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Abstract—CANDECOMP/PARAFAC (CP) has found numerous
applications in wide variety of areas such as in chemometrics,
telecommunication, data mining, neuroscience, separated rep-
resentations. For an order- tensor, most CP algorithms can
be computationally demanding due to computation of gradients
which are related to products between tensor unfoldings and
Khatri-Rao products of all factor matrices except one. These
products have the largest workload in most CP algorithms. In this
paper, we propose a fast method to deal with this issue. Themethod
also reduces the extra memory requirements of CP algorithms. As
a result, we can accelerate the standard alternating CP algorithms
20–30 times for order-5 and order-6 tensors, and even higher
ratios can be obtained for higher order tensors (e.g., ).
The proposed method is more efficient than the state-of-the-art
ALS algorithm which operates two modes at a time (ALSo2) in the
Eigenvector PLS toolbox, especially for tensors with order
and high rank.

Index Terms—ALS, CANDECOMP/PARAFAC (CP), canonical
decomposition, gradient, tensor factorization.

I. INTRODUCTION

C ANDECOMP/PARAFAC (CP), also coined canonical
polyadic decomposition, [1], [2] is a common tensor

factorization which has found a wide range of applications. For
example, CP was applied to analyze the auditory tones by Car-
roll and Chang [2], or to vowel-sound data by Harshman [1],
or to model fluorescence excitation-emission data by hidden
loading components in chemometrics [3]. Applications of CP
to sensor array processing and CDMA systems in telecom-
munications have been developed in [4], [5]. In neuroscience,
Field and Graupe [6] extracted topographic components model
from event-related potentials data, Mørup et al. [7] analyzed
EEG data in the time-frequency domain. Deburchgraeve et al.
developed an automatic method for determination of the seizure
location in the neonatal brain [8]. Constantine et al. [9] modeled
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the pressure measurements along the combustion chamber as
order-6 tensors corresponding to the flight conditions—Mach
number, altitude and angle of attack, and the wall temperatures
in the combustor and the turbulence mode. Hackbusch and
Khoromskij [10] investigated CP approximation to operators
and functions in high dimensions. Other applications of CP are
in time-varying EEG spectrum [11], data mining [12]–[14],
separated representations for generic functions involved in
quantum mechanics or kinetic theory descriptions of materials
[15]. The CP decomposition has been commonly used over
the years because of its uniqueness under mild conditions
[16]–[18].
Since the alternating least squares (ALS) algorithm was pro-

posed [1], [2], there have been intensive research efforts to im-
prove performance and accelerate convergence rate of CP algo-
rithms. A number of particular techniques have been developed
such as line search extrapolation methods [1], [19]–[22], com-
pression [23]. Instead of alternating estimation, all-at-once algo-
rithms such as the OPT algorithm [24], the conjugate gradient
algorithm for nonnegative CP [25], the PMF3, damped Gauss-
Newton (dGN) algorithms [21], [26] and fast dGN [27]–[29]
have been studied to deal with problems of a slow convergence
of the ALS in some cases. Another approach is to consider the
CP decomposition as a joint diagonalization problem [30]–[32].
The above mentioned CP algorithms can speed-up conver-

gence rate, or cope with difficult problems. However, in most of
existing CP algorithms, the largest workload is product of tensor
unfoldings and all-but-one factors which has not been inade-
quately considered till now. If a tensor of size
is an error tensor of a tensor and its CP approximation, the
product expresses the gradient of a least squares cost function
with respect to a factor matrix of size . Hereafter, we call
this product “CP gradient” also referred to as “matricized
tensor times Khatri-Rao product” (MTTKRP)
[33], [34]. The CP gradients with respect to all the factors
have a high computational cost of order where

(see detailed cost in Table I). In addition,
mode- tensor unfoldings with are also
time consuming because they permute the order of data entries.
For high order tensors , the CP gradients may become
very computationally demanding. Experimental results show
that it might take several hours to several months on standard
computers to factorize order-12 tensors consisting of million or
billion entries (e.g., a tensor of size , )
and having rank .
In an effort to handle with the CP gradients (MTTKRP) over

all modes, Tomasi [36] proposed a computation method for
order-4 tensors which operates two modes at a time (ALSo2)
and reduces the largest number of multiplications from
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TABLE I
COMPARISON OF THE NUMBER OF MULTIPLICATIONS EXECUTED IN

METHODS TO COMPUTE

: Kronecker delta.

to . The generalized method for order- tensor has
been implemented as subroutine alsstep in the commercial
PLS toolbox [37]. However, this method has not yet optimally
reduced the computational cost and space cost. In particular,
it becomes less efficient when the rank of the decomposition
exceeds the largest dimension for odd order or the product
of the two largest ones for even .
In this paper, a fast computation method is proposed for one

mode and all mode CP gradients (MTTKRP). The CP gradient
(MTTKRP) is calculated using two smaller Khatri-Rao products
to avoid rearranging entries of a tensor in a computer as much
as possible. Moreover, progressive computation of all-mode CP
gradients has been further improved by exploiting common fac-
tors between CP gradients. It not only has a lower computational
cost of , but also reduces memory requirement. For
example, for hypercube tensors of size for all , the re-
duction factor is approximately of (details given in
Table II). As a result, we formulated the FastALS algorithm
which is 20–30 times faster than the ordinary ALS algorithm
for order-5, order-6 tensors, and achieves much higher ratios
for higher order tensors . The proposed method is
also faster and less memory demanding than the ALSo2 algo-
rithm [36], [37], especially in decomposition of tensors of order

and high rank.
The paper is organized as follows. Notation and basic mul-

tilinear algebra are briefly reviewed in Section II. CP model
and CP gradients are shortly reviewed in this section. The fast
computation method is presented in Section III. The fast im-
plementation of the ALS algorithm utilizing the fast CP gra-
dient is introduced in Section IV. Section V compares the re-
lated ALS algorithm, which is ALSo2, [36], [37] with the pro-
posed algorithm. In Section VI we provide examples illustrating
the validity and high performance of the proposed algorithm.
Section VII concludes the paper.

II. NOTATION AND CANDECOMP/PARAFAC (CP) MODEL

We shall denote tensors by bold calligraphic letters, e.g.,
, matrices by bold capital letters, e.g.,

, and vectors by bold italic
letters, e.g., or .

TABLE II
COMPARISON OF EXTRA MEMORY REQUIREMENTS IN THE CP_ALS
ALGORITHMS WHEN UPDATING WITHOUT COUNTING SPACE

OF THE DATA TENSOR AND FACTORS

An -th entry with
, , is alternatively denoted by

with the index 1 defined as

where . We also denote ,

and . A vector of integer numbers is denoted by colon
notation such as . For example,
we denote .
Generally, we adopt notation used in [38], [39]. The Kro-

necker product, the Khatri-Rao (column-wise Kronecker)
product, and the (element-wise) Hadamard product are denoted
respectively by Ο [38], [39].
Notation 2.1 (Hadamard and Khatri-Rao products): Given a

set of matrices , , Hadamard
and Khatri-Rao products among them are denoted by

Ο

Definition 2.1 (Reshaping): The reshape2 operator for a
tensor to a size specified by a vector

with returns
an order- tensor , such that , and is
expressed as

(1)

Reshape does not permute entries in its vectorization.
Definition 2.2 (Tensor Unfolding [35], [36], [40]):

Unfolding a tensor along modes
and where

is a permutation of aims to rearrange this

tensor to be a matrix of size whose

entries are given by , where

1ivec is the “sub2ind” Matlab subroutine.
2see the “reshape” Matlab subroutine.
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, , ,
, .

Remark 2.1:
1) If , is simplified to

.
2) If and , we have
mode- matricization .

3) .
4) For , , for all ,

can be expressed and efficiently
performed by reshape, that is

(2)

Definition 2.3 (Mode- Tensor-Vector Product [39]: The
mode- multiplication of a tensor by a
vector returns an order- tensor defined as

(3)

Symbolically, the product is denoted by

(4)

Tensor-vector product of a tensor with a set of column
vectors is denoted by

(5)

Definition 2.4 (CANDECOMP/PARAFAC (CP)): CP decom-
position means an approximation of a given -th order tensor
by a rank- tensor of the form

(6)

where symbol “ ” denotes the outer product, component ma-
trices (factors): ,

represent the common (loading) factors [1], [2],
[41].

A. Complexity of Tensor Unfoldings

Tensor unfoldings are to rearrange entries of tensors to be
matrices.We note that entries of the tensor are stored as a long
vector of the size in memory. From this
view point, tensor unfolding is to change the order to entries
in its vectorization. The more the changes of entries take place,
the slower the unfoldings are. Moreover, reading data (entries)
stored in non-contiguous blocks will be at a slower rate than
accessing data stored in a contiguous block.
The mode-1 unfolding comprises

column vectors which consist of contiguous entries of , i.e.,

...
...

. . .
...

By taking into account that , in practice,
we compute instead of . consists of
vectors each of which comprises contiguous entries

given by

In general, unfoldings do not change
the order of entries of

Hence, they are relatively fast. We denote by ,
, order- subtensors of

whose each entry is given by
. The mode- unfolding is

of the size , and can be expressed as concate-
nation of mode- unfoldings of , that is

...
. . .

...

where and
. Therefore, most entries of have been permuted. This
explains why the mode- unfoldings for
are more time consuming, and relatively slower than unfoldings

.
For example, given a tensor of

size , unfoldings , and are
given by respectively

...
...

...
...

The permutation of entries of can also be seen from rela-
tion between vectorizations and , which was
shown by Tomasi in Paper III in [21]

where are commutation matrices of size , whose
explicit expression is given by , where

is a permutation matrix for any matrix such that
(see Lemma A.1 in [28]). Some other

properties of tensor unfolding , which are useful to avoid
tensor permutation, can be found in [36], and in Section II, Paper
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III in [21]. For example, when using an alternative mode- ma-
tricization which arranges to be a matrix of size

, since ,
one only needs a transposition and simple reshaping of the data
entries [19], [21].

B. Gradients in CP Algorithms

We consider the cost function

(7)

and the gradients of this cost function with respect to the factors
, are given by [21], [28]

(8)

where denote the mode- unfoldings of the error
tensor . The products or

have a computational cost of (see
details in Table I), and are the most expensive steps in CP
algorithms. Indeed, the mode- unfoldings , for ,
are time-consuming. The latter products
are more efficient than in the sense of com-
putation because we don’t need to construct the error tensor .
However, since both products involve the same mathematical
expression, we also call the CP gradient
in which is considered as an error tensor. The product is
referred to as MTTKRP in the Matlab Tensor toolbox [33], [34].
The CP gradients are employed in almost all CP algorithms.

For example, the alternating least squares (ALS) algorithm [1],
[2], [5], [19], [42] alternatively minimizes the cost function (7)
with an update rule given by

(9)

where “ ” denotes the pseudo-inverse. A fast implementation of
ALS for 3-way tensor, the ALSo2 algorithm, [21] reduces the
expensive computation of . The method was
later extended to higher order decomposition in the PLS toolbox
[37]. See Section V for the ALSo2 algorithm.
The all-at-once algorithms such as OPT [24], PMF3, the

damped Gauss-Newton (dGN) or fast Levenberg-Marquardt
algorithms [21], [26]–[29], [43], [44], the well-known multi-
plicative algorithm [38], [45] also compute gradients in their
update rules.
The direct computation of for single

mode is illustrated in Algorithm 1, and is implemented in the
MTTKRP function of the Matlab Tensor toolbox [33], [34].

Algorithm 1: Direct Computation of
—MTTKRP [33], [34]

Input: Data tensor , and factor
matrices

Output:

begin

1

2

3

III. FAST COMPUTATION OF CP GRADIENT

A. Order of Dimensions

The CP gradient
given by

(10)

involves products

(11)

for . For , the Kronecker products
can be efficiently computed via the following

scheme [33], [34]

(12)

with a computational cost of .

When , the cost is given by .

For the least cost to compute , the dimensions of
should be in ascending order, i.e., . Note
that can be computed from left-to-right, i.e.,
first computing , then .
In this case, the dimensions should be in the descending order.
Hereafter, we implicitly assume that the tensor has been rear-
ranged in the ascending order of its dimensions. From (12),
computation of in (10) requires the following number of
multiplications

(13)
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B. Fast Gradient with Respect to a Specific Factor

The direct computation of in (10) involves the tensor
unfolding which is relatively slow to obtain for

, due to permutation of entries. We note that vectors (
) can be expressed in an equivalent form consisting

of tensor-vector products and on
the left side and right side of , that is

" (14)

or

" (15)

The outer tensor-vector products in (14) have been re-in-
dexed since is of order- . The

inner tensor-vector products in (14) and

in (15) can be efficiently computed
through and

(16)

(17)

for . It means that the unfoldings which
are time-consuming for are avoided.
Lemma 3.1: Consider an order- tensor with

, the right-to-left projections in (15)
and the left-to-right projections in (14) require the following
number of multiplications

(18)

(19)

Remark 3.1: (See proof in the Appendix).
• The right-to-left projections in (15) are less computation-
ally demanding than Algorithm 1.

• For , the left-to-right projections in (14) are
cheaper than the right-to-left projections in (15).

C. Progressive Computation of All Mode CP Gradients

CP algorithms available in the literature compute all for
, either sequentially (in alternating algorithms

[1], [2], [5], [19], [42], [45], [46]) or simultaneously (as in all-at-
once algorithms [21], [24], [26]–[29], line-search [20], [21]).
This section will present a fast method to compute the gradients
recursively for .

Note that

(20)

or

(21)

Similarly,

(22)

or

(23)

By exploiting relations in (23) and (21), we can quickly derive
from , or from instead of computing

them as in (17) and (16), respectively. The total number of mul-
tiplications of the algorithm summarized in Table I indicates that
it is lower than that of Algorithm 1.
The proposed algorithm to compute CP gradients over all

modes is summarized in Algorithm 2. Gradient (or
) is first computed where

Other gradients are then sequentially computed in the fol-
lowing order , , .
Computation of and is the most expensive
step. It approximately requires the following number of
multiplications

(24)

It is straightforward to verify that . For ,
the algorithm first computes , then and , sequen-
tially, with a total cost of . For , if

; otherwise, .
In comparison with Algorithm 1, besides the lower number

of multiplications, Algorithm 2 avoids unfoldings
which are time consuming. Therefore, the higher the

tensor order is, the more significant the computational saving of
Algorithm 2 in comparison to Algorithm 1 is.
Taking into account that there are additional common parts in

computing two consecutive gradients which are
when computing and with in the

“left-to-right” strategy (14), and when
computing and with in the “right-to-left”
strategy (15). The ALS algorithmwhich operates twomodes at a
time (ALSo2) in [36], [37] computes before
computing and (see more details in Section V). The
similar scheme can be applied to FastALSwhen or

. For example, we can compute
for both and , and for both

and .
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Remark 3.2: The order of dimensions
can be arranged to and

where is a
permutation of such that total computational
cost of Alg. 2 is minimum.
Note that and in are replaced with
and which are similarly defined but calculated from

.
The optimal and can be selected among all possible

combinations of and at most permutations .
For , the optimal selection is and .

For , there are only two possible values , 3, and
the total costs are given by

Remark 3.3: For , Alg. 2 attains the lowest cost in
dependence on , , and :
• If , then and

. That is, dimensions should be rear-
ranged as .

• Otherwise, and .
Remark 3.4: For relatively higher order , the total cost can

be approximated by , when
and .

Remark 3.5: is the optimal order for
.

Proof: The remark is deduced from
for

.
We do not investigate details on the optimal and for

higher order because these parameters can be quickly
found by a simple code to loop over all possible combinations
which are not more than

for even , and for odd , respectively. For ,
6, there are at most 15, 41 combinations, respectively. Although
the optimal order of dimensions and update order of factor ma-
trices can further reduce computational cost of Alg. 2 compared
with that with , they do not significantly
reduce execution time of Alg. 2.

IV. FAST ALS ALGORITHM

This section presents the fast CP_ALS (FastALS) algorithm
in which gradients are computed using Algorithm 2. The up-
date rules (9) are sequentially executed after computing gra-
dients in Algorithm 2. The fast ALS algorithm first up-
dates instead of , then sequentially updates other
factor matrices following the order , ,

.
The cost of the (fast) ALS algorithm is highly dependent on

the computational cost of and cost of computing
where . Evaluation of the cost function

Algorithm 2: Fast Computation of Over All
Modes

Input: Data tensor ,

factor matrices

Output: ,

begin

1 where ,

for , , do

if then

2

3

else if then

4

5

else if then

for do % Compute as in (23)

6

7

else

for do % Compute as in (21)

8

9

function

for do

switch

10 case
%

in (31)

11 case
%

in (32)

in Step 2

in Step 4

(7) is not expensive and it is quickly computed from the last
computed gradient (or ) without construction of the
approximate tensor [33], [47]

(25)

where is a vector of ones, and is computed only once
or can be neglected. Hence, when , the complexity
per iteration of FastALS is given by
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1) Computing

2) Computing ,
3) Computing
4) Evaluating (25)

Total

When , the approximate total cost is
. The last three steps

are common in both ordinary and fast ALS algorithms. Compu-
tation of all in the ordinary ALS algorithm costs

(26)

Concerning the memory consumption, in order to up-
date the factor , FastALS first computes the right-side
Khatri-Rao product of size , and then the left-side
Khatri-Rao product of size . A projection matrix

of size is kept
to update other factors. Hence, it needs an extra temporary

memory cells besides those of the tensor
and the factors.
For updating factors , , 2, FastALS

does not need to access the raw tensor. It utilizes the projection
matrix obtained when updating , and constructs a new
projection matrix of size
. Moreover, the FastALS algorithm computes only the left-

side Khatri-Rao product of size . Hence, FastALS
requires a temporary memory cells. Note that
updating does not need to compute anyKhatri-Rao product
and tensor unfolding.
Similarly, to update the factor , FastALS algo-

rithm first computes the left-side Khatri-Rao product of
size , then the right-side Khatri-Rao product
of size , and yields a projection matrix

of size .
It requires memory cells. Updating factors

, for , requires a temporary memory
of order , while updating does not
compute any Khatri-Rao product.
The extra temporary memory of FastALS is summarized in

Table II. Without taking into account the unfoldings of
size , the ordinary CP_ALS algorithm requires an
extra memory cells for the Khatri-Rao products
of size , . Note that

Therefore, the FastALS algorithm requires much smaller extra
temporary memory than CP_ALS. The maximum extra space

of FastALS is of memory cells as updating
or . This confirms that FastALS not only has a

lower computational cost, but also requires less memory than
CP_ALS. Other alternating algorithms for CPD with/without
additional constrains such as nonnegativity, orthogonality [38],
[45], [46], [48], [49] can be accelerated in a similar way.

V. RELATED WORKS

This section compares Algorithm 2 with the algorithm pro-
posed by Tomasi in [36], which operates two modes at a time
(ALSo2), and is implemented as the subroutine alsstep in
the commercial PLS toolbox [37].
The ALSo2 algorithm reduces the largest number of multi-

plications to , but it has not yet optimally pro-
cessed the order of dimensions which is also important to
reduce the computation cost and space cost. Denote

, ALSo2 [36], [37] oper-
ates two modes and at a time

(27)
through the left-side projection as in (16) with

(28)

where , , and . The
ALSo2 algorithm first computes when is odd or com-
putes and for even order .
For example, when , ALSo2 first computes

with a cost of , then com-
putes with a cost of , and and with a
cost of . The total cost of ALSo2 is of . A
minimum cost is achieved when and are the two shortest
dimensions. That is, ALSo2 {[36], [37] may need a tensor per-
mutation so that .
For order-4 tensors, ALSo2 sequentially updates factors
and , then and , and requires a total cost of

. The optimal order of dimensions for
ALSo2 is which is similar to that for FastALS
when in Remark 3.3. However, when , e.g.,

, FastALS updates factors from right to left, and
has a lower cost of than ALSo2 (see
decomposition of dimensional tensors in
Table III).
For higher order tensors, in general, the matrices cost

multiplications, and

cost multiplications. Hence, for even
orders (6, 8, ), the largest workloads are involved in the
computation of , , , , and
with a total cost of

(29)

For odd orders (5, 7, ), the computation cost of ALSo2
[36],[37] is approximately of . The algo-
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rithm requires an extra temporary or memory cells
for odd or even order , respectively. The optimal order of
for ALSo2 can be chosen such that or is min-
imum. In general, the dimensions should be in the descending
order. The optimal mode permutation is performed just once be-
fore the FastALS and ALSo2 algorithms are even started.
We note that ALSo2 [36], [37] can be considered as a partic-

ular case of FastALS with a general permutation in Remark
3.3 when for and for

. This algorithm updates factor matrices from
right to left. Therefore, in general, FastALS always has lower
or equal cost as ALSo2 with an optimal tensor permutation.

VI. SIMULATIONS

A. Factorization of Synthetic Tensors

Simulations in this section compare execution times of the
ALS algorithms: the ordinary CP_ALS algorithm [1], [2], [34],
the FastALS in Section IV, the ALSo2 algorithm, i.e., the sub-
routine alsstep which operates two modes at a time in the
commercial PLS toolbox [36], [37].
Comparison of execution times (second) per iteration be-

tween CP ALS, FastALS and ALSo2 [35], [36] in factorization
of random tensors. Execution times per iteration and speed-up
ratio between algorithms are shown as indicated in the below
sub-table. Computer PC1, used in all scenarios, has 1.8 GHz
i7 processor and 4 GB memory. Computer PC2, used in the
last scenario, had 96 GB of RAM and two six-core processors
X5690@3.47 GHz.
Example 1 [Factorization of Random Tensors]: We de-

composed order- tensors which were randomly generated
from normal distribution with zero mean and unit vari-
ance in single-precision floating point with different sizes

, for all . Algorithms factorized the same
tensors using the same initial values and ran in 20 iterations
without any other stopping criterion. Execution times were
measured for various ranks using the stopwatch command:
“tic” “toc” of Matlab release 2011a on a computer (PC1) with a
1.8 GHz i7 processor and 4 GB RAM and the Mac OS X 10.7
operating system. In addition, memory usage of algorithms
including allocated memory and peak memory was measured
using the Matlab profiler.
Speed ratio between CP_ALS and FastALS is defined as the

ratio between their execution times per iteration

(30)

The final results were averaged over at least 20 iterations 10
runs. Fig. 1 shows how the speed-up ratio per iteration (times)
changes for factorizations of order-3 and order-4 tensors with
different sizes and ranks . Other results are summarized in
Table III. The ratios were relatively high for low rank , and
gradually decreased when increasing . The fact is that the com-
putational cost of FastALS was also affected by rank , e.g.,
the term where as analyzed in
Section IV. Another reason is due to the array-based language
Matlab which is relatively slow for relatively high when ex-
ecuting codes relying on “for” loops. Memory requirement is

Fig. 1. Speed-up ratios per iteration (in logarithmic scale) for the FastALS al-
gorithm in comparison with the standard CP_ALS algorithm for factorizations
of order-3 and order-4 tensors with various sizes for all , and ranks .
(a) Order-3 tensors; (b) order-4 tensors.

also an important issue for the ALS algorithms. The higher the
rank- is, the more memory cells the algorithms require. Since
CP_ALS and ALSo2 [37] without proper tensor permutation
are much more space-consuming than FastALS, their memory
requirements exceed the memory bound sooner than that of
FastALS. For this case, the ratio will increase as increasing .
For example, in order to factorize order-4 tensors with
, for all , into rank-one tensors, FastALS allo-

cated 22MB of physical memory on average per iteration with a
peak memory of 5.5 MB for the term where
. For the same task, CP_ALS allocated 5.1 GB of memory
cells which included the tensor unfoldings and 691 MB
of memory for each product , while the computer
had only 4 GB of memory. This explains why the speed-up ratio
increased when for tensors of size
as illustrated in Fig. 1(b).
Besides the comparison between FastALS and ALS, ALSo2

[37] is also compared with FastALS in Table III. For example,
in decompositions of tensors of size and

, FastALS was 4–5 times faster than ALSo2
without optimal tensor permutation. Notice that with a tensor
permutation or , ALSo2 is exactly
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TABLE III
COMPARISON OF EXECUTION TIMES (SECOND) PER ITERATION BETWEEN
CP_ALS, FastALS AND ALSo2 [36], [37] IN FACTORIZATION OF RANDOM
TENSORS. EXECUTION TIMES PER ITERATION AND SPEED-UP RATIO
BETWEEN ALGORITHMS ARE SHOWN AS INDICATED IN THE BELOW
SUB-TABLE. (a) EXPERIMENT RESULTS ON COMPUTER PC1.

(b) EXPERIMENT RESULTS ON COMPUTER PC2

FastALS. Table III shows the cases when ALSo2 and FastALS
are identical, i.e., the speed ratio is one.
For order-4 tensors of size , since
, FastALS updated factors in the order 3, 2, 1, 4. Table III
shows execution times of ALSo2 [37] without and with optimal
tensor permutation . The results indicates that
FastALS was 2 times faster than ALSo2 [37] on average when

. For order-5 tensors of size , FastALS
was approximately 3–7 times faster than ALSo2 [37] on av-
erage for . However, when , ALSo2 [37]
became very time-consuming. It took 38.25 seconds per itera-
tion on average, and allocated a total 3.6 GB of memory with a
peak memory of 1.2 GB. FastALS allocated only a total 121.9
MB of RAM, and took 1 second/iteration. For order-5 tensors
of size , CP_ALS was nearly impos-
sible to factorize these tensors with rank on PC1. When

, with optimal tensor permutation, i.e. [5, 4, 3, 2, 1],
the ALSo2 took only 4.77 seconds/iteration, and was 33 times
faster than this algorithm without tensor permutation. However,
for higher ranks , execution times of the ALSo2 dramat-
ically increased because PC1 did not have sufficient memory.

For these order-5 tensors, FastALS required only a few seconds
per iteration on PC1. Even when running on a computational
server (PC2) which had 96 GB of RAM and two six-core Intel
Xeon processors X5690@3.47 GHz and the Windows 7 oper-
ating system, ALSo2 with optimal tensor permutation was still
at least 10 times (up to 18 times) slower than FastALS.
Results for higher order tensors with , 11, 12, 13

and for all are summarized in Table IV. The execu-
tion times were averaged over 30 iterations when , 10,
20 on two computers PC1 and PC2. In addition to speed-up
ratios CP_ALS/FastALS and ALSo2/FastALS, the total allo-
cated and peak memory requirements of algorithms are pro-
vided. ALSo2 was faster than CP_ALS, but more time con-
suming than FastALS.
Since , 6 or 7, the products and

occupied not more than 1.562.500 memory
cells which in double precision format consumed only 12 MB
of memory. For and , the products
comprised double-precision num-
bers which might consume 1.82 GB of RAM. It means that PC1
had insufficient memory for CP_ALS and ALSo2 for ,
and FastALS consumed much less memory than CP_ALS. The
speed-up ratio increased as increasing from 5 to 20. Even
when factorizing order-13 tensors, FastALS was still relatively
fast and need approximately 3 seconds/iteration.

B. Factorizations of EEG Data

Example 2 [Factorization of Event-Related EEG Time-Fre-
quency Representation]: This example illustrates application
of the FastALS algorithm for analysis of real-world EEG
data [7], [45] which consists of 28 inter-trial phase co-
herence (ITPC) measurements [50] of EEG signals of 14
subjects during a proprioceptive pull of the left and right
hands. The whole ITPC data set has been represented as a
4-way tensor of

. The first 14 measurements are
associated to a group of the left hand stimuli, while the other
ones are with the right hand stimuli. Mørup et al. analyzed
the dataset by nonnegative CP and Tucker components and
compared them with components extracted by NMF and ICA
[7].
In this example, we approximated the ITPC tensor by CP

tensors with various . Our aim was to compare
the factorization time of CP_ALS and FastALS over various
while interpretation of the results can be found in [7], [45].

Since , ALSo2 and FastALS have identical cost. We
only compared CP_ALS and FastALS. Both algorithms used
the same initial values and stopped when their differences of

successive relative errors were lower than ,
or until the maximum number of iterations (2000) was achieved.
Factorizations were performed on two computers PC1 and PC2.
In addition, the factor matrices in CP_ALS were updated in the
same order as in FastALS. This ensured the estimated factors
and the numbers of iterations of two algorithms were equivalent
up to machine precision.
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TABLE IV
COMPARISON OF EXECUTION TIME PER ITERATION AND ALLOCATED MEMORY PER ITERATION BETWEEN CP_ALS, ALSo2 IN [37] AND FastALS IN
FACTORIZATIONS OF ORDER- TENSORS OF SIZE , , 11, 12, 13. THE RESULTS WERE MEASURED ON A
COMPUTER WHICH HAD 2 X5690@3.47 GHz CPUS AND 96 GB RAM. VALUES IN PARENTHESES SHOW EXECUTION TIMES ON PC1

Fig. 2. Execution times (in seconds) of the FastALS algorithm and the standard
CP_ALS algorithm in factorization of the order-4 ITPC tensor in Example 2
with various ranks .

Execution times of the two algorithms illustrated in Fig. 2
indicate that FastALS was faster than CP_ALS on both ma-
chines. While CP_ALS required 110–240 seconds to factorize
the tensor into components on PC2, FastALS completed
the factorizations only in several seconds, and achieved a high
speed-up ratio . The speed ratio on PC1 was
around 10–15 times for and lower than that on PC2.
The speed-up ratio depended on the CPU power of the system.
We note that PC2 was a computational server with 2 3.47
GHz processors each of which had 6 cores, while PC1 was only
a laptop with only one Core i7 1.8 GHz. The execution times
of CP_ALS on PC1 were approximately two times longer than
those of this algorithm on PC2, while the execution time ratio
of FastALS on PC1/PC2 varied from 1 to 7 times as increasing
from 1 to 50. It indicates that FastALS was more efficient on

PC2 than PC1.
Example 3 [Factorization of EEG Motor Imagery Data]:

In the next set of simulations, we emphasized the supe-
rior efficiency of FastALS in comparison to CP_ALS and
ALSo2 for factorization of high order tensor which involves
left/right motor imagery (MI) movements. We analyzed the

EEG MI dataset3 for the subject 1 which was recorded from
62 channels at a sampling rate of 500 Hz in a duration of 2
seconds per trial. The total number of trials was 200 (100
trials for each class). EEG signals were transformed into
the time-frequency domain using the two complex Morlet
wavelets CMOR1-1 and CMOR6-1 with the bandwidth
parameters and , and the wavelet
center frequency [51], giving an order-5 tensor
with modes

.
The order-5 tensor was factorized by CP models with various

ranks . Algorithms were initialized with the
same values, and stopped when their differences of successive

relative errors were lower than , or until the
maximum number of iterations (2000) was achieved. The order
of factor matrices to be updated in CP_ALS was the same as
in FastALS so that both algorithms took the same number of
iterations. The number of iterations of ALSo2 were set to that of
FastALS. In addition to FastALS with and dimensions
in the ascending order, we executed FastALS with the optimal
order . ALSo2 (without reordering dimension)
and ALSo2 with a tensor permutation were
both executed.
Factorization times of algorithms on PC2 are illustrated in

Fig. 3. When , FastALS demanded a total 7.6 MB
of RAM per iteration with a peak memory of 1.9 MB to allo-
cate the product comprising

entries in the double precision floating-point type. Both
CP_ALS and ALSo2 without optimal tensor permutation com-
puted the Khatri-Rao product which consumed

RAM. Moreover,
CP_ALS and ALSo2 [36], [37] without a proper tensor permu-
tation allocated a total memory of 5.83 GB and 6.52 GB per
iteration respectively, which exceeded the specification of PC1.
With the best tensor permutation prior to

the factorization, ALSo2 [36], [37] was significantly faster
than CP_ALS, but it was still slower than FastALS. The largest
Khatri-Rao product computed for the rank-20 case by ALSo2

3The data set for single trial EEG classification in BCI is provided by Center
for Brain-Like Computing and Machine Intelligence, Shanghai Jiao Tong Uni-
versity, http://bcmi.sjtu.edu.cn/data1/.
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Fig. 3. Execution times (in seconds) of different algorithms in factorization of
the order-5 EEGMI tensor in Example 3 as function of . In the legend, ALSo2
[5, 4, 3, 2, 1] stands for ALSo2 with a tensor permutation .

only comprised entries, and used
21.8 MB RAM approximately. Fig. 3 indicates that FastALS
was approximately 8 times faster than ALSo2 [36], [37] with

when . The FastALS with optimal
tensor permutation was slightly faster than
FastALS with dimensions in the ascending order for high .
Running on PC2 with a large amount of memory, the

CP_ALS took at least 40 minutes to several hours to com-
plete the factorizations, while the FastALS algorithm quickly
returned the factors after 1–2 minutes. The big difference in
execution times reveals the substantial advantage of the pro-
posed algorithm. The speed up ratio in comparison to CP_ALS
was around 100–130 times on PC2, and 300–400 times on PC1
as increasing to 80. A classification study of MI movements
was performed for the same order-5 tensors in [51], [52].
Acceleration of speed in BCI is a key factor because BCI needs
to work on-line.

VII. CONCLUSIONS

The fast computation of one mode and all mode CP gra-
dients (MTTKRP) has been introduced together with the fast
ALS algorithm (FastALS) for the CP decomposition. The pro-
posed method can efficiently and straightforwardly accelerate
other alternating algorithms fitting CP in the similar way. For
all-at-once optimization algorithms for CPD, CP gradients can
be computed sequentially as Algorithm 2, or simultaneously
using the method in Section III-B. We show theoretically that
the computational cost of FastALS is reduced by a factor
of compared with that of the ordinary ALS algorithm,
and is smaller than that of ALSo2 [36], [37]. In addition,
FastALS demands less memory than ALS with a reduction

factor of . Therefore, in practice, the speed

ratio can be higher than , especially on a machine with
low memory. We demonstrated that ALSo2 [36], [37] with
optimal tensor permutation is equivalent to the FastALS up to
for order-4 tensor when and for higher orders when

or . However, FastALS scales far better
to higher orders and should therefore be preferred. Finally,

FastALS makes standard PCs with relatively low physical
memory applicable to factorization of huge and high order
tensors. The FastALS algorithm and other alternating and
all-at-once algorithms using fast CP gradient are implemented
in the Matlab package TENSORBOX which is available online
at: http://www.bsp.brain.riken.jp/~phan/tensorbox.php.

APPENDIX A
PROOF OF LEMMA 3.1

The projection in (15) first computes the order- tensors
defined in (17) for , then computes

from mode- unfolding of

(31)

The two steps require the number of multiplications

Hence, the total number of multiplications is given as in (19).
For the left-to-right projection in (14), we build up

order- tensors of size
defined in (16), and compute from mode-1 unfolding

of .

(32)

The two steps respectively require the following number of mul-
tiplications

APPENDIX B
PROOF OF REMARK 3.1

Since and , we easily have

for . It means that the right-to-left projections should
be faster than Algorithm 1.
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