )( ) is
distributed as a time change of an independent Brownian motion with drift 23. We leave the
verification of this statement as an exercise to the reader. A similar statement for a pair of
Brownian motions satisfying (£1I]) can be found in [SSO8, Lemma 2.2].

Let ,5892 = E[p6®2], and let ,6892 denote the image measure of ,5892 under the change of
coordinates (r,y) — (r,s) := (y—z,2+y). Then by LemmaIT T below, p5?(dr ds) = a(dr) ds.
Therefore we can rewrite (ILI2]) as

Elp(0,1))?] = // Pins) (IRe] < 1. |Ri| < S, < 2 |Rt]) afdr) ds

.y / E,[(1— [Ri) L <ny] aldr)

1
_ ZA!APAmﬂgwaMMdm (11.13)

where P, ;) denotes probability for (R, S;) starting at (r,s), and we have used the fact that
conditioned on (R;)t>0, (St)i>0 with differential initial conditions can be coupled together
simply by translation.

In (ITI3), let fiq(r) := P.(|R¢| < a), which is even, and strictly decreasing on [0, c0).
The latter follows from the fact that |R;| is a reflected Brownian motion with stickiness at
the origin, and there is a natural coupling through coalescence for | R;| starting at differential
initial conditions on [0, 00). By the layercake representation, we may rewrite (I1.I3]) as

El(f0.0)?) = 2 [ 1 [ [ tsaondvatanaa
= 2 [ [T et w sy
= // rdfm() (11.14)

Note that —rdf;q(r) is a finite measure on (0, 00) with total mass [ f;.q(r)dr, and for any
u > 0, integrating by parts gives

/Ou —rdfia(r) = —ufia(u / fra(r)dr o2 0,
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since f;q(r) is decreasing on [0,00) and f;,(0) — 0 as ¢ — oo by basic properties of |Ry|.
Therefore the sequence of measures —rdf; (r) shifts its mass to co as t — oo. Since
lim,_, o, 2=nr) by Lemma [[1.7] below, we deduce from (ITI4]) that

s

hm E[pt([O 1])?] / hm/ fta(r)dr da. (11.15)

t—00
Since dr + m&o(r) is an invariant measure for |R;| by Lemma [IT.8] for any ¢ > 0,

0o 1
( o 0 /fta dr—WPo(\Rt\Sa)—F/O Po(Ri| < o) dr = i e

Since ft4(0) — 0 as t — oo, we obtain limy_, fooo fra(r)dr = ([0 m o Substituting this

into (ITI5]) then gives (IIIII). n

Lemma 11.7 (Ergodicity of the second moment measure) Let £L(p) € T;. Let p®? :=
E[p®2] denote the second moment measure of p, and let p? denote the image measure of p©?
under the change of coordinates (x,y) — (r,s) := (y —z,x + y) Then ﬁ®2(dr ds) = a(dr)ds,
where a(A) = pP2(A x [0,1]) for all A € B(R), and lim oo 7a([—L, L)) =

Proof. By translation invariance in law of p, p®%(-) = p®%(- + (a,a)) for all a € R. There-
fore p®2(dr ds) is translation invariant in s, and hence p®? admits the desired factorization.
Therefore

o[-L, L]) :/1[—L,L]( )1j0,1)(5)p%*(drds) = /1[—L,L}(7“)1[o,1}(7“+5)ﬁ®2(d7“d8)-

Transforming back into the variables (z,y) and the measure p®? then gives

a([-L, L) = p**({(z,y) : 0 <y < 1/2, |z —y| < L}),

which is bounded between p®([—L + 1,L — 1] x [0,1/2]) and p®([-L — 1,L + 1] x [0,1/2]).
Note that

TA(L AL L1 0,1/2) = TE[p(0,1/2)p([~L + 1,1~ 1])]

— 2E[p((0,1/2)] = 1, (11.16)

provided that 5-p([—L+1, L—1]) — 1in L2 Indeed, by LemmallT0] there exists a probability
measure y(dA) on 73 N Te such that L(p fT 7. Ay(dA). Therefore

[(;Lp([ L41,L—1])— 1)2}

/ / L+ 1,L- 1))~ 1) Aldo)y(dA) =0
TiNTe oo

since the integrand w.r.t. 7(dA) tends to 0 7 a.s. by the Ly ergodic theorem applied to A, and
is dominated uniformly in L by 2+ 2 [ p([0,1])?A(dp), which is integrable by the assumption
that E[p([0,1])?] < oo. This proves (ILI6]), and the same can be proved for p® ([—L —1,L+
1] x [0,1/2]), the upper bound on a[—L, L]. Therefore lim,_,o +a([-L,L]) = |
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Lemma 11.8 (Invariant measure for the two point motion) Let (X;,Y};) be two coupled
Brownian motions solving the Howitt- Warren martingale problem under conditions (2.6) and
(239). Let Ry =Y; — Xy. Then dr + ©; 1])50( r) on [0,00) is an invariant measure for |Ry|,

and dz dy + 5 ([0 1])(5 (y)dx on R? is an invariant measure for (X, Y;).

Proof. Note that |R;| is uniquely characterized in law by the following two properties: (1)
|R| — 4v([0,1]) f(f L{|r,|=0yds is a martingale; (2) (|R¢|, |R¢|) = 2f0t Lf|r,|0yds. These two
properties are clearly satisfied by the solution of the following SDE

dZy = 117,20,V2dB; + 1 7,_4v([0,1))dt, (11.17)

where B; is a standard Brownian motion, and Z; is constrained to be non-negative. For the
existence and uniqueness of a weak solution to this SDE, see e.g. [SS08, Prop. 2.1]. The
solution of (ITI7) generates a Feller semigroup (S;):>¢ on the Banach space Cy(]0,0)), the
space of continuous functions on [0, 00) which vanish at co and equipped with the supremum
norm. By It6’s formula, the generator L for S; is given by

Lf(x) = Lgzop /" (x) + Lzmoy4r([0, 1)) f' (2). (11.18)

Let D C Cy(]0,00)) denote the domain of L. If f € D, then Lf € Cy([0,00)). In particular,
we must have f”(0) = 4v([0,1])f'(0) and f” € Cy([0,00)). Together with f € Cy([0,00)),
this also implies that f' € Cy([0,00)). Conversely, if f € D = {f € Cy([0,00)) : f', " €
Co([0,00)) and f”(0) = 4v([0,1])f'(0)}, then it is not difficult to see from It6’s formula that
f € D. Therefore D = D. If we denote u(dz) = dx + 411([0’1])50( x), then we have

/OO Lf(x)u(dx) = /000 f"(z)dz + f'(0) =0 for all f € D. (11.19)

0

From (IT.I9), we can deduce that p is an invariant measure for (|R¢|)t>o. Indeed, for any
f € DnNC.(0,00)) with compact support and for any ¢ > 0, we have

/ Sif@td) = [ f@nia) = [ (5if@) = fla)ntd)

- / /—Sf dsu(dx)z/ooo/otLsz(w)dsu(dx)
= /0/0 LS, f(xz)u(dz)ds = 0, (11.20)

where we have used Fubini based on the fact that LSsf(z) = SsLf(z) is decaying super-
exponentially in z because Lf has compact support and |R;| is distributed as a Brownian
motion on (0,00); and in (II.20]), we have applied (IT.I9) using the fact that f € D implies
Sif € D. Since (IL20) holds for all f € DN C.([0,00)), which is a measure determining class,
(4 1s an invariant measure.

The symmetry of R; implies that fi(dr) := dr + 5[0, 1})(50( r) on R is an invariant measure
for Ry, and the translation invariance of (X, Y;) along the diagonal implies that fi(dr)ds is an
invariant measure for (R, St) with Ry = Y; — X; and S; = Y; + X;. A change of coordinates
then verifies that dzdy + o @ 1])5 (y)dz is an invariant measure for (X, Y;). ]

Remark. In [LS81] and [Lig05], the analogue of Lemma [I1.6] is proved by treating the
two-point motion as a perturbation of two independent one-point motions. This approach
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requires exact calculations involving the two-point motion and is not clear how to implement
in the continuous space setting. Our approach reduces the task to first identifying the invariant
measure for the two-point motion, which when integrated over the test function ¢(x)y(y) gives
the RHS of (ITI0]), and then using qualitative properties of the two-point motion together
with the ergodicity of the initial condition to remove the dependence on the initial condition.

The following corollary of Lemma [IT.6] is the analogue of [LS81, Lemma (5.3)(b)] for our
model, and will be crucial in proving convergence to the homogeneous invariant laws.

Corollary 11.9 (Preservation of 71) Assume the same conditions as in LemmalI1.6l Then
the law of any subsequential weak limit of (pt)i>o is also in Ty.

Proof. Let p* be the weak limit of p;, along a subsequence t,, 1 co. Clearly L(p*) € T.
Lemma implies the uniform integrability of (p, ([0, 1]))nen, and hence E[p*([0,1])] =1
since E[p;([0,1])] = 1 for all ¢ > 0. By Fatou’s lemma, Lemma also implies that for all
non-negative ¢, 1 € C.(R),

5[ [ st @s) [vr @] < [otaas [oway+ LD g

22
Approximating ﬁe‘ﬁ from below by functions with compact support, we then have

1 .2, 2 1
E[(/\/Q—mfe ) (dx)) } < 1—1——4]/([0’1])\/%.

22
Together with E| [ ﬁe‘ﬂp*(dw)] = 1, this implies (IT8) with ¢ = 1 and I' = L(p*).
Therefore L(p*) € 7. n

11.3 Coupling and convergence

The definition of the Howitt-Warren process (pt)¢>0 from the kernels (K : 1)s<t constructed in
Theorem [3.7] gives a natural coupling between (p;);>0 with different initial conditions. This
coupling is monotone in the sense that if pj(A) > pg(A) for all A € B(R), which we denote
by pg = p3, then p} = p? a.s. for all + > 0. Through this coupling, we will prove the weak
convergence of p; to a mixture of homogeneous invariant laws under suitable assumption on
L(po). The first observation is the following.

Lemma 11.10 (Coupled Howitt-Warren processs) Let (p})i>0 and (p?)i>0 be Howitt-
Warren processes with drift B and characteristic measure v, defined from the same Howiit-
Warren flow (KJ,)s<; as in (Z1). Assume that L(py),L(p5) € T and E[pj([0,1])] < oo,
E[p3([0,1])] < co. Then any weak limit point (p'*, p**) of (pt,p?)i>0 as t — oo satisfies
]P(pl* > p2* or p2* > pl*) =1.

Proof. Let (pf — p?) = (p} — p?)* — (pt — p?)~ denote the Jordan decomposition of p} — p?,
and let |p} — p?| := (p} — p2)* + (p} — p?)~ denote the total variation measure of p; — p?.
Recall the quenched law Q from ([3.24]). For any 0 < s < ¢, almost surely we have

k= ot = | [0} = o) QI 0 € 1] < [ 1ot = plda) Qi (1) € .
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Therefore
B} - (0.1 < E[ [ Io} - p2l(da) QI (1) € [0,1]
= /E[!pi — p2|l(de) E[Q[(,, (1) € [0,1]]] = Ellps — p3([0,1])],

where we have used the independence between p!, p? and (Q [7‘1’&75) (t) € 10,1]] )x cp» the trans-
lation invariance of E|p! — p?|, and the fact that WE; 5) is distributed as a standard Brownian

motion starting at x at time s under the law EQ. Therefore E[|p} — p7|([0,1])] decreases
monotonically to a non-negative limit as ¢ 1 oco.

Note that the lemma follows once we show that for any € > 0 and any ¢,1 € C.(R) with
0 < ¢, <1, we have

B [ @it (do)~ [ d@)ptan) > e and [ wi@iao)- [ wiapl(da) > ) o 0. (122

Suppose that (I1.22)) fails so that for some ¢ > 0 and ¢,1 € C.(R) with 0 < ¢,¢ < 1, the
probability in (IT22]) is bounded uniformly from below by § > 0 along a sequence t; T oo.
Choose L > 0 large such that ¢ and v vanish outside [—L, L]. Given p%l_ and pi_ satisfying the
conditions in the probability in (IT.22]), we have

e < [ @, ) < [ o)l ~ 2" o) < (o~ p2) (L. I,
and similarly (p{ — p7)~([=L, L]) > e. For such a realization of p;, and p7,

10,41 = Pr411((0, 1))
< /lp;. = L Id)Q[r ,\(ti+1) € [0,1]] = 26Q[r " (8 + 1) = 7,y (ti+ 1) € [0, 1],

where we observed that the mass assigned by (p;, —p7, )" and (pj, —p7,)~ to [ L, L] are carried
by (W(tcii)(ti + 1))zer to the same point in [0, 1] when 7T?__L7ti)(ti +1)= (Lt )(t +1)€[0,1].
Recall that the event in (I1.22]) is assumed to have probability at least ¢ along (¢;);en, we thus
have

Elloh s — 7-a (0 1))] < E[loh — 221(0,1)] — 266h, (11.23)
where h = EQ[ (it 1) = 7T(Lt )(ti +1) €0, 1]] > 0 is independent of ¢;. Since (IT.23)

holds for all ¢;, thls contradicts the fact that E[|p; — p7|([0,1])] decreases monotonically to a
non-negative limit as ¢ 1 oo. [ |

Lemma 11.11 (Convergence to A.) Let (p:)i>0 be a Howitt-Warren process with drift 3
and characteristic measure v # 0. If L(pg) € Te and E[po(]0,1])] = ¢ < oo, then p; converges
weakly to A, which was defined in Lemma [IL3. If L(po) € Te and E[po([0,1])] = oo, then p;
has no weak limit which is supported on Miye(R).

Proof. Without loss of generality, assume ¢ = 1. Let (p?);>0 be a Howitt-Warren process

with initial condition p? such that £(p3) = A1, and let p; and p? be defined from the same
Howitt-Warren flow (K;)s<;. As in the proof of Lemma T3, we note that (p;)>o (vesp.
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(pts p?)i>0) is a tight family of Mg(R) (resp. Mg(R)?) valued random variable. Therefore
any subsequential weak limit I' € M;(My(R)) of L(p;) as t — oo can be realized as the
marginal law of the first component of a random couple (p*, p**) € M,(R)?, which arises as
a subsequential weak limit of (p;, p?)i>0. By Lemma ITI0, P(p* = p** or p** = p*) = 1.
Therefore for any rational a < b, by the translation invariance in law of (p* — ;)2*)1{[)*> 2}
and (p** — P*)1p2e5 ), We have

Elp*([a,b)) — p**([a,b))| = E‘ / f/;_wi

1 a2, 1
< (b a)E‘ / \/ﬁe 2t p*(dx) 1‘ + (b a)E‘ / Nz
If we first restrict ourselves to the case E[po([0,1])?] < oo, then L(pg) € T1 by Lemma IT.5]
and by Corollary IO, £(p*) € T1 and L(p**) = A1 € T;. Definition of 7; implies that both
terms in (I1.24)) vanish as ¢ — oo, and hence p*([a,b)) = p**([a, b)) a.s. for all rational a < b.
Since {[a, b)}a<beq is measure determining, we have p* = p** a.s., and hence L(p;) converges
weakly to Aj.

If E[po([0,1])?] = oo, then we can approximate py by (p8)nen with L(pf) € Te such that
E[p2([0,1])?] < oo and pj} increases monotonically to py almost surely. For instance, given py,
we can sample a uniform random variable U on [0, 1] and then define pfj on [U +k, U +k+1)
for each k € Z by pg = po on [U + k, U +k+1) if po([U + k,U +k+ 1)) <n, and set pj =0
on [U + k,U + k + 1) otherwise. Then E[p{([0,1])] =1 — ¢, for some ¢, | 0. Our argument
above shows that L£(p}') converges weakly to Aj_., . Since pg > pg a.s. for all n € N, any weak
limit point T' of £(p;)i>0 stochastically dominates A, for all ¢ < 1. Since [ p([0,1])T(dp) < 1
by Fatou, we must have I' = A;.

If L(pg) € Te and E[py([0,1])] = oo, then by the same argument as above, any weak limit
point of p; stochastically dominates A, for all ¢ > 0, which is not possible for an Mj,.(R)-
valued random variable since A; is not concentrated on the zero measure by our assumption
v # 0. |

From Lemma [IT.11] we can deduce that

e (" — ") (da)

12
e” 2t p**(dx) — 1|. (11.24)

Lemma 11.12 (Extremal measures in Z N 7)) For the Howitt-Warren processs with drift
B and characteristic measure v # 0, we have (ZNT)e = {A.: ¢ > 0}.

Proof. If L(py) € (ZNT)e, then L(pg) can be decomposed into measures in 7, with different
mean densities, which by Lemma [[T.I1] converges to mixtures of (A;)c>p. Therefore by the
extremality of pg, we must have L£(pg) = A, for some 0 < ¢ < oo, and hence (ZN7T), C {A.:
¢ > 0}. The converse {A.: ¢ >0} C (ZNT)e has been established in Lemma T4 |

11.4 Proof of Theorems 2.1TH2.12

Proof of Theorem [Z.TTl Part (a) follows from Lemma IT.12, where the scaling relation
Ac(d(cp)) = Ai(dp) is trivial, while (Z2I) and [222) follow from Lemma [IT.3] and Lemma
applied to po(dx) = dz. Parts (b) and (c) follow from Lemma [[T.1T] and [[T.6] while part
(d) follows from spatial ergodic decomposition and Lemma [TT.1T] |

Proof of Theorem Part (a) follows from Theorem 2.7 (a) and Proposition (c).
Part (b) follows from Theorem 2.8 (a). |
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A The Howitt-Warren martingale problem

Howitt and Warren [HW09al, Thm 2.1] formulated a martingale problem for a class of sticky
Brownian motions on R, for which they showed that for each deterministic initial state © € R™,
there exists a unique solution in distribution to their martingale problem. Moreover, they
showed that the family of all solutions to their martingale problem forms a consistent Feller
family [HWO09al, Prop. 8.1], which defines a stochastic flow of kernels we call a Howitt-Warren
flow. In this appendix, we show that our formulation of the Howitt-Warren martingale problem
in Definition 22is equivalent to Howitt and Warren’s original formulation in [HW09al. The ad-
vantage of our formulation is that we use a much simpler set of test functions, which somewhat
simplies the proof of the convergence of the n-point motions of discrete Howitt-Warren flows
to their continuous counterparts. This convergence result is formulated in Proposition [A.5]
and is used to verify that the flows we construct in Theorem [B.7] are indeed Howitt-Warren
flows. A similar convergence result for the n-point motions of a continuous time version of the
discrete Howitt-Warren flows was established previously in [HW09a]. We will also give some
new parametrizations of Howitt-Warren martingale problems in Lemma

A.1 Different formulations

Let us first recall the original formulation of the Howitt-Warren martingale problem from
[HW09a], and then state two lemmas that show how one can go from their formulation to
ours in Definition and vice versa. The proof of these lemmas will be given in the next
subsection.

Recall that if Y is a continuous semimartingale, then there exists a unique continuous
process Y with bounded variation such that Y — Y is a martingale. The process Y is called
the compensator of Y. Now if Y7 and Y5 are continuous, square integrable semimartingales,
then by definition, the covariance process (Y1,Ys) of Y7 and Y3 is the compensator of (Y7 —
YE)(Ya — YE), ie., (Y1,Y3) is the unique continuous process of bounded variation such that

te (Yi(t) = YE(1)) (Ya(t) — Y3 (1)) — (Y1, Ya)(¢) (A1)

is a martingale. We generalize our definition of the Howitt-Warren martingale problem as
follows.

Remark A.1 (Initial states with infinite second moments) The solutions to a Howitt-
Warren martingale problem (for given B, v and n) form a Feller process. Therefore, if Pz
denotes the law of the solution of the Howitt-Warren martingale problem with initial state &,
and p is any probability law on R™, then [ p(dZ)Pz is the law of some Markov process in R™.
Generalizing Definition[2.2, we may call such a process X the solution to the Howitt-Warren
martingale problem with initial law p, even though X is not square integrable if p does not
have a finite second moment.

We now turn our attention to the original formulation of Howitt and Warren’s martingale
problem in [HW09a]. Recall that our formulation of the Howitt-Warren martingale in Defini-
tion [2.21is based on the constants (54 (m));,>1 defined in ([23]). Instead, Howitt and Warren’s
formulation of their martingale problem is based on real constants (6(k,[)) >0 satisfying

(i) O(k,1)>0 (k,1>1),

(A.2)
(i) (k1) =0(k+1,0)+0(k,1+1) (k,1>0).
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The 6(k,1)’s are related to the 84 (m)’s by
while their relation to the constant § and measure v is described by

O(k.1) = / vdg) 1 - (k12 1),
6(1,0) — 9(0,1) = 5.

(A.4)

Note that we have now three ways to parametrize Howitt-Warren martingale problems: we
may use the pair (5,v), the constants (84 (m))m>1, or the constants (0(k, 1))k >0. The next
lemma shows how to go from one parametrization to another.

Lemma A.2 (Different parametrizations)
(a) Let (0(k,1))k, >0 be real constants satisfying (A.2). Then there exists a unique § € R and
a finite measure v on [0, 1] such that [A.F]) holds.

(b) Let B € R and let v be a finite measure on [0,1]. Then there exists a function § : N2 — R
satisfying (A.Q) such that [A.4) holds. Any other 0 satisfies (A.3) and [A.4) if and only if
9/(/€, l) = H(k, l) + C(l{k:(]} + 1{120}) (k,l > 0) (A5)

for some c € R, and we say that 0 and ' are equivalent.

(c) Let f € R and let v be a finite measure on [0,1]. Let (0(k,1))r >0 be real constants

satisfying (A2), and let (B+(m))m>1 be real constants. Then of the relations (2.3), (A-3),
and (A7), any two imply the third one.

By definition, a weak total order on {1,...,n} is a relation < such that
(i) <1,
(ii) i < j < k implies ¢ < k, (A.6)

(iii) there exist no 4,j with i £ j and j 4 1.
Each weak total order < on {1,...,n} defines a nonempty cell Co C R™ by
Cs:={fe€R":2; <zxjif and only if i < j}. (A7)

We note that cells defined by different weak total orders are disjoint, and that the union of
all such cells is R™. For example:

{Z 2 <x3<m}, {F:mog=uw3<x1}, and {Z:x1 =29 =13} (A.8)

are three of the thirteen cells that make up R3. Let L, be the linear space consisting of all
continuous real functions on R™ that are piecewise linear on each cell CL, i.e.,

L, = { f i f is a continuous function f : R™ — R such that for each weak total

order < there exists a linear function [ : R™ — R with f =1 on C<}.
For each Z € R™, let us define

Ran(Z) := U{xl}, (A.10)
i=1
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and for each z € Ran(¥), let us write
Jo = Jo(Z) = {ie{l,...,n} 1 z; = x}. (A.11)

For disjoint I, J C {1,...,n} let us define a vector ¢7 ; € R" by

1 ifiel,
vy, (i) == -1 if i € J, (A.12)
0 otherwise.

For any v € R", let V; denote the one-sided derivative

Vaf(Z) == lgiﬁ)lg_l(f(f—’_ ev) — f(Z)). (A.13)

Let (0(k,1))k>0 be real constants satisfying (AZ2). Then, by definition, .A? is the linear
operator acting on functions in L,, defined by

Af@) = > IV, /@), (A.14)

z€Ran(Z) ICJx

The original formulation of the Howitt-Warren martingale problem in [HW09a] differs from
our formulation in that formula (27) is replaced by the requirement that for each f € L,

F(X@) - /0 A% (X (s))ds, (A.15)

is a martingale with respect to the filtration generated by X. To see that this is equivalent
to the formulation in Definition 2221 we need the following lemma, the proof of which is not
entirely trivial.

Lemma A.3 (Action of operator on basis vectors) Let fa,ga be defined as in (20).
Then:

(a) The functions
{fa:0#£AC{1,...,n}} (A.16)

form a basis for the space L,.

(b) Let (0(k,1))ki>0 be real constants satisfying (A.2) and let (B4 (m))m>1 be given by (A.3).
Then for each nonempty A C {1,...,n}, one has

ALfa(T) = Br(9a(@) (T ERT). (A.17)

(c) If 0 and 0 satisfy (A3) and are equivalent in the sense of (A.4), then A% = A?.

A.2 Proof of the equivalence of formulations

To prepare for the proof of Lemma [A2] we start with the following lemma.
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Lemma A.4 (Moments defining a measure) Let (¢(k,1))x>0 be real constants such that

(i) ok, 1) =0,

N (A.18)
for all k,1 > 0. Then there exists a unique finite measure v on [0, 1] such that
o) = [viddi-af (b1 0) (A.19)

Proof. Let —A be the operator, acting on sequences of real constants (ax)r>0 as ((—A)a)g ==
ar — ap41. Setting ar = ¢(k,0), we observe that ((—A)a)r = ¢(k,1) (k > 0) and more
generally ((—A)la)r = ¢(k,1) >0 (k,1 > 0). This qualifies (a,)nen as a completely monotone
sequence, which by [Fel66, Theorem VII.3.2] can be represented as ap = f V(dq)qk for some
finite measure v on [0, 1]. Using (AIS8]) (ii), this implies (A.19)). n

Proof of Lemma [A 2] Part (a) is a straightforward consequence of Lemma [A4l To prove
part (b), note that by (A.4), v uniquely determines 0(k,[) for k,1 > 1, which is easily seen to
satisfy (A2]) for k,1 > 1. Once 6(1,0) and 0(0,1) are chosen, 6(k,0) and 6(0,1) for k,l > 0
are uniquely determined from the recursion relation (A.2]) (ii). Since 6(1,0) — 6(0,1) = g, it
follows that 6 is uniquely determined up to the equivalence defined in (A5).

To prove part (c), we observe that (23] and (A.4), together with [A.2]) (ii), imply that

B, (1) = B = 6(1,0) — 6(0, 1) = 6(0,0) — 26(0, 1) (A.20)
and
m—1 m—1
Bi(m) = B+ Z/V(dq) S (- )t = 0(1,0) - 0(0,1) +2 5 6(1, k)
k=1 k=1

= 6(1,0) — 6(0,1) + 2(6(0,1) — 6(0,m)) = 6(0,0) — 26(0,m)  (m > 2).
This shows that (Z3]) and (A4) imply (A3). Running the argument backward, we also see
that (A4) and (A3) imply (2.3). Finally, (2:3) and (A.3) imply that
0(07 0) - 20(07 1) =0,

9(0,0)—29(o,m):ﬁ+2/q—1(1_(1_q)m_1)y(dq) > 2 (A21)

from which it is not hard to derive (A4) using (A2) (ii). |

Proof of Lemma [A.3] As a first step towards proving part (a), we start by proving that the
functions {fa : @ # A C {1,...,n}} are linearly independent. Consider the set {0,1}" C R"™.
For each A C {1,...,n}, define g4 : {0,1}" — R by

ga(Z) = { i_ fa(®) gj i 8 (A.22)

It is not hard to see that gagp = gaup and that the functions {gA A CAL,... ,n}} separate
points. Therefore, by the Stone-Weierstrass theorem, they span the space of all real functions
on {0, 1}". Since this space has dimension 2" and since {gA A CAL,... ,n}} has 2" elements,
we conclude that the ga’s are linearly independent and hence the same is true for the fa’s.
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We next prove that the fa’s span L,. Obviously fa € L, for each ) # A C {1,...,n}.
Therefore, since the fa’s are linearly independent and since { fa:0£AcC{l,... ,n}} has
2" — 1 elements, it suffices to show that dim(L,,) < 2™ —1. We proceed by induction. It is easy
to check that Lq is the space of all linear functions from R to R, which has dimension one.
Now assume that dim(L,) < 2" — 1. We claim that dim(L, ;) < 2"*! — 1. Each function
f € L,41 can be uniquely written as

n+1
F@) = ci(@), (A.23)
i=1
where the functions ¢y, . .., ¢,41 are piecewise constant on each cell C. In fact, since functions

in L, are continuous, we must have that the function ¢, depends only on the relative order
of x,,4+1 with respect to the first n coordinates and does not change if we interchange the order

of two other coordinates x;, zj, with j,k < n. More precisly, for each A C {1,...,n}, if we set
Uy = {f S Rn+1 T < Tpgl Vi e A, Ti > Tyl Vi € {1, c ,’I’L}\A}, (A.24)

then
n+1(Z) = la (x €Ua) (A.25)

for some constant 4 € R. Let [ be the linear map defined by

1(f):=(lalfacq,..ny (f € Ln).

Then Ker(l) consists of all functions in L, that do not depend on the variable 1, hence
Ker(l) C Ly, It follows that

dim(L,; 1) = dim(Ker(1)) + dim(Ran(l)) < (2" — 1) 2" = 2"+ — 1,

as claimed.
To prove part (b) of the lemma, we need to calculate

Abfa@ = > >0 [L\)Vs,, | fa(@). (A.26)

z€Ran(Z) [CJz

Let us define
H( ) JfAf {16{1 n}xZ:fA(:i’)},

B (A.27)
G@):=H@)NA={icA:z = fa(Z)}.
Recalling (A.12)) and (A.13]), we see that
+1 i ING(@) #0,
Vi Ial@) =4 -1 if JDG(Z), (A.28)
0 otherwise.
Inserting this into (A.26]) we see that
Ao fa(@) = D 0(ILIH@N) (Lirne@)20 — Linc@ o), (A.29)

ICH(Z)

where we have used that for I C H(Z), one has (H(Z)\I) D G(Z) if and only if I N G(Z) = 0.
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We claim that (A.29]) can be rewritten as

Abfa@ = D 001 IG@N) (L@ — Lunc@)—oy)- (A.30)
ICG(Z)

To see this, note that if H' is a set such that G(Z) C H' C H(Z) and H’ contains one element
less than H (), then since it does not make a difference for the sign of a term in (A.29) whether
we include this element in I or in H(Z)\I, we have

A fa(@) =" (0011 + LIHNI]) + 0111, [H\I| + 1)) (Lnc@zoy — Luna@=0y)

ren ) (A.31)
= > 0(I|, [H\I|) (Lpnc@)ze — Lunc@=oy)»
[ca

where we have used (A.2) (ii). Continuing this process of removing points from H (&) we arrive

at (A.30).
We may rewrite (A30) as

A fa@ =Y 04ILIGEND(1 -2 Lpnom=0)

ICG(%)

—( Z O(T1,IG@N))) = 20(0,]G(@)]).

ICG(Z

(A.32)

The same sort of argument as in (Imb shows that the first term on the right-hand side of
([A232) equals 6(0,0) and hence, recalling (A.3) and the fact that |G(Z)| = ga(Z) (see ([Z3)),
we arrive at (A17).

Part (c¢) is a trivial consequence of parts (a) and (b) and the fact that if § and 6’ are
equivalent in the sense of (A.H), then they define the same (84 (m)),,>1 through (A.3]). |

A.3 Convergence of discrete n-point motions

In this section we prove that if py are probability measures on [0, 1] satisfying (I.7)), then the
diffusively rescaled discrete n-point motions associated with the pp converge in law to the
Markov process defined by the Howitt-Warren martingale problem with drift g and charac-
teristic measure v. To formulate this precisely, fix py satisfying (L7), let X®) be discrete
n-point motions associated with the piz, started in deterministic initial states Z*) and linearly
interpolated between integer times, and let Y *) defined by

YR @) =X (t)2)  (i=1,...,n, t>0) (A.33)

)

denote the process X (k) diffusively rescaled with e;. Let Cgn [0,00) denote the space of con-
tinuous functions from [0, c0) to R™, equipped with the topology of local uniform convergence.
Then, in analogy with [HW09a, Thm. 8.1], we have the following result.

Proposition A.5 (Convergence of the n-point motions) Assume that the initial states
satisfy

@) — & (A.34)
k—o0
for some & € R™. Then
PI(T00) g € -] = BIE (1), €], (A.35)



where = denotes weak convergence of probability laws on Cgn[0,00) and X s the unique
solution of the Howitt-Warren martingale problem with drift B and characteristic measure v,
started in the initial state Xo = T.

Remark. There is an analoguous statement for random initial states, see Remark [A.Tl

We will actually prove a somewhat stronger statement than the convergence in ([A.35)), since
we will show that the intersection times of the rescaled discrete process also converge to those
of the limiting process. For technical reasons, it will be convenient to interpolate in a piecewise
constant, rather than in a linear way. Therefore, we set (compare (A33]))

Y# @) =X (1)) (=1,...,n, t >0). (A.36)

7

We view Y*) as a process with paths in Dgn [0, 00), the space of cddlag functions from [0, 00) to
R™ equipped with the Skorohod topology. Letting Y Y& denote the linearly interpolated
and piecewise constant processes, respectively, we have
sup [Y¥ (t) = v (1)) = e, — 0. (A.37)
t>0 k—00

From this, it is easy to see that Proposition [A.5lis implied by the following, somewhat stronger
result.

Proposition A.6 (Convergence including intersection times) Let X&) be discrete n-
point motions associated with probability measures py satisfying (1.7), started from initial
states %), and let Y®) denote X® diffusively rescaled as in (A.36). Let X be the unique
solution of the Howitt-Warren martingale problem with drift 8 and characteristic measure v,
started in Xo = Z. Define n x n matriz valued processes Z*) and Z by

. i (A.38)
(i)  Ziy(t) = /0 Lix;(s)=x;(s)yds-

Then, assuming that the initial states satisfy

ek — 7 (A.39)

one has

P[((Y* (1), 2% (1)) ,. € -] = P[(X(t),Z(t))

k—00

€], (A.40)

t>0 >0

where = denotes weak convergence of probability laws on path space.

Proof. When X *) is the n-point motion of a continuous time version of the discrete Howitt-
Warren flow, the same result has been proved by Howitt and Warren in [HW09al, Prop. 6.3]
(for tightness in their case, see the remarks above their formula (6.13).) Our proof copies
their proof in many places, except that we use a different argument to get convergence of
the compensators of fA(\?<k>) and we have also simplified their proof somewhat due to our
reformulation of their martingale problem.

Let P%) be the transition kernel from Z" to Z" defined by

PR @y = ] / pe(de) [T (yimasyd + Ygmoimiy(1— @) (&5 € 2Z"), (A41)
x€Ran(Z) 1€Jy
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where Ran(Z) and J, are defined in (A10) and (AII)). We adopt the notation

P f(@) =Y PPy fly) (zeZ [:2"=R), (A.42)
yeL™

whenever the infinite sum is well-defined.

We observe that X *) is a Markov chain with transition kernel P*). Since we start X*) in
an initial state X (0) = %) € (Zeyen)™, because of the nature of the transition mechanism,
we have X *)(t) € (Zeyen)™ at even times and X *)(t) € (Zoqq)™ at odd times.

For ) # A C {1,...,n}, let fa,ga be the functions defined in ([Z3]). By standard theory,
for each ) £ A C {1,...,n}, the discrete-time process

t—1
FaXE @) = 37 (PR A (X P (5)) — fa(XH (s))) (A.43)

s

Il
o

is a martingale with respect to the filtration generated by X®) We observe that if either
T € (Zeyen)" o & € (Zogq)”, then under the transition kernel P*) the maximum fa(z) =
max;ea Z; moves down by one with probability pu(dg)(1 — q)gﬁ(””) and up by one with the
remaining probability, hence

P fa(x) = falz)= / ui(dg) (1 —2(1 — g)#2 ™)) (A.44)
:6k(9A ($)) ($ S (Zevcn)n or (Zeven)n)a

where we have introduced the notation

Bum) = [ (1 —21-0")  (m=1). (A.45)
Setting By := Br(1) = [ pr(dg)(2¢ — 1), by standard theory, one may moreover check that
t—1
(XM (8) = ait) (X (1) — et) = 3T (X (s)) (A.46)
s=0

is a martingale, where

P§?>(‘f) = Z PENE, §) (yi — x)(yj — ;) — BE

yeLn
1— 57 if i = j,
= [ () (1 —4q(1 —q)) — 87 ifi#j, 2= xj, (A.47)
0 otherwise

= (1= 8% = 2(8(2) — Br(1)) Liizsy) Lwimay)-

For the process Y*) defined in (A30), our arguments so far show that for each § £ A C

{1,...,n},
. [t] .
fa(¥® (1) — ;! ; Br(ga (Y ¥ (s)))ds (A.48)
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is a martingale, where |t]; := £7|t/e2] denotes the time ¢ rounded downwards to the next
time in 5%N . Moreover, for each 1 <1,j < n, the process

(Y (1) — e 81t (Y (1) — " ut)

, [t] & (A.49)
—(1 =8 = 2(8e(2) = Be(1)) Liizjy) /0 Ly ® () =yt (5)y 48

is a martingale with respect to the filtration generated by Y. 1t follows from our assumption

(L7 (see also (24])) that

T e Bm) = B (m)  (m > 1), (A.50)

Standard results (Donsker’s invariance principle) tell us that for & — oo, each component
Y*) of the rescaled process converges weakly in law, on the space Dg[0,00), to a Brownian

(2
motion with drift 8 = f4(1). This implies that the laws of the processes Y () (viewed as
probability laws on Dgn[0,00)) are tight. Let Z (k) be the matrix valued processes defined in
(A.38)) (i). Since the slope of each ijk ) is between zero and one, tightness for these processes
is immediate.

By going to a subsequence if necessary, we may assume that the joint processes (3?<k>, Z <k>)
converges weakly in law, and by Skorohod’s representation theorem (see e.g. [Bil99l Theo-
rem 6.7]), we can couple the (Y% Z%))s such that the convergence is almost sure. Let
(X, Z) denote the limiting process. Then, taking the limit in (A49), using (A50), we see that

(Xi(t) = Bt) (X;(t) = Bt) — Zi; (1) (A.51)
is a martingale, hence
(X5, X)) = = klinolo/ v (s) Y(k)(s)}d Vi>0,1<i,7<n as. (A52)

Since, for given ¢ > 0, the function w fot Liw;(s)=w;(s)}ds 1s upper semicontinuous with
respect to the topology on Dgn |0, 00), formula (A.52) implies that

t
(X, X;)(t) < /0 Lix,=x;snpds (>0, 1<4,j <n). (A.53)

To prove also the other inequality in ([(A.53]), we use an argument due to Howitt and Warren
(see the proof of formula (6.9) in [HW09al). For any real square integrable semimartingale
W, one can define a ‘local time’ L(z,t) such that

/ FOV())d(W, W) (s) = / F(@)L(z, t)da. (A.54)
0 R

(See [BY®I1] formula (3)].) Applying this to the semimartingale X; — X; and the function
I =10, we find that

t
/0 1{Xi(s):Xj(s)}d<Xi — Xj,Xi - Xj>(8) = /R 1{0}(x)L(x,t)da; =0. (A55)
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Since X;, X; are Brownian motions, we have

(Xi — Xj, Xi — X;)(t) = (X, Xa) (1) + (X5, X;) (1) — 2(X5, X;)(¢)

(A.56)
— 2t 20X, X,)(0).
Inserting this into (A5E) yields
t t
/0 Lxi(o)=x;(spds = /0 L{xi ()=, ()} X, X5) (5)- (A.57)
On the other hand, (A53]) implies that
t
/0 Lix, (s)2x; (s)y (X, Xj)(s) = 0. (A.58)
Combining this with (A.57) yields
t
/0 Lixi(s)=x,(s3ds = (Xi, Xj)(¢)  (¢=0, 1 <4,j <n), (A.59)

as claimed.
We now show that X solves the Howitt-Warren martingale problem. By (A.52) and (A.R9),
we conclude that

t t
/0 1{Y<k>(s):Y<k> ds — ; 1{Xi(s):Xj(s)}d3 Vi>0, 1< 1,7 <n a.s. (AGO)

B e

The lower semicontinuity of the map w — fg Liw,(s)<w;(s)}ds implies that

t t
hkni)lol.}f o 1{Y§k>(s)<Y;k>(s)}ds > /0 1{Xi(s)<Xj(s)}d3 vt > 0, 1< i,j <n as. (A61)

Combining this with (A.60) we see that a.s., for all ¢ > 0 and 1 <4,j < mn,

t
limsup/ 1, wy, \yds
o Y e>Y )}

k—o0 i J
t

<1- lim ds — lim inf (A.62)

t
Sy 1{Y§’“><s>:Y§’“><s>}t min /0 1{Y§’“><i><Y§’“><s>}ds
<1- /0 LXi(9)=x, (048 = /0 Lxio<x; (93 ds = /0 LXi(9)>; (345,

which together with (A.61)) shows that

t t
1,9 xy, ,ds — Lixi(s onds Vi>0,1<i¢,j<n as. A.63
/0 (Y )<y (s)} , | XiO)<XG)} ( )

k—o0

By Lemma below, this implies that

t
/0 |1{Y§k>(s)<Y§k>(S)} — lxi(s)<x (o)} ]ds — 0 VE>0,1<i,j<n as, (A64)

k—o0
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which in turn implies that a.s., for each t > 0 and weak total order < on {1,...,n}, one has

t
/0 ‘1{Y<k>(s)e(}<} - 1{X(s)€C<}‘d3 kj@ 0, (A.65)
where C is the cell defined in ([A7). Since ga(z) depends only on the relative order of the
coordinates z1, ..., z,, formulas (A.GH]) and (A5Q) imply that for each ) # A C {1,...,n},
. [t o) t .
Ex ; Br(ga (Y'Y (s)))ds v /0 B+(ga(X(s)))ds Vi>0 as. (A.66)

Taking the limit & — oo in (A48]) using (A.6G) and the fact that ga is a bounded function
(indeed, 1 < ga(x) < |Al), we find that for each ) # A C {1,...,n},

fa(X () - /0 By (9a (X (5)))ds, (A.67)

is a martingale with respect to the filtration generated by X. Together with (A.53) this shows
that X solves the Howitt-Warren martingale problem, completing our proof. [ |

Lemma A.7 (Convergence of integrals) Let T > 0 and let p be a finite measure on [0, T].

(a) Let fi, f be Borel measurable real functions on [0, T] such that supy, || fx|| < oo, where || - ||
denotes the supremum norm. Assume that

/ p@)fils) — [ plds)fls)  (0<t<T). (A.68)
[0,t] o0 J[0,¢]
Then
[ oasins) = [ plas)ss (4.69)
A —0 JA

for each Borel measurable A C [0,T].
(b) Let Ag, A C [0,T] be Borel measurable. Assume that
| @) = [ plastae) ©<e<D). (A.70)
[0,1] [0,2]
Then
/ p(ds)|1a,(s) — 1a(s)| — 0. (A.71)
[O,T} k—o0

Proof. To prove part (a), let G be the set of Borel measurable subsets A C [0, 7] for which
([AZ69) holds. Tt is clear that A, B € G, A D B implies that A\B € G. We claim that moreover,
if A, € G satisfy A, T A for some A C [0,T], then A € G. To see this, write

| [ ptassits /<>f<s>1

<| [ ptasins - [ oo +| [ staanse) - [ otas)se)

+| [ ptas)futs) - /p<ds>f<s>1

n An

<20\ spll il + | [ otas)sie) - [ ptas)sis)]

(A.72)
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By choosing n large enough, we see that

limsup | /A p(ds) fi(s) — /A p(ds)f(s)] < (A.73)

k—o0

for all € > 0, proving our claim. Since the set H := {[0,¢] : 0 < ¢t < T} is closed under
intersections and contained in G, Sierpinski’s m/A-theorem [Kal02, Theorem 1.1] tells us that
G contains the o-field generated by H, completing our proof.

To prove part (b), we note that

/[O’T] p(ds)|1a,(s) —1a(s)| = (/Ap(ds)lA(S) - /Ap(ds)lAk(s)>
+</[0 T]\Ap(ds)lAk(S) - /[0 -~ P(ds)lA(S)),

which tends to zero by part (a). |

(A.74)

B The Hausdorff topology

Let (E,d) be a metric space, let K(E) be the space of all compact subsets of E and set
Ki(E):={K € K(F) : K # 0}. Then the Hausdorff metric dg on K1 (FE) is defined as

dp(Kq, K3):= sup inf d(zq1,z2)V sup inf d(x1,x9)
z1eky 26K zoe Ky T1€K1

= sup d(z1,K2)V sup d(za, Ky),
r1€K1 r2€K>

(B.1)

where d(x, A) := inf,c 4 d(x,y) denotes the distance between a point = € E and a set A C E.
The corresponding topology is called the Hausdorff topology. We extend this topology to K(FE)
by adding () as an isolated point. The next lemma shows that the Hausdorff topology depends
only on the topology on F, and not on the choice of the metric.

Lemma B.1 (Convergence criterion) Let K,,, K € K (E) (n > 1). Then K,, — K in the
Hausdorff topology if and only if there exists a C € K4 (FE) such that K, C C for alln > 1

and
K={x € FE:3dx, € K, s.t. x, > x} (B.2)
={z € E:3x, € K,, s.t. © is a cluster point of (zy)nen}- .

The following lemma shows that /C(E) is Polish if E is.

Lemma B.2 (Properties of the Hausdorff metric)
(a) If (E,d) is separable, then so is (K4 (E),dmn).
(b) If (E,d) is complete, then so is (K (FE),dy).

Recall that a subset A of a metric space is precompact if its closure is compact. This is
equivalent to the statement that each sequence of points x,, € A has a convergent subsequence.

Lemma B.3 (Compactness in the Hausdorff topology) A set A C K(E) is precompact
if and only if there exists a C € K(E) such that K C C for each K € A.
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The following lemma is useful when proving convergence of K(E)-valued random variables.

Lemma B.4 (Tightness criterion) Assume that E is a Polish space and let K, (n > 1) be
K(E)-valued random variables. Then the collection of laws {P[K,, € -]:n > 1} is tight if and
only if for each € > 0 there exists a compact C C E such that P[K,, C C| > 1 — e uniformly
inn €N,

If E is compact, then the Hausdorff topology on K(E) coincides with the Fell topology
defined in [Kal02], Thm. A.2.5]. The Hausdorff metric may more generally be defined on
the space of nonempty bounded closed subsets of (E,d). In particular, if d is bounded,
then dy(Aj, A2) can be defined for any nonempty closed Aj, A;. In this more general set-
up, Lemma [B.2] (b) and the ‘if” part of Lemma [B.3] remain true, as well as the ‘if” part of
Lemma below. This is Excercise 7 (with some hints for a possible solution) in [Mun00,
§ 45]. A detailed solution of this excercise can be found in [Hen99]. We are not aware of any
reference for the other statements in Lemmas[BIHB4] although they appear to be well-known.
For completeness, we provide self-contained proofs of all these lemmas. We start with some
preparations.

Recall that for any metric space (E,d), a set A C FE is totally bounded if for every ¢ > 0
there exists a finite collection of points z1,...,2, € E such that A C |J;_; B:(z;), where
B.(z) denotes the open ball of radius € around x. This is equivalent to the statement that
every sequence x, € A has a Cauchy subsequence. As a consequence, a set A C F is compact
if and only if it is complete and totally bounded.

Lemma B.5 (Totally bounded sets in the Hausdorff metric) A set A C K, (E) is
totally bounded in (K4 (E),dn) if and only if the set A :={rx € E:3IK € A s.t. z € K} is
totally bounded in (E,d).

Proof. Assume that A is totally bounded. Let ¢ > 0 and let A C E be a finite set such
that A = (J,cp Be(x). Let K € K (E) and set A’ := {z € A: B.(x) N K # (}. Then for
all y € K there is an # € A’ such that d(x,y) < € and for all z € A’ there is a y € K such
that d(x,y) < e proving that dy(A’, K) < e. This shows that A is covered, in the Hausdorff
metric, by the collection of open balls of radius ¢ centered around finite subsets of A. Since e
is general, we conclude that A is totally bounded.

Conversely, if A is totally bounded, then for each € > 0 we can find K,..., K, € K, (E)
such that A C Jj_; Bz/2(Ky), where B.(K) denotes the open ball in the Hausdorff metric of
radius € centered around a compact set K. Since each K}, is compact, there exist xy 1,..., T m,
such that Ky C U7 Beja(xr,;), hence A C Up_; U2, Be(wg 5)- |

Lemma B.6 (Cauchy sequences in the Hausdorff metric) Let K, € K (E) be a Cauchy
sequence in (K (E),dy). Then there exists a closed set K such that (B.2) holds.

Proof. If the sets on the first and second line of the right-hand side of (B.2)) are not equal,
then there exists some x € F such that z is a cluster point of some x,, € K,, but there do not
exist a/, € K,, such that 2, — x. It follows that there is some £ > 0 such that for each k > 1
we can find n,m > k such that K,, N B.(x) # 0 and K, N Bac(x) = 0, hence dy (K, K;,) > ¢,
contradicting the asumption that the K, form a Cauchy sequence.

To see that K is closed, assume that z,, € K satisfy z,, — x for some z € E. Since
dy(K,, K) — 0 we can choose 2}, € K,, such that d(«,,z,) — 0. It follows that d(z},,z) <
d(x},, z) + d(x,,2) — 0 and hence x € K. ]
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Lemma B.7 (Sufficient conditions for convergence) The conditions for convergence in
the Hausdorff topology given in Lemma [B1l are sufficient.

Proof. Our assumptions imply that d(z, K,) — 0 for each x € K. We wish to show that in
fact sup,cp d(x, K,) — 0. If this is not the case, then by going to a subsequence if necessary
we may assume that there exist z, € K and ¢ > 0 such that liminf,,_, d(z,, K,) > €. Since
K is compact, by going to a further subsequence if necessary, we may assume that x,, — = € K.
But then liminf, . d(z, K,) > liminf, . (d(x,, K,) — d(z,x,)) > ¢ for this subsequence,
contradicting the fact that for the original sequence, d(z, K,,) — 0 for each = € K.

The proof that sup,cy, d(xz, K) — 0 is similar. If this is not true, then we can go to a
subsequence of the K,, and then find z,, € K,, such that d(x,, K) > ¢ for all n, for some ¢ > 0.
Using the compactness of C, we can select a further subsequence such that x, — x € C'. Now
x is a cluster point of some x,, € K,, but d(x, K) > ¢, contradicting the fact that the two sets
on the right-hand side of (B.2)) are equal. |

Proof of Lemma [B.2l To prove part (a), it suffices to show that if D is a countable dense
subset of (F,d), then the collection of finite subsets of D is a countable dense subset of
(K4+(E),dn). Since a compact set K C FE is totally bounded, for each € > 0, we can find a
finitely many points x1,...,z, € E such that K C (J;, BE/Q(xi). Since D is dense, we can
choose x} € DN B, ja(w;). Then du(K,{x},...,;,}) < ¢, proving our claim.

To prove part (b), let K, € K, (E) be a Cauchy sequence. Then, by Lemma [B.6] there
exists a closed set K such that (B.2) holds. Since each sequence in the set {K, : n > 1}
contains a Cauchy subsequence, the set {K,, : n > 1} is totally bounded, hence by Lemmal[B.5]
there exists some totally bounded set containing all of the K,,. Let C' denote its closure. Then
C is compact since E is complete, hence also K C C'is compact and Lemma [B.7] implies that
K, - K. [ |

Proof of Lemma [B.3l It suffices to prove the statement for A C K, (F). Let A be the
closure of A and set C := {r € E : 3K € Ast. 2z € K}. By Lemma [B5 A is totally
bounded if and only if A is. Moreover, by Lemma [B2] (b), if A is complete then so is
{K € K4 (E) : K C C} and hence the same is true for A, being a closed subset of the former.
Therefore, since compactness is equivalent to total boundedness and completeness, it suffices
to show that compactness of A implies completeness of C. Assume that A is compact and
that x,, € C is a Cauchy sequence. We need to show that the sequence x, has a cluster point
x € C. Choose K,, € A such that z,, € K,,. Since A is compact, by going to a subsequence
if necessary, we may assume that K, — K for some K € A. Choose #/, € K such that
d(xy,2,) — 0. Since K is compact, by going to a further subsequence if necessary, we may
assume that 2, — z for some x € K. Since d(xy,,z) < d(zp,2),) + d(x},,x) — 0 this proves
that the sequence x,, has a cluster point z € K C C. [ |

Proof of Lemma [B.4l Immediate from Lemma [B.3] and the definition of tightness. |

Proof of Lemma [B.Il By Lemma [B7] we only need to prove that if K, € K (FE) converge
to a limit K, then there exists a C' € K4 (F) such that K, C C for all n and (B.2) holds.
If K, — K then the set {K, : n > 1} is precompact, hence by Lemma [B.4] there exists a
C € K4 (E) such that K,, C C for all n. Formula (B.2)) follows from the facts that if z € K,
then d(z, K,) — 0 hence there exist K, > x,, — x, while if x ¢ K, then B.(z) N K, = ()
for all n large enough such that sup,/cx d(z’, K;) < €, hence z is not a cluster point of some
x, € K,. [ |

125



C Some measurability issues

Let E, I be Polish spaces. By definition, the pointwise closure of a set F of functions f :
E — F is the smallest set containing F that is closed under taking of pointwise limits, i.e.,
it is the intersection of all sets G of functions from E to F, such that G D F and f, € G,

lim,, o0 fn(z) = f(z) (z € E) imply f € G.

Lemma C.1 (Pointwise closure of functions to the unit interval) Let E be a Polish
space and let Cpg 1)(E) be the set of all continuous functions f : E — [0,1]. Then the pointwise
closure of Cjo1)(E) is the set By 1)(E) of all Borel measurable functions f : E — [0,1]. If
E s locally compact, then the same conclusion holds with Cjo 1 (E) replaced by the space of
continuous and compactly supported functions f : E — [0, 1].

Proof. By definition, one says that a sequence f, of real functions on E converges in a
bounded pointwise way to a limit f if f,(x) — f(z) for each z € E and there exists some
constant C' > 0 such that |f,,| < C for all n > 0. The bp-closure of a set F of real functions on
F is the smallest set containing F that is closed under taking of bounded pointwise limits. By
copying the proof of [EK86, Lemma 3.4.1], we see that the bp-closure of a convex set is convex.
Let B be the set of all subsets A C E such that 14 is in the bp-closure of Cj ;)(£). Then B is a
Dynkin class containing all open sets, hence by the Dynkin class theorem [EK86, Thm. A.4.2]
(resp. the m/A-theorem [Kal02l Theorem 1.1]), B contains all Borel measurable subsets of E.
Since indicator functions are the extremal elements of the convex set consisting of all simple
functions in Bjy;j(F), it is easy to see that every simple function can be written as a convex
combinations of indicator functions. Since every function in By 1)(E) is an increasing limit of
simple functions in By 1j(£), the first claim follows. In case E is locally compact, it is easy to
see that each continuous function f : E — [0, 1] is the pointwise limit of compactly supported
continuous functions f : E' — [0, 1], proving the second claim. |

We will need the following generalization of Lemma Below, [0,1]Y denotes the space of
all functions x : N — [0, 1], equipped with the product topology. Note that the statement of
Lemma is false if we replace [0, 1]N by a general compact metrizable space F'. E.g., it is
already wrong if F' consists of two isolated points, since in this case all continuous functions
are constant but there are lots of measurable functions.

Lemma C.2 (Pointwise closure) Let E be a Polish space and let C[OJ]N(E) be the set of
all continuous functions f : E — [0,1]N. Then the pointwise closure of Con(E) is the set
B (E) of all Borel measurable functions f : E — [0, 1N,

Proof. Let E,F,G be Polish spaces and let F,G be sets of functions f : £ — F and
g : E — G, respectively. We claim that pclos(F x G) D pclos(F) x pclos(G), where pclos( -)
denotes the pointwise closure of a set and we regard a pair of functions (f, g) as a function from
E to F x G (equipped with the product topology). To prove our claim, for any f € pclos(F),
let Gy be the space of functions g € pclos(G) such that (f,g) € pclos(F x G). Then Gy is
closed under pointwise limits since pclos(F x G) is. If f € F, then moreover Gy contains G so
Gr =G. Next, let F Dbe the space of functions f € pclos(F) such that (f, g) € pclos(F x G) for
all g € pclos(G). Then F is closed under pointwise limits since pelos(F x G) is and F contains
F by what we have just proved, so F= pclos(F), proving our claim.

Applying our clain inductively to Cjoqnv(E) = (C[Oﬂ(E))N, using Lemma [C.T] we see that
(f1,--+s fn;0,...) lies in the pointwise closure of Cov(E) for each f1,..., f, € By 1j(£) and
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n > 1. By taking pointwise limits, we see that each infinite sequence (f1, fa,...) of Borel
measurable functions f; : £ — [0, 1] lies in the pointwise closure of Cpg yjn(E). |

Lemma C.3 (Measurability of image measure map) Let E, F,G be Polish spaces and
let M(E), M(F) be the spaces of finite measures on E and F, respectively, equipped with
the topology of weak convergence and the associated Borel o-field. Then, for any measurable
map E x G 3> (z,2z) — f.(x) € F, setting wi(u) == po f7! defines a measurable map
My(E) x G 3 (1, 2) = ¥ (1) € My (F).

Proof. We first prove the statement if £, G are compact and F' = [0,1]N. In this case, we
claim that if £ x G 3 (x,z) — f.(z) € F is continuous, then also Mi(E) x G > (u,z) —
Wl (1) € My(F) is continuous. To sce this, it suffices to observe that j, = p and 2, — 2
imply that for any continuous h : F' — R,

| [t anh) - [ L)) =| [ ndoh@) - [ amon(s., @)

—| [ ntaonr@) ~ [ um@on(s@)| + | [ um@h(r@) - [ (@, @)
(C.1)
Here the first term on the right-hand side converges to zero by our assumption that pu, con-
verges weakly to u, while the second term can be bounded by ||ho f, —ho f.|/~, which tends
to zero since E x G 2 (x,z) — ho f,(x) € R is continuous and E,G are compact spaces.
We next claim that if f* — f pointwise, then also /" — ¥/ pointwise. Indeed, if
f2(x) = f.(z) for all z, z, then, for any continuous (and hence bounded) h: F' — R,

[ o2 iannt) = [ utann(2e) = [uaontse) = [ewdnw. ©2

showing that ¥ () — ¥!(p) for all p, z. Tt follows that the set G of all E x G > (z, 2) —

f-(z) € F such that My(E) x G 3 (u,2) — ¥ (n) € My(F) is measurable is closed under
pointwise limits and contains all continuous functions (z,z) — fz(z). By Lemma [C2] it
follows that G contains all measurable (z, z) — f,(x).

To treat the general case, where E, G need not be compact and F' may be different from
[0, 1], we will use a compactification argument. We need the following three facts: 1. Each
separable metrizable space is isomorphic to a subset of [0, 1]N. 2. A subset of a Polish space is
Polish in the induced topology if and only if it is a Gs-set, i.e., a countable intersection of open
sets §6 No. 1, Thm. 1]. 3. If By C E5 are Polish spaces and M (E;) is the space of
probability measures on F; (i = 1,2), equipped with the topology of weak convergence, then
M (E1) is isomorphic to the set {u € My (FE2) : u(E1) = 1}. (The fact that the topology on
M (FE7) coincides with the one induced by the embedding in M;(E>) follows, for example,
from Skorohod’s representation theorem Theorem 6.7].) Note that facts 2 and 3 and
the fact that My (E;) (i = 1,2) are Polish spaces imply that M (E7) is a Gg-subset of M (E32).

In view of facts 1 and 2 above, we may without loss of generality assume that E,G are
Gs-subsets of some compact metrizable spaces E, G and that F is a Gs-subset of [0, 1]. Then
each measurable function £ x G 2 (z,z) — f.(z) € F may be extended to a measurable
function from E x G to [0, 1]N by setting f.(x) equal to some constant if (x z) ¢ E x G. By
what we have already proved, the associated map M1 (E) x G 3 (i, 2) — 1 (11) € My ([0, 1Y)
is measurable. Since M;(FE) and G are measurable subsets of M;(E) and G, respectively, the
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restriction of the map (y, z) — wi(u) to M (E) x G yields a measurable map from M;(E)x G
to F. 5

D Thinning and Poissonization

Let E be a Polish space and let M(E) be the space of finite measures on E equipped with
the topology of weak convergence, under which it is Polish. We let Mount (F) denote the
space of finite counting measures on E, i.e., measures of the form ) ;' | d,, with n > 0 and
Z1y..., Ty € E. Since Meount(FE) is a closed subset of M(E), it is also Polish (under the
topology of weak convergence). We let B, (F) denote the space of measurable functions
[ E — [0,00) and write By qj(F) for the space of measurable functions f : £ — [0,1]. For
any [ € B[O,l](E) and v € Meount(F), we introduce the notation

n

fr= Hf(xl) where v = zn:éxi, (D.1)

i=1 =1

with the convention that f := 1. Let u € M(E). By definition, a Poisson point measure
with intensity p is an Mcount (E)-valued random variable v such that

E[(1— )= e~ [T (feByy(E)). (D.2)

An explicit way to construct such a Poisson point measure is to write g = Ay’ where A > 0 and
1/ is a probability measure, and to put v = Zf\il dx, where (X;);>1 are i.i.d. with law x/ and
N is an independent Poisson distributed random variable with mean A. By [Res87, Prop. 3.5],
the law of v is uniquely characterized by (D.2)). The proof there is stated for locally compact
spaces only, which in the present paper is actually all we need, but the statement holds more
generally for Polish spaces. If p is non-atomic, then v a.s. contains no double points, i.e.,

V= Z 0y a.s., (D.3)

xe€supp(v)

see [Kal02, Prop. 10.4]. In this case, we call supp(v) a Poisson point set with intensity p.
If v € Mcount(E) is a (deterministic) finite counting measure and g € Bjo(E), then by
definition a g-thinning of v is an M ount (E)-valued random variable v such that

E[(1-f)"]=0=gf)" (f€Boy(E). (D.4)

An explicit way to construct such a g-thinning, when v = > | d,,, is to construct independent
{0,1}-valued random variables x1, ..., x,» with P[x; = 1] = g(z;) and to put v/ := > | X;i0s,.
By [Res87) Prop. 3.5], the law of v/ is uniquely characterized by (D.4]).

It is easy to see that the class of functions f : E — [0, 1] for which (D:2)) or (D.4) hold is
closed under taking of pointwise limits. Therefore, by Lemma [C.I] in order to check (D.2)) or
(D.4), it suffices to verify the relation for all continuous functions f : E — [0, 1], and in case
F is locally compact, even the continuous functions with compact support suffice.

We also need Poisson point sets with o-finite, but in general locally infinite intensities. To
this aim, let Count(E) be the space of all countable subsets of E. We equip Count(E) with
the o-field generated by all mappings A > 1¢ynp—gy where B C E is Borel measurable.
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Lemma D.1 (Poisson point sets with o-finite intensity) For each f € Bjg1(FE), the
map Count(E) > A — [l,ea (1 — f(z)) € [0,1] is measurable. Moreover, for each o-finite
non-atomic measure pu on E, there exists a Count(E)-valued random variable C, unique in
law, such that

E[[] - f@)]=e I/ (feByyE), (D.5)

zeC

where e~ := 0.

Proof. We claim that for all (Borel) measurable B C E, the function Count(E) > A —
|[ANB| € {0,1,...} U{oco} is measurable. To see this, let D C E be countable and dense and
let O := {By(v) :x €D, k > 1}, where B.(x) denotes the open ball of radius ¢ around .
Then

{|[AnB|>n} ={301,...,U, € O disjoint, s.t. ANBNU; #0Vi=1,...,n} (D.6)

is a countable union of finite intersections of measurable sets, and hence itself measurable. It
follows that A — > 4 f(x) is measurable for each f of the form f = >"" , b;lp, with B;
(Borel) measurable and b; € [0,00). By taking increasing limits it follows that A — >, f(x)
is measurable for each measurable f : E — [0,00]. Since [[,c4 (1—f(2)) = exp{}_,c 4 log(1—
f(x))}, we conclude that A — [],.4 (1 — f(x)) is measurable for each f € By 1(E).

Since p is o-finite, there exist disjoint measurable B; C E such that u(B;) < oo (i > 1).
Let C; be independent Poisson point sets with intensity u; := p(B; N -) (i > 1) and set
C :=U;>;Ci. Then {C N B = 0} = U;»,{Ci N B = 0} is measurable for all measurable

B C E, hence C' is a measurable Count(FE)-valued random variable. Since the C; are disjoint
and independent and the u; are non-atomic, we have

E[T] (1= f@)] =T[E[I] (- f@)] =J[e /i = e JTdn (5 e By y(E)).
zeC >l 2eC; i>1

(D.7)

In particular, setting f = 1 we see that P[C'N B = 0] = e *(5) for all measurable B C E.

Set Ap :={A: AnB = 0}. Then AgNAp = Apup, Ay = Q, and the class of all Ap

with B C E measurable generates the o-field on Count(FE), hence by the m/\-theorem [Kal02]

Theorem 1.1], (D.5) uniquely determines the law of C'. |

E A one-sided version of Kolmogorov’s moment criterion

We prove a variant of Kolmogorov’s moment criteria (see e.g. [Dur96l Chap. 7, Theorem
(1.5)]) for the Holder continuity of a stochastic process, with bounds on the distribution of
the Holder constant. We assume a one-sided moment condition, which in turn gives one-sided
Hoélder continuity at deterministic times.

Theorem E.1 Let (Xt)te[O,T} be a real-valued stochastic process. If for all0 < s <t <T,

E[(Xs — X)) T)?] < K(t—s)'* (E.1)

for some o, > 0 and K < oo, then for any 0 < v < %, there exists a random constant

C € (0,00) such that a.s.
(X, —X,)T <Clqg—r)" for all r,q € Q2N [0, T] with r < g, (E.2)
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where Qy = {m2™" : m,n > 0} is the set of dyadic rationals. Furthermore, for any 0 < ¢ <
a— By, there exists a deterministic constant Cs,, depending only on v, 0, K, and 3, such that

C
PIC > u] < % N1 for all u > 0. (E.3)

The same results hold if we replace (-)* by (-)” :=—(-A0) or|-].

Proof. The proof is essentially the same as that for the standard version of Kolmogorov’s

moment criterion. Fix 0 < v < % Without loss of generality, assume T = 1 and let

D, :={i27":0<4i<2"}. For any s :=i27" < t:=j27" € D,, by (E.J]) and the Chebychev
inequality,

P[(Xs — X)b > (t — )] < K(t — 5)' T8 = K (j — i) Ta-Brgnlita=ph), (E.4)

If we let G, := {(Xjo—n — Xjo-n)T < (j—4)727" for all 0 < i < j < 27,5 —i < 2™} for some
fixed n € (0,1), then by (E4),

P[GC] < Z K(j —i)tro—frgnli+a=by) < gro-ll=nla=y)=2un _ gro—on (E.5)

0<i<yj<2n
j—i<2nn

where we have chosen 7 > 0 such that (1 —n)(aw — 8v) —2n = € (0, — 7). Then by
Borel-Cantelli, a.s. N :=inf{n € N: N;>nyG; occurs} < oo, and furthermore, for any L € N,

25L
1—2-9"

P[N > L] < ZPGC <KZ2—5"— (E.6)

Note that
(Xy — X)) < (X — X)) T+ (Xu — X)) forany u<v <w. (E.7)

We will use this triangle inequality to deduce (E.2) on the event Ny,>nG,,. First assume that
r<qeQyn[0,1] and g —r < 2= N0=1_ We can find an m > N such that

9~ (mADA=n) < ¢ p < g=m{-1), (E.8)
By binary expansion for ¢ and r, we can write

g= j2 M 427N 4 ... 27 %
F= 2T 27T 9T
where m < 1 < -+ < qr and m <ry <--- <r. By (ES),
2=l < (g — 2™ < j—i+2.
Since m > N, if we replace N with N Vv 2/7, then we are guaranteed that j > i. Since
q—r>(j—1)27™, again by (E.8), we have j —i < 2™". Since the event N,>nG, occurs by

definition, we have

(Xig-m — Xjo-m)T < (j —d)727™ < 27m=m, (E.9)
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By (E1),

+ - 27
. _ —d4o7Y —oy
(Xjo-m — Xg)T < ;2 <> 277 < T

a>m

(E.10)

Similarly, the same bound also holds for (X, — X;5-=)". Combining the above estimates and

applying (E7) once more, we get

21—mfy 21—m77'y
= (1

27 —1 (1+ 27 —1

(X, — X,)* < g—m(l-n)y | )2(1—77)72—("%“)(1—77)7 < Cy(qg—7)"

for C.y = 27(1+ 52=). This verifies (E2) for r < ¢ € Q2N[0, 1] with g—r < 27 NV2/M1=1)_ For
general 7 < ¢ € Q2N [0,1], we can apply the triangle inequality (E.7) at most 2(VV2/m(1-n)
times to obtain (E2) with C = C,20VV2/M{1=7)  The distributional tail bound (E3) then
follows from ([E.G)).

When we replace (-)* by ()~ or | - |, the proof is the same since analogues of the triangle
inequality ([E.7)) still hold. n
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Notation List

General notation:

Z2

: The even sublattice of Z?2, {(x,t) € Z? : x + t is even}.

o)

: the diffusive scaling map, applied to subsets of R, paths, and sets of

the law of a random variable.

paths, quenched laws, etc. See ([B23]).

: a sequence of constants decreasing to 0, acting as scaling parameters.
: a stochastic flow of kernels on the space E.

: the space of probability measures on the space E.

: the space of finite and locally finite measures on R.

: the subset of M,.(R) satisfying the growth constraint (Z.15)).

: support of a measure.

Paths, Space of Paths:

Tino T

: the compactification of R?, see Figure [0

: a point in R2, with position = and time ¢.

: times.

: the space of compact subsets of R2.

: the space of continuous paths in R?, with metric d, see (3.7)).

: the space of compact subsets of II, with Hausdorff metric dy, see (3.8]).
: the set of paths in II starting from a set A C R? resp. a point z € R2.

The same notatation applies to any subset of II such as W, N, etc.

: a path in IL

: the starting time of the path

: the position of 7 at time t > o.

: the space of continuous backward paths in R? with metric d.

: the set of backward paths in IT starting from A C R? resp. z € R2.
:a path in II.

: the starting time of the backward path 7.

: equivalence of paths entering, resp. leaving z € R?, see Definition
: strong equivalence of paths entering, resp. leaving z € R?, see

Definition
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Discrete environments, paths, webs, and flows:

w = (W2)zez2

even

7
Ké,t)(x7y) :

Q7 :
Q:
: a discrete path on 7Z

Pz

Pzt
: a family of independent +1-valued random variables.
u,u) :

@ u Ut ur)
VARE

(W )gen :
(Hr)wen

Q= (az)zezz

even

: an i.i.d. environment for random walks on Z2,,,.

the law of w, € [0, 1].
transition probability of a random walk from (z,s) to (y,t) € Z2,, in
the environment w.

the law of a random walk on Z2, ., starting from z in the environment w.
discrete Howitt-Warren quenched law.

2 en Starting from z € Z

a dual discrete path on 72, := Z*\Z2

even

2

even*

starting from z € Z(Q)dd.

a discrete web and its dual.

a discrete left-right web and its dual.

a discrete net and its dual.

a sequence of i.i.d. environments on ZZ,, with E(wék>) = i

a sequence of probability laws on [0, 1], satisfying (7).
the discrete Howitt-Warren quenched law associated with w ).

Q)

Brownian webs:

W,W) :

Ty Ty

™,

+

Ty

Wi (Z),Wout(Z) :
signyy(z)
switch, (W) :

hop, (W) : A
: the intersection local time measure between VW and W, and its

f,f],fr

(WL WE, WL A
[, a path in WY, resp. W*, WL, Wr.
. the a.s. unique path in W!(z), resp. W*(z), W\(z), Wr(z), starting

Lr 7

+ .
Ty

a double Brownian web consisting of a Brownian web and its dual.
the a.s. unique path in W resp. W starting from a deterministic

z € R2.

the leftmost, resp. rightmost path starting from z € R? in the
Brownian web W.

same as 7, except when there is an incoming path in W at z, then m
is defined to be the continuation of the incoming path.

the set of paths in W entering, resp. leaving z.

the orientation of a (1,2) point z € R? in W. See (B.13).

a modification of W by switching the orientation of all paths in W
entering z. See (3.11J).

W U switch,(W).

restriction to the set of (1,2);, resp. (1,2), points. See Proposition B.4l
the left-right Brownian web and its dual.

from a deterministic z € R2.

) : a wedge defined by the paths 7 € Wrand [ € Wl, see (4.4).
: a mesh defined by the paths r € W* and | € W', see (&3]).
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Brownian net:

(NN :
: a branching-coalescing point set. See (46l and Proposition
S
sign.(z) :
H_:
Hy:
Rsy -

&t

the Brownian net and the dual Brownian net. See Theorem 4.1l

the set of separation points of N.

the orientation of a path = € A at the separation point z. See (LJ]).
a Brownian half-net with infinite left speed and finite right speed.

a Brownian half-net with finite left speed and infinite right speed.
the set of S, U-relevant separation points in N.

Howitt-Warren flows and processes:

B,v:
ﬁ—v B-i- :
Wo, M, W) :
(Wi)ien :
ﬁ()) 6 :
vy, Uy
i
L
(K;,_t)8<t
(K(Ts,t))SSt
Q
Pt
(Ac)c>0
Gt

. same as 7,

the drift and characteristic measure of a Howitt-Warren flow. See
Definition

the left and right speeds of a Howitt-Warren flow. See (212]).

the reference web, the set of marked points, and the sample web. See
Section [3.4]

i.i.d. copies of the sample web W.

the drift of the reference, resp. sample web.

: a decomposition of v via ([B21]).
: the rightmost path starting from z € R? in the sample web W.

, except when there is an incoming path in W at z, then m

is defined to be the continuation of the incoming path.

_l’_

<¢ : the version of the Howitt-Warren flow constructed using 7+. See (3:22]).
: the version of the Howitt-Warren flow constructed using 7.

: the Howitt-Warren quenched law of W conditional on (W, M).
: the Howitt-Warren process defined from either K+ or K. See (Z.).
: ergodic homogeneous invariant laws for the Howitt-Warren process. See

Theorem [2.111

: the smoothing process dual to the Howitt-Warren process p;. See (ILI]).
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