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Abstract—In general, algorithms for order-3 CANDECOMP/
PARAFAC (CP), also coined canonical polyadic decomposition
(CPD), are easy to implement and can be extended to higher order
CPD. Unfortunately, the algorithms become computationally
demanding, and they are often not applicable to higher order
and relatively large scale tensors. In this paper, by exploiting the
uniqueness of CPD and the relation of a tensor in Kruskal form
and its unfolded tensor, we propose a fast approach to deal with
this problem. Instead of directly factorizing the high order data
tensor, the method decomposes an unfolded tensor with lower
order, e.g., order-3 tensor. On the basis of the order-3 estimated
tensor, a structured Kruskal tensor, of the same dimension as the
data tensor, is then generated, and decomposed to find the final
solution using fast algorithms for the structured CPD. In addition,
strategies to unfold tensors are suggested and practically verified
in the paper.

Index Terms—Tensor factorization, canonical decomposition,
PARAFAC, ALS, structured CPD, tensor unfolding, Cramér-Rao
induced bound (CRIB), Cramér-Rao lower bound (CRLB).

I. INTRODUCTION

C ANDECOMP/PARAFAC [1], [2], also known as Canon-
ical polyadic decomposition (CPD), is a common tensor

factorization which has found applications such as in chemo-
metrics [3], [4], telecommunication [5]–[8], time-varying EEG
spectrum [9], [10], data mining [11], separated representations
for generic functions involved in quantum mechanics or kinetic
theory descriptions of materials [12]. Although the original
decomposition and applications were developed for three-way
data, the model was later widely extended to higher order
tensors. For example, Constantine et al. [13] modeled the pres-
sure measurements along the combustion chamber as order-6
tensors corresponding to the flight conditions—Mach number,
altitude and angle of attack, and the wall temperatures in the
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combustor and the turbulence mode. Luciani et al. [14] factor-
ized higher order tensors generated from characteristic function
in blind identification of underdetermined mixtures. The work
is extended to higher order structured CDP in [7]. In neuro-
science, Mørup et al. [9] analyzed order-4 data constructed
from EEG signals in the time-frequency domain. Order-5
tensors consisting of dictionaries timeframes frequency
bins channels trials-subjects [15] built up from EEG sig-
nals were shown to give high performance in BCI based on EEG
motor imagery. In object recognition (digits, faces, natural im-
ages), CPDwas used to extract features from order-5 Gabor ten-
sors including height width orientation scale images
[15]. More applications and properties of CPD are discussed in
[16].
In general, many CP algorithms for order-3 tensor can be

straightforwardly extended to decompose higher order tensors.
For example, there are numerous algorithms for CPD including
the alternating least squares (ALS) algorithm [2], [1] with line
search extrapolation methods [1], [17], [4], [18], [19], rotation
[20] and compression [21], or all-at-once algorithms such as the
OPT algorithm [22], the conjugate gradient algorithm for non-
negative CP [23], the PMF3, damped Gauss-Newton (dGN) al-
gorithms [24], [4] and fast dGN [25], [26], or algorithms based
on joint diagonalization problem [27], [28]. The fact is that
the algorithms become more complicated, computationally de-
manding, and often not applicable to relatively large scale ten-
sors. For example, complexity of gradients of the cost func-
tion with respect to factors grows linearly with the tensor order

. It has a computational cost of order for

a tensor of size . More tensor unfoldings
means more time consuming due

to accessing non-contiguous blocks of data entries and shuffling
their orders in a computer. In addition, line search extrapolation
methods [1], [29], [17], [4], [18] become more complicated, and
demand high computational cost to build up and solve -
order polynomials. The rotation method [20] needs to estimate
rotation matrices of size with a whole complexity per

iteration of order . Moreover, in practice, CPD algo-
rithmsmay take a lot of iterations, and are very slow, when some
factor matrices become nearly rank deficient [21]. In such cases,
the optimal CP solution might not always exist [30]–[32].
By exploiting the uniqueness of CPD under mild conditions

(see discussion on uniqueness conditions for order-3 CPD in
[33], [34], [27] and for higher order CPD in [35]–[37]), and
the relation of a tensor in the Kruskal form [38] and its un-
folded tensor, we develop a fast approach for high order and
relatively large-scale CPD. Instead of directly factorizing the
high order data tensor, the approach decomposes an unfolded
tensor in lower order, e.g., order-3 tensor.
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The idea of using a tensor reshape has been introduced for a
fast decomposition of certain symmetric tensors. For example,
in blind underdetermined mixture identification, Karfoul et al.
[39] decomposed complex-valued order- cumulant arrays
based on decomposition of an order-3 tensor in connection to the
Procrustes problem, and rank-one tensor approximation of sev-
eral order- tensors. For CPD with a columnwise orthonormal
factor matrix, Sørensen et al. [40] proposed an iterative algo-
rithm which estimates columns of nonorthogonal factor ma-
trices from the best rank-1 approximations of order-
tensors.
This paper presents the method in more general form together

with a specific guide for selecting a folding strategy. We show
that rank-one tensor approximation is sensitive to unfolding, and
can cause a significant loss of accuracy when applying an inap-
propriate unfolding, or when noise level is high. In our propose
method, after decomposition of an unfolded tensor, a structured
Kruskal tensor of the same dimension of the data tensor is then
generated, and decomposed to find the desired factor matrices
using a fast ALS algorithm.
In addition, the method is supported by recently analytically

computed Cramér-Rao Induced Bounds (CRIB) on attainable
squared angular error of factors in the CP decomposition which
has been proposed in [41]. The bound is valid under the as-
sumption that the decomposed tensor is corrupted by additive
Gaussian noise which is independently added to each tensor ele-
ment. In this paper we use the results of [41] to design the tensor
unfolding strategy which ensures as little deterioration of accu-
racy as possible. This strategy is then verified in the simulations.
The paper is organized as follows. Notation and the CAN-

DECOMP/PARAFAC are briefly reviewed in Section II. The
simplified version of the proposed algorithm is presented in
Section III. Loss of accuracy is investigated in Section III,
and an efficient strategy for tensor unfolding is summarized
in Section III-E. For difficult scenario decomposition, we
proposed a new algorithm in Section IV. Simulations are per-
formed on random tensors and real-world dataset in Section VI.
Section VII concludes the paper.

II. CANDECOMP/PARAFAC (CP) DECOMPOSITION

Throughout the paper, we shall denote tensors by bold
calligraphic letters, e.g., , matrices by
bold capital letters, e.g., , and
vectors by bold italic letters, e.g., or . A
vector of integer numbers is denoted by colon notation such as

. For example, we denote
. The Kronecker product, the Khatri-Rao

(column-wise Kronecker) product, and the (element-wise)
Hadamard product are denoted respectively by [38],
[42].
Definition 2.1: (Kruskal Form (Tensor) [38]): A tensor

is in Kruskal form if

(1)

(2)

TABLE I
COMPLEXITIES PER ITERATION OF MAJOR COMPUTATIONS IN CPD

ALGORITHMS.

where symbol “ ” denotes the outer product,
are

factor matrices, , for all and , and
.

Definition 2.2: (CANDECOMP/PARAFAC (CP) [1], [2]):
Approximation of an order- data tensor
by a rank- tensor in the Kruskal form means

(3)

where , so that is
minimized.
It is worth noting that, once again, CP solution may not exist

[30], [31], [43], [8]. CPD uniqueness results hold only for an
exact CPD, which has perfect fit. The latent components are
only well estimated if the noise level is low. There are numerous
algorithms for CPD including alternating least squares (ALS) or
all-at-once optimization algorithms, or based on joint diagonal-
ization. In general, most CP algorithms which factorize order-
tensor often face high computational cost due to computing
gradients and (approximate) Hessian, line search and rotation.
Table I summarizes complexities of major computations in pop-
ular CPD algorithms. Details on numerical complexity of ALS,
ELS and Levenberg-Marquardt (LM) algorithm using QR fac-
torization can also be found in [21]. Complexity per iteration of
a CP algorithm can be roughly computed based on Table I. For
example, the ALS algorithm with line search has a complexity
of order .
For easy reference we introduce here Tucker compression.

This operation is sometimes used as a preprocessing step prior
to the CPD, in order to reduce dimensionality of the problem
and computational complexity [44], [21]. Tucker decomposition
with orthonormal factor matrices can be efficiently found
using the HOSVD or HOOI algorithm [45].
Definition 2.3: (Tucker Compression or Decomposition (TD)

[46]): Approximation of an order- tensor by a multilinear
rank- tensor in the form

(4)

(5)
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so that is minimized, where
are orthonormal matrices, and

is a core tensor of size .

III. CPD OF UNFOLDED TENSORS

In order to deal with existing problems for high order and
relatively large scale CPD, the following process is proposed:
1) Reduce order of the tensor to a lower order (e.g.,
order-3) through tensor unfolding which is defined
later in this section.

2) Approximate the unfolded tensor by an order-3 tensor

in the Kruskal form. Dimensions of , which are
relatively larger than rank , can be reduced to by the
Tucker compression [21], [44] prior to CPD although it is
not a lossless compression. In such case, we only need to
decompose an dimensional tensor. Alternatively,
the lossless compression using QR factorization can be ap-
plied to compress an dimensional tensor to be
the size of with [50]. More simply,
one can apply the Higher Order SVD in every mode [51],
which is generally good enough in practice [21].

3) Estimate the desired components of the original tensor
on basis of the tensor in the Kruskal form.

The method is based on an observation that unfolding of a
Kruskal tensor also yields a Kruskal tensor. Moreover due to
uniqueness of CPD under “mild” conditions, the estimated com-
ponents along the unfolded modes are often good approximates
to components for the full tensor. In the sequel, we introduce
basic concepts that will be used in the rest of this paper. Loss of
accuracy in decomposition of the unfolded tensors is analyzed
theoretically based on the CRIB.
Definition 3.1 (Reshaping): The reshape operator for a

tensor to a size specified by a vector
with returns

an order- tensor , such that , and is
expressed as .
Definition 3.2 (Tensor Transposition [52]): If

and is a permutation of , then -trans-
pose of is defined by

.
Definition 3.3 (Generalized Tensor Unfolding): Re-

shaping a -transpose to an order- tensor of
size with , where

(6)

Remark 3.1:
• If , then is
mode- unfolding.

• If is an order-4 tensor, then is an order-3
tensor of size .

• If is an order-6 tensor, then is an
order-3 tensor of dimension .

We denote Khatri-Rao product of a set of matrices

, as .

Lemma 3.1: Unfolding of a rank- tensor in the Kruskal
form returns an order-
rank- Kruskal tensor , given by

(7)

where for
.

Remark 3.2:
1) If , then

.

2) If , then

.

3) For an order-4 Kruskal tensor
.

Corollary 3.1: An order- tensor of size
folded from the -th column

vector of , i.e., is a rank-1 tensor

(8)

In practice for real data, folded tensors are not exact
rank-1 tensors, but can be approximated by rank-1 tensors com-
posed from components corresponding modes in . In other
words, computing the leading-left singular vector of the mode-
unfolding is the simplest approach to recover
from for . Pseudo-code of this simple al-
gorithm for unFolding CPD (FCP) is described in Algorithm
1. TD denotes the multilinear rank- Tucker
decomposition (compression) with , and the is
taken elementwise. We don’t need to estimate factors if

. The more complex and efficient algorithm is dis-
cussed later in Section IV.

A. CRIB Analysis

For (noiseless) tensors which have exact rank- CP decom-
positions without (nearly) collinear components, factors com-
puted from folded tensors can be close to the true solutions.
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However, for real data tensor, there exists loss of accuracy when
using the rank-one approximation approach. The loss can be in-
duced by the unfolding, or by the choice of , especially when
is smaller than the true rank of the data tensor.
This section analyzes such loss based on comparing CRIBs

on the first component of CPDs of the full tensor and its
unfolded version. We use as a shorthand notation for .
The results of this section give us an insight into how to unfold
a tensor without or possibly minimal loss of accuracy.
Let denote the mutual angle between the true factor and

its estimate

(9)

When the noise in the model has a zero mean Gaussian distri-
bution with variance , and is independently added to each el-
ement of the tensor, the Cramér-Rao induced bound of a least
squares estimator on the squared angular error [radians ],
denoted by [53], [54], [41], can be computed from
the Cramér-Rao lower bound for CPD [55]

(10)

where . Fast computation of CRLB
and CRIB for general order- tensors has been recently de-
veloped in [41]. is a scalar measure, and serves a
gauge of achievable accuracy of estimation/CP decomposition.

in decibels (dB) is defined as .
A CRIB of 50 dB means that the standard angular deviation
(square root of mean square angular error) of the factor is cca.
0.18 degrees; a CRIB of 20 dB corresponds to the standard devi-
ation of cca 5.7 degrees. CRIB is also a bound on the achievable
Distortion-to-Signal Ratio [41].
In this section, the accuracy loss in decomposition of un-

folded tensor is defined as the loss of CRIB on components of
the unfolded tensor through the unfolding rule compared with
CRIB on components of the original tensor. For simplicity, we
consider tensors in the Kruskal form (1)–(2) of rank 2, and illus-
trate the loss of accuracy for higher ranks. The analytic CRIB
for order- rank-2 tensor is derived in [41], and provided in
Theorem B.1 in Appendix.
The inner products are called degree of

collinearity. The bound is known to be largely independent of
unless is close to [41]. In the case of , the bound

can be rewritten in particularly simple form,

(11)

where , and . Note that it can be

proved by mathematical induction that
for all .
If two modes, say -th and -th, are folded together, the co-

linearity coefficient corresponding to the folded mode is equal
to product . The same formula, (11), allows to compute the
CRIB for the folded tensor.

B. Unfolding Order-4 Tensors

For simplicity, consider order-4 tensors first. Assuming again
, it holds

(12)

(13)

CRIBs in (12) and (13) still hold when (see (33)).
In general, . The equality is
achieved for .

It means that if modes 1 and 2 comprise (nearly) orthogonal
components, the tensor unfolding does not affect
the accuracy of the decomposition.
From (12) and (13), it is obvious that

if . This indicates that collinear-
ities of modes to be unfolded should be higher than those of
other modes in order to reduce the loss of accuracy in esti-
mating . Note that the new factor matrices yielded through
tensor unfolding have lower collinearity than those of original
ones. Moreover, tensors with high collinear components are
always more difficult to decompose than ones with lower
collinearity [21], [24], [56], [57]. Hence, it is natural to unfold
modes with highest collinearity so that the CPD becomes easier.
A similar CRIB expression can be derived for higher rank

as well using the general CRIB expression in [41], assuming
that all pairs of factors have the same colinearity in each mode.
We skip the details here to save space, but confirm the above
rule in a numerical example.
Example 1: We illustrate the similar behavior of CRIB

over unfolding but for higher-order ranks. We decom-
posed unfolded from rank- tensors of size

with , composed from
factor matrices which have identical , for

, and .
The tensors were corrupted with additive Gaussian noise of
10 dB signal-to-noise ratio SNR (dB) ,

where denotes the noise variance, and is the Frobe-
nius norm of . The squared angular errors (SAE) between the
original and estimated components, i.e., , are computed and
compared with their CRIBs. As seen in Figs. 1(a)–(c), there
was not any significant loss in factors when modes 1 and 2
comprised low-collinear components despite of collinearity in
modes 3 and 4. For all the other cases of , there
were always significant losses, especially when all the factors
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Fig. 1. Median squared angular error (SAE) of all components for factors over 30 Monte Carlo runs versus CRIB in decomposition of order-4 tensors of size
, for all through the unfolding rule . Collinearity coefficients have been chosen from the set ,

for all . The signal to white Gaussian noise power ratio (SNR) was at 10 dB or 30 dB. (a) . (b)
. (c) . (d) . (e) .

(f) 30 dB.

comprised highly collinear components (i.e., is close to )
as seen in Figs. 1(d)–(f).

C. A Case When Two Factor Matrices Have Orthogonal
Columns

In the previous subsection, there is an interesting case when
there is no accuracy loss when . This is a spe-
cial case of a more general result of [41] that the same prop-
erty holds for arbitrary order- rank- tensors which have or-
thogonal components on two modes. In such case, the analytical
CRIB is given by
Theorem 3.1 ([41]): When and have mutually or-

thogonal columns, it holds

(14)

where .

It is obvious that . Hence,
estimation of and through unfolding is lossless in
terms of accuracy. Note, however, that if the orthogonality is
added in the optimization problem as a constraint, the CRIB in
Theorem 3.1 is no longer valid bound on the estimation accu-
racy. In particular, more accurate estimation of the decomposi-
tion is possible, which can be attained by algorithms dedicated
to this problem [58], [59], [40].

D. Unfolding Tensors of the Order 5 and Higher

Assume that the tensor to be decomposed has rank 2 and is
transposed in the way that its collinearity degrees are sorted in
nondecreasing way, and assume that

. Assume for simplicity that and .
It follows from (11) that among all simple unfoldings that

combining two modes in one,
has the lowest CRIB in estimating .

Optimum unfoldings of the tensor to order and lower
order can be found recursively. In the second step, the tensor has
order- , and its colinearity degrees are and

. The colinearity degrees are sorted again, and
the optimum second unfolding collects again the modes with the
highest colinearities. It is either

or , in
dependence if or vice versa. Deeper un-
folding rules can be generated recursively until the unfolded
tensor has order 3. (Indeed, the unfolding needs not to go down
to order-3, but can stop earlier.)
Example 2 Unfolding Tensors With the Same Collinearity

in All Modes: As an example, we can consider unfolding of
an order-6 tensor where the collinearity degrees are

. The above described procedure
suggests order-5 unfolding rule , order-4
unfolding rule and order-3 unfolding rule

. The other possible folding rules, order-4
rule and order-3 rule
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Fig. 2. The CRIB loss in decomposition of order-6 rank-20 tensors with size
and identical collinearity coefficients following five unfolding rules

in Example 2. The CRIB loss is significant when components are collinear, i.e.,
. Unfolding causes a lesser CRIB loss than other

rules. The unfolding is more efficient than multimode
unfolding.

are less good, leading to a higher loss in accuracy. Fig. 2
shows the CRIB loss (dB). The

loss by was higher than that by
.

E. Unfolding Without Collinearity Information

It might happen that no prior information about collinearity in
the tensor modes is available. Then, a bad choice of the folding
strategy may result in poor accuracy of the decomposition, as
will be shown in Example 3 and examples in the simulation sec-
tion. One remedy to this problem is proposed in the next section
in the form of another variant of the FCP algorithm (Algorithm
2). The algorithm is shown to be much less vulnerable to bad
choice of the folding strategy.
Another option is a combined strategy, trying sequentially

several unfolding rules and accept the decomposition which
gives the best fit between the Kruskal form approximation and
the original tensor. One tentative folding rule can give a guid-
ance for a better folding rule in the next step.
It is worth noting that CRIB also depends on the length of

factor matrix. For example, when combining many factors into
one, length of the new factor matrix significantly increase, while
its collinearity coefficients tend to be much smaller. From CRIB
for rank-2 order-3 tensor given in (33), one can see that CRIB
of unfolded components is significant. It indicates that an un-
folding which combines many modes can reduce loss in esti-
mation of a component, but can cause a significant loss in esti-
mating components in folding modes.
In the first run, one should not combine many modes into one,

but can try an unfolding which balances lengths of unfolding
factors. Collinearity coefficients of the resulted factor matrices
are used to verify whether all factor with low collinearity are
unfolded. An important observation is that the loss of accuracy
is significant when combining two or several modes with lowest
collinearity degrees in the unfolding ,
where is a permutation of , and
. On the basis of the order-3 unfoldings, we can determine

modes with lowest collinearity degrees using not more than

such unfoldings, and a more suitable unfolding will be chosen
further.
There are many options, and this paper does not have the

ambition to investigate them all. We shall mainly study perfor-
mance of the proposed Algorithm 1 and Algorithm 2 and show
that namely performance of the latter Algorithm is very good in
general.
Example 3: We decomposed order-5 tensors with size

and additive Gaussian noise of 0 dB SNR.
Factors matrices were randomly generated such that their
collinearity coefficients were in given ranges [0, 0.45], [0.2,
0.65], [0.5, 0.99], [0.95, 0.99] and [0.9, 0.99] [60] as shown in
Fig. 3(a), respectively. Columns of the fourth and fifth factor
matrices are highly collinear, whereas those of the first factor
matrix are less collinear. The MSAEs (dB) were computed
over 100 runs for all possible unfolding rules (see Fig. 3(c)).
Performance of rank-one FCP (R1FCP) was highly affected by
the choice of unfolding rules. For example, R1FCP completely
failed when using unfoldings

and with very low fits , be-
cause the first and second factor matrices comprised low
collinear components. Fits of R1FCP using “good” unfoldings
varied in a narrow range. Some “good” unfoldings for R1FCP
were

and . The
unfolding is good to estimate , but it is
not the best unfolding rule in this example. Fig. 3(b) shows
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Fig. 3. Illustration of loss of accuracy of R1FCP in Example 3. Collinearity co-
efficients of factor matrices are distributed as shown in (a). (b) Collinearity co-
efficients of the estimated factors when using the bad unfolding .
(c) MSAEs were averaged over 100 runs for all possible unfolding rules.

distributions of collinearity coefficients of estimated factors for
the case using a “bad” unfolding . It indicates
that factors 1 and 2 comprise the lowest collinear components.
Note that the unfolding , not the unfolding

, is good to estimate . The green solid line
in Fig. 3 shows results of the FCP algorithm, which is discussed
later in Section IV as Algorithm 2.
In addition, one can estimate the average collinearity de-

grees, and uses them to design further unfoldings. For more
examples, see decomposition of the ITPC tensor in Example 6
when .

IV. FAST APPROXIMATION FOR HIGH ORDER AND
DIFFICULT SCENARIO CPD

In difficult scenarios, at presence of highly colinear factors in
several modes and/or high level additive noise, it happens that
the folded tensor can be approximated by Kruskal tensor of a
lower rank than the rank of the original tensor. Consequently,
the factors of the folded dimensions cannot be well approxi-
mated by rank one approximations as in Algorithm 1.
Below we propose an extension of Algorithm 1, which uti-

lizes intermediate approximations of the original tensor of a
rank higher than the desired one to get a better approximation of
the original tensor. The algorithm is first derived for unfolding
two modes, and extended to multimode unfolding.

A. Unfolding Two Modes

We consider a rank- CPD of

(15)

(16)

and a simple unfolding

(17)

(18)

where . If the noise variance is low, i.e.,
and , and the factors of both

tensors are ordered in accord, it holds

where . Put

, and let be sin-
gular value decomposition of with the left, right singular
vectors, and the singular values, respectively, given by

Note that the sum of the squared singular values is 1, because
by definition.

Theoretically, has rank one and only the first singular
value is significant, i.e., and .
The rank- rank-one-based approximation of the tensor is
defined as

(19)

where and .
In general, a numerical rank of matrices is

, being defined as the minimum constant such that

where is a given constant (we use ) for
truncating the SVD. We can write then

(20)

In this way we get a rank- approximation of the original tensor,

where

(21)
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Symbolically we can write as

(22)

where have dimension . Columns of for
are replicated copies of columns of

is formed of the left singular vectors , and is formed
of the right singular vectors . In particular,

(23)

(24)

(25)

(26)

(27)

Now, the desired rank- approximation of can be obtained
by applying a structured CPD algorithm to , which is pre-
sented in Appendix A. The algorithm can be initialized by the
Kruskal tensor in (19), and does not access and manipu-
late on the real data . The mode- CP-gradients which are the
largest workload in CP algorithms such as ALS, OPT, dGN can
be quickly computed as shown in Appendix A. In other words,
estimation of factors from the Kruskal tensor is rel-
atively fast. Moreover, only few iterations are usually needed,
because a good initial decomposition (19) is already available.

B. Multimode Unfolding/The Proposed Algorithm

The procedure described in the previous section can be easily
extended to the more general case. For example, consider the
unfolding rule . The un-
folding can proceed in double execution of the above procedure.
Starting with decomposition of , continue with finding a
rank- decomposition of the tensor , re-
ducing the rank to using a structured CPD. The algorithm
proceeds by another rank- decomposition of the original tensor
and its rank reduction using another structured CPD algorithm.
Similarly, it is possible to do unfolding when there

are more than one group of folded dimensions, e.g.,
. The algorithm in its full gen-

erality is summarized in Algorithm 2. The algorithm reduces
the tensor order from to (e.g., 3) specified by the
unfolding rule , where each group of
modes and

.
In stage 1, Tucker compression can be applied to the un-

folded tensor using the HOOI algorithm [45] with a few
iterations. A rank- order- Kruskal tensor is obtained
after stage 2. The reconstruction process is then sequentially
proceeded through two loops over all groups which have

, and their modes . In each run of
stage 3a, the method for two-mode unfolding in Section IV-A is
executed, and returns a rank- Kruskal tensor and a rank-
Kruskal tensor . is then approximated by a rank-
Kruskal tensor using to initialize.
The algorithm seems complex, but in practice it is very effi-

cient, as is shown in the simulation section. Moreover, the sim-

ulations show that it is largely tolerant to a wrong selection of
the unfolding rule at the beginning. Note, however, that the al-
gorithm works better (namely faster), when the folding rule is
appropriate, because the intermediate ranks ’s are smaller in
that case. An alternative approach to multimode-unfolding is
based on multilinear low-rank tensor approximation [45].
In some situations, namely in dealing with difficult data, we

found it useful to modify the Algorithm 2 in the sense that the
rank reduction in step 5 from to is replaced with the re-
duction of the rank from to slightly higher rank, say .
Only in the terminating rank reducing step the rank is reduced
directly to . The algorithm can be completed by a few it-
erations of a CPD algorithm (e.g., ALS) of the original (un-
folded) tensor. The full implementation of FCP is provided at
http://www.bsp.brain.riken.jp/~phan/tensorbox.php.

V. GENERALIZED RANK ANNIHILATION METHOD FOR
HIGHER ORDER CPD

It is known that there is closed-form solution for exact CPD
[27]. For CPD of order-3 tensor of size , i.e., has
only two frontal slices and , solution can be found from a
generalized eigenvalue problem of its two frontal slices, which
is known as the generalized rank annihilation method (GRAM)
[61]. For example, columns of are computed
as generalized eigenvectors of the matrix pencil .
Based on this result, Sanchez and Kowalski [62] developed

the Direct Tri-Linear Decomposition (DTLD) for fitting the
order-3 CPD, which first uses rank- Tucker decom-
position, then factorizes the core tensor using the GRAM
algorithm. This algorithm is used as a useful initialization for
third-order tensor factorizations [3], [17], [42].
This section presents the use of GRAM or DTLD to higher

order CPD as an application of the FCP algorithm. The higher
order tensor is first unfolded to be an order-3 tensor of size

, i.e., , so that the two largest dimensions,
say and , are greater than or equal to rank . DTLD [62]
is simply applied to the order-3 unfolded tensor as a CP algo-
rithm in stage 2 of Algorithm 2, which itself consists of two
substages: compress the unfolded tensor using Tucker decom-
position to yield a core tensor of size , find factor
matrices from two slices of the core tensor using GRAM [61].
Finally, factor matrices are estimated as in stage 3 of Algo-
rithm 2. In the experimental section, we will show that this ex-
tension of the GRAM algorithm is a very efficient initialization
technique for the ALS algorithm.

VI. SIMULATIONS

Throughout the simulations, the ALS algorithm fac-
torized data tensors in 1000 iterations and stopped when

. The FCP algorithm itself is understood
as Algorithm 2 with low-rank approximation. Otherwise, the
FCP algorithm with rank-one approximation is denoted by
R1FCP. ALS was also utilized in FCP to decompose unfolded
tensors. Execution times were measured using the stopwatch
command: “tic” “toc” of Matlab release 2011a on a computer
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which had 96 GB of RAM and two six-core Intel Xeon proces-
sors X5690@3.47 GHz and the Windows 7 operating system.
The ALS algorithm was initialized by multi-initial points with
ten iterations, including five random values, and one based
on leading singular vectors of mode- unfoldings. The
component matrices with the lowest approximation error are
selected to continue further in the process. The ALS algorithm
was also initialized using the FCP-GRAM in Section V.
Example 4 (Decomposition of Order-6 Tensors): We ana-

lyzed the mean SAEs (MSAE) of algorithms in decomposi-
tion of order-6 tensors with size by varying
the number of low collinear factors from 1 to 6 with

for , and
. Collinearity coefficients were assumed to be identical for

any components . Tensors were corrupted with additive
Gaussian noise of various noise levels 10 dB, 0 dB,
10 dB, 20 dB and 30 dB. MSAE was averaged over 100 runs,
whereas mean execution time was measured over 30 runs.
ALS using random and SVD-based initializations was not

efficient. Its MSAEs over all the estimated components were
clearly lower than CRIB, when 10 dB or when there
were 5 collinear factors and 0 dB (the first test case in
Fig. 4(a)). Performance of ALS was better, and approached the
CRIB for higher SNRs, when there were not more than four

as seen in Figs. 4(a)–(d). However, when there were
five or six factors with low collinearity (Figs. 4(e)–(f)), ALS
often got stuck in local minima, and was not comparable to FCP.
As seen in Fig. 4, using the FCP-GRAM-based initialization,

performance of ALSwas significantly improved for difficult test
cases, e.g., 10 and 0 dB. Moreover, ALS was sped-up
by at least 200 seconds (see Fig. 4(g)).
The FCP method was executed with “good unfolding”

suggested by the strategy in Section III-D
and “bad” ones which violated the unfolding strategy such
as , and

. Performance of R1FCP (Algorithm 1) was
strongly affected by the unfolding rules. For example, R1FCP
with “bad unfoldings” completely failed when 10 dB,

and 0.95, and lost an approximate
MSAE of 9–12 dB for other test cases. For all the test cases,
FCP with low-rank approximations obtained high performance
even with “bad unfolding” rules. Finally, in this simulation,
FCP was on average 77 to 37 times faster than ALS as seen in
Figs. 4(g)–(h).
Example 5 (CPD With One Column-Wise Orthogonal

Factor Matrix): We decomposed order-5 tensors of size and
rank composed from one orthonormal factor
matrix , and four factor matrices whose collinearity co-
efficients were randomly distributed in . One of
promising algorithms resolving such problem is the recently
proposed CPO-ALS2 [40], which iteratively estimates , for

, from rank-one tensor approximation of order-4 tensors
1, and computes from singular vectors

of as in the INDORT algo-
rithm [59]. For the FCP algorithm, CPO-ALS2 was employed
to decompose order-3 unfolded tensors using unfolding

1“ ” denotes mode-1 tensor-vector product [38].

Fig. 4. (a)–(f) Illustration of MSAE loss averaged over 100MC runs in decom-
position of order-6 rank-20 tensors of size corrupted with additive
Gaussian noise in Example 4. (g)–(h) Comparison of average execution times
of the ALS and FCP algorithms. (a) .
(b) . (c)

. (d) .
(e) . (f) .
(g) . (h) .

in stage 2 of Algorithm 2, also adapted for
structured CPD in stage 3b. We skip the detailed derivation here
because it is similar to that of ALS in Appendix A.
Fig. 5 compares execution time (seconds) and MSAE (dB) of

CPO-ALS2 and FCP averaged over 100 runs at different noise
levels. When dB, the MSAEs of two algorithms
were not significantly different, and slightly higher than CRIBs
computed without orthogonality constraints in the cost function.
However, when dB, both algorithms failed to re-
trieve the hidden components. In this example, FCP factorized
the tensors only in a few seconds, while CPO-ALS2 were ap-
proximately 7–18 times slower than FCP as SNR varied from
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Fig. 5. Comparison of (left) execution time (seconds) and (right) mean SAEs
(dB) of CPO-ALS2 and FCP in factorizations of order-5 tensors with one
column-wise orthogonal factor matrix.

10 dB to 30 dB. Note that CPO-ALS2 were more time con-
suming when 30 dB than when dB, be-
cause high collinearity of four factor matrices were deteriorated
by noise.
Example 6 (Factorization of Event-Related EEG Time-Fre-

quency Representation): This example illustrates an application
of CPD for analysis of real-world EEG data [9], [63] which con-
sisted of 28 inter-trial phase coherence (ITPC) measurements of
EEG signals of 14 subjects during a proprioceptive pull of the
left and right hands. The whole ITPC data set was organized as
a 4-way tensor of 28 measurements 61 frequency bins 64
channels 72 time frames. The first 14 measurements were as-
sociated to a group of the left hand stimuli, while the other
ones were with the right hand stimuli. The order-4 ITPC tensor
can be fitted by a multilinear CP model. Mørup et al. analyzed
the dataset by nonnegative CP of three components and Tucker
components and compared them with components extracted by
NMF and ICA [63].
In this example, our aim was to compare the factorization

time of ALS and FCP over various in the range of [5, 72] with
and without a Tucker compression prior to the CP decomposi-
tions. The FCP method employed ALS to factorize the order-3
unfolded tensor, and the fast ALS for structured Kruskal ten-
sors. Interpretation of the results can be found in [9], [63]. The
low-rank FCP algorithm was applied with the unfolding rule

.
Execution time for each algorithm was averaged over 10

Monte Carlo runs with different initial values and illustrated in
Fig. 6 for various . For relatively low rank , a prior Tucker
compression sped up ALS, and made it more efficient than FCP
when . The reason is explained by compression time for
unfolding tensor in FCP. However, this acceleration technique
was less efficient as , and inapplicable to ALS for

. FCP significantly reduced the execution time of ALS
by a factor of 5–60 times, and was slightly improved by the
prior compression. Comparison of fits explained by algorithms
in Table II indicates that while FCP (Algorithm 2) quickly
factorized the data, its fit was equivalent to that of ALS.
For this data, R1FCP, unfortunately, did not work well. Fits

of this algorithm are given in Table II. Performance of this
algorithm with several unfolding rules including

and is compared in
Table III. When and using the rule ,
R1FCP showed the worst performance with a fit of 26.7%
which was not competitive to a fit of 43.8% obtained by ALS.

Fig. 6. (left) Comparison of execution times (seconds) of ALS and FCP
for factorization of order-4 ITPC tensor with different rank in Example 6;
(right) illustration of approximation error as function of time when .

TABLE II

COMPARISON OF FIT % VALUES IN FACTORIZATION

OF THE ITPC TENSOR BY ALS AND FCP IN EXAMPLE 6. R1FCP COMPLETELY
FAILED IN THIS EXAMPLE. STRIKETHROUGH VALUES MEAN THAT THE

ALGORITHM DID NOT CONVERGE TO THE DESIRED SOLUTION

The average collinearity degrees of the estimated components

indicates that we
should not fold modes 1 and 2; in addition, folding modes 2
and 4 which had the largest collinear degrees is suggested,
i.e., the unfolding rule . It is clear to see that
the unfolding rule significantly improved
performance of R1FCP with a fit of 41.3%. Moreover, the
unfolding rule was also suggested according
to the average collinear degrees
achieved when applying the unfolding rule .
This confirms the applicability of the suggested unfolding
strategy. For this test case, the unfolding rule
allowed to achieve the best fit of 42.1%, although this rule was
not suggested by the strategy. This can be understood due to the
fact that the average collinear degrees of modes 2 and 3 were
very similar (0.50 and 0.49, or 0.52 and 0.50, see in Table III).
For higher ranks, e.g., , R1FCP completely failed.

The unfolding strategy did not help anymore (see fit values in
Table II). In Fig. 7, we display leading singular values of re-
shaped matrices from the estimated com-
ponents for and 20. The results indicate that were not
rank-one matrices, especially the matrices received when using
the rule . Note that R1FCP works if and only if
all are rank-one.
Fig. 6 illustrates the relative approximation errors

of ALS and FCP for as functions
of the execution time. ALS took 536.5 seconds to converge.
FCP took 1.2 seconds for compression, 0.9 seconds for CPD of
the order-3 unfolded tensor, 2.73 seconds for low-rank approx-
imations, 2.1 seconds for the refinement stage. ALS and FCP
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TABLE III
PERFORMANCE OF RANK-1 FCP WITH DIFFERENT UNFOLDING RULES IN
DECOMPOSITION OF THE ITPC TENSOR IN EXAMPLE 6. STRIKETHROUGH
VALUES MEAN THAT THE ALGORITHM DID NOT CONVERGE TO THE

DESIRED SOLUTION

Fig. 7. Illustration of leading singular values of matrices
reshaped from components estimated from the ITPC tensor with

different unfolding rules and . The singular values are
normalized by the largest values . R1FCP failed in this experiment because
this algorithm worked only if all were rank-one matrices. (a) ,
(b) .

converged to the relative approximation errors ,
while , respectively.
Example 7 (Decomposition of Gabor Tensor of the ORL Face

Database): This example illustrated classification of the ORL
face database2 consisting of 400 faces for 40 subjects. We con-
structed Gabor feature tensors for 8 different orientations at 4
scales which were then down-sampled to 16 16 8 4 400
dimensional tensor . The unfolding was ap-
plied to unfold to be an order-3 tensor. ALS [17] factorized
both and into rank-1 tensors in 1000 iter-
ations, and stopped when . The R1FCP algo-
rithm did not work for this data. For example, when and
applying the rule , R1FCP explained the data
with a fit of %, and yielded average collinearity degrees of

. Although a further decomposition
with the unfolding rule achieved a better
fit of 44.8%, this result was much lower than a fit of 54.5% ob-
tained by ALS and FCP.
The factor comprised compressed features

which were used to cluster faces using the K-means algorithm.
Table IV compares performance of two algorithms including ex-
ecution time, fit, accuracy (ACC %) and normalized mutual in-
formation (NMI). For , ALS factorized in 1599 sec-
onds, while FCP completed the task in only 39 seconds with a

2http://www.cl.cam.ac.uk/research/dtg/attarchive/facedatabase.html

TABLE IV
COMPARISON BETWEEN ALS AND FCP IN FACTORIZATION OF ORDER-5

GABOR TENSOR CONSTRUCTED FROM THE ORL FACE DATASET

slightly reduction of fit % . For , ALS was ex-
tremely time consuming, required 16962 seconds, while FCP
only took 105 seconds. Regarding the clustering accuracy, fea-
tures extracted by FCP still achieved comparable performance
as those obtained by ALS.

VII. DISCUSSION AND CONCLUSIONS

Through out analysis of CRIB and examples, we provided
some guidelines on choosing unfolding. The most important
recommendation is using the FCP algorithm to reduce affect due
to inappropriate unfoldings.Moreover, a major rule is not to fold
orthogonal or low collinear factor matrices if possible.
By decomposition of unfolded tensor with a prior lossy or

lossless compression, the proposed FCP algorithm has been
shown 40–160 times faster than ALS for decomposition of
order-5 and -6 tensors. In addition, it also indicates that FCP
is much less space consuming than other algorithms for higher
order CPD, although this aspect has not yet been clearly dis-
cussed in the paper. FCP can also be applied to the CPD with
one column-wise orthogonal factor matrix as seen in Example
5. For other constrained CPDs, one needs to employ suitable
CP algorithms in stage 2, and derives an algorithm for struc-
tured CP used in stage 3b in Algorithm 2. Finally, an important
application of FCP is that it can convey algorithms for order-3
CPD to higher order such as GRAM, DTLD.

APPENDIX A
ALGORITHM FOR STRUCTURED CPD

This section derives a fast ALS algorithm which approxi-
mates the structured tensor given in (22) by a rank- tensor
. We first compute the CP gradients [21], [47]

(28)

for , where

and . Taking into account that

, where is defined in (26), and are matrices
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of compatible dimensions}, the first term in (28) is further
expressed by

...

...

...

where . For each
, this computation has a low computational com-

plexity of order .

Using the results, we can derive fast update rules to estimate
. For example,

APPENDIX B
CRAMÉR-RAO INDUCED BOUND FOR ANGULAR ERROR

Theorem B.1: [41]: The Cramér-Rao induced bound (CRIB)
on for rank-2 tensor is given by

(29)

where , and

(30)

(31)

(32)

For order-3 rank-2 tensors, is given by

(33)
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