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ABSTRACT

This report proposes a novel variant of the generalized side-

lobe canceler. It assumes that a set of prepared relative trans-

fer functions (RTFs) is available for several potential posi-

tions of a target source within a confined area. The key prob-

lem here is to select the correct RTF at any time, even when

the exact position of the target is unknown and interfering

sources are present. We propose to select the RTF based on

�p-norm, p ≤ 1, measured at the blocking matrix output in

the frequency domain. Subsequent experiments show that

this approach significantly outperforms previously proposed

methods for selection when the target and interferer signals

are speech signals.

Index Terms— Noise Extraction; Speech Enhance-

ment; �p-norm Minimization; Generalized Sidelobe Can-

celer; Semi-Blind Source Separation

1. INTRODUCTION

Generalized Sidelobe Canceler (GSC) is a popular imple-

mentation of the Minimum Variance Distortionless Response

(MVDR) beamformer used in audio signal processing. It is

comprised of three blocks, called fixed beamformer (FB),

blocking matrix (BM), and adaptive interference canceler
(AIC). The FB block acquires the target signal under the

distortionless constraint. The BM works in parallel with the

FB. Its purpose is to cancel the target signal and produce

noise-only reference signals. The AIC cancels the residual

noise at the output of the FB, given the output of the BM.

The original GSC [1] assumes anechoic propagation of

the sound. It therefore fails in real-world environments that

are highly reverberant. Gannot et al. [2] proposed a variant
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called Transfer Function-GSC (TF-GSC) that relies on esti-

mated relative transfer functions (RTFs) between the target

source and the microphones. The goal of TF-GSC is to re-

trieve the responses of the target on a reference microphone

(dereverberation is not the goal). The beamformer is also typ-

ically endowed by a post-filtering block that suppresses resid-

ual noise, using approaches inspired by methods designed for

single-channel signal enhancement [3, 4].

The performance of TF-GSC depends strongly on its

knowledge of the RTFs, which depend on the position of the

target and can be measured during periods when only the

target is active; however, once the target moves, new RTFs

must be obtained. Otherwise, the target signal leaks through

the BM, which causes a distortion in the output of the beam-

former. The key problem is to determine the RTFs when

noise is present and the position of the target is not known.

Various solutions have been proposed [6, 5] including

those using blind source separation [7]. Recently, we have

focused on a solution that relies on knowledge of a set of

prepared RTFs for several potential positions of the target

[9]. This is useful in situations where the target’s position is

limited to a particular area, and the set of RTFs is prepared or

progressively completed/updated during target-only intervals.

In this paper, we will assume that the set is already prepared.

The main focus is on the selection of proper RTFs from the

set when noise is present.

In [10], a simplistic solution called the minimum variance

approach (MVA) is used. MVA selects the RTFs for which

the output variance of the BM is minimum. It relies on the

assumption that a correctly canceled target at the BM output

yields reduced signal power; however, this is not generally the

case. MVA often fails to select the correct RTFs, particularly

when the signal-to-noise ratio (SNR) is below 0 dB. In [8,

9], an approach, from here denoted as ICA, was proposed.

It uses independent component analysis to find an optimum

linear combination of the known RTFs, which is more flexible
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than the pure selection of RTFs. The combination is searched

so that the output of the BM is as independent as possible.

ICA was shown to improve the blocking ability of the BM

compared to MVA, especially for an SNR below 0 dB.

In this paper, we propose to select the RTFs (not a linear

combination) based on �p-norm, p ≤ 1, measuring the sig-

nals’ sparsity at the BM output in the frequency domain. For

speech signals, which are sparse in that domain, the approach

significantly outperforms MVA and ICA in terms of correctly

selected RTFs. The complexity of this approach is compa-

rable with MVA, which makes it available for systems with

many microphones. Based on this new approach, we pro-

pose a modified TF-GSC beamformer, in which the RTFs are

changed according to the position of the target speaker. We

present several experiments with a fixed as well as moving

target speaker, and one interfering speaker. We also present

results of the SiSEC 2013 evaluation campaign1.

2. NOTATIONS

A signal s(n) of a directional (possibly moving) target source

observed on the mth microphone, m = 1, . . . ,M , is de-

scribed by

xm(n) = {hm,n ∗ s}(n) + ym(n) (1)

where hm,n denotes the room impulse response between the

target and the mth microphone, n is the time index, ∗ de-

notes the convolution, and ym(n) denotes unwanted signals

from other sources, commonly referred to as interference. An

approximate description in the short-time Fourier transform

(STFT) domain reads

Xm(t, k) = Hm(t, k)S(t, k) + Ym(t, k), (2)

where t is the frame index, and k is the frequency index. Here,

the dependency of hm,n on n is embodied by the dependency

of Hm(t, k) on t. In fact, it is assumed that hm,n is changing

slowly and is approximately constant within each frame.

In a vector notation, (2) can be written as

X(t, k) = H(t, k) · S(t, k) +Y(t, k), (3)

where

XT (t, k) = [X1(t, k) X2(t, k) . . . XM (t, k)],

HT (t, k) = [H1(t, k) H2(t, k) . . . HM (t, k)],

YT (t, k) = [Y1(t, k) Y2(t, k) . . . YM (t, k)].

(4)

Next, we can write (3) as

X(t, k) = A(t, k) · S1(t, k) +Y(t, k), (5)

where

AT (t, k) =

[
1
H2(t, k)

H1(t, k)
. . .

HM (t, k)

H1(t, k)

]
(6)

1http://sisec.wiki.irisa.fr

is the vector of RTFs, and S1(t, k) = H1(t, k)S(t, k) is the

response of S(t, k) on the first microphone, which is the target

signal. Without much loss on generality, we may assume that

H1(t, k) �= 0.

3. INFORMED BEAMFORMING

As stated in the introduction, we assume that RTFs are known

for several potential positions of a target speaker that is lo-

cated within a limited area. Let the known RTFs be denoted

by Ai(k), i = 1, . . . , I . Our goal is to derive a method that

selects the best fitting Ai(k) and performs beamforming to

yield the best possible estimate of S1(t, k). The method is

based on Transfer Function-GSC (TF-GSC) from [2], which

is an efficient beamformer provided that A(t, k) is known.

TF-GSC is described briefly in the following subsection.

3.1. Transfer Function-Generalized Sidelobe Canceler

In TF-GSC, the fixed beamformer is represented by W(t, k),
and its output is

SFB(t, k) = WH(t, k)X(t, k) (7)

where H denotes the conjugate transpose. The choice in [2]

is W(t, k) = A(t, k), where A(t, k) is assumed to be known

(or estimated), satisfies the distortion-less constraint up to

the scale factor ‖A(t, k)‖2, which is, nevertheless, approx-

imately constant.

The blocking matrix B(t, k) is an M × (M − 1) MIMO

filter defined as

B(t, k) =

⎡
⎢⎢⎢⎢⎢⎣

−W ∗
2 (t, k) −W ∗

3 (t, k) . . . −W ∗
M (t, k)

1 0 . . . 0
0 1 . . . 0

. . .
. . .

0 0 . . . 1

⎤
⎥⎥⎥⎥⎥⎦ ,

(8)

where ∗ denotes complex conjugation. It is required that the

columns of B(t, k) must be orthogonal to A(t, k) so that the

output yields M − 1 noise-only reference signals Um(t, k),
m = 1, . . . ,M − 1, given as elements of

U(t, k) = BH(t, k)X(t, k). (9)

The adaptive interference canceler is represented by

(M − 1)× 1 vector G(t, k) that estimates the residual noise

in SFB(t, k) as GH(t, k)U(t, k). The output of the entire

beamformer is then

Ŝ(t, k) = SFB(t, k)−GH(t, k)U(t, k). (10)

G(t, k) can be searched adaptively by minimizing

E{∥∥SFB(t, k)−GH(t, k)U(t, k)
∥∥2}, (11)



where E{·} denotes the expectation operator, at times when

noise signals are dominant. In TF-GSC, an adaptive normal-

ized least mean square (NLMS) algorithm is used. The filter

is updated according to

G(t, k)← G(t, k) + ν
U(t, k)Ŝ(t, k)

P (t, k)
, (12)

and is then truncated in the time-domain to avoid the effect of

circular convolution. Here, ν ∈ (0, 2) is a step-size param-

eter, and P (t, k) is the average power-spectrum of the noise

reference signals, i.e.

P (t, k) = ‖U(t, k)‖2 /(M − 1). (13)

The authors of [2] also suggest normalizing the update in (12)

by the norm of the input signals, X(t, k).

3.2. Choice of the RTF

Let the blocking matrix, defined according to (8) where

W(t, k) = Aα(k), be denoted by Bα(k), α = 1, . . . , I .

In this paper, we propose to select α such that the output

Uα(t, k) = BH
α (k)X(t, k) yields minimum �p-norm, p ≤ 1,

namely,

α = arg min
j∈{1,...,I}

(
M−1∑
m=1

∑
k

|U j
m(t, k)|p

) 1
p

, (14)

where U j
m(t, k) is the mth element of Uj(t, k). Note that

for p = 2 the criterion corresponds to the variance, and the

proposed method is equivalent to the MVA. The following

reasons lead us to the choice of p ∈ (0, 1].

• It may be expected, especially when both the target and

interference are speech signals, that the correctly per-

forming BM yields signals with sparser spectra, since

it cancels one speech signal. The fact that the �p-norm

is measured in the short-term frequency domain is cru-

cial, because speech signals are known to be sparse in

this domain.

• The �p-norm is sparsity enforcing criterion for p ≤ 1.

• For SNR above 0 dB, the output variance still contains

valuable information [10]. It is therefore handy that

the criterion in (14) is proportional to the scale of the

signal.

3.3. TF-GSC with changing RTF

Now we propose a modified TF-GSC beamformer that uti-

lizes the set of available RTFs; for clarity, the method will be

abbreviated IGSC (Informed GSC). The beamformer starts

processing each frame by computing α according to (14).

The FB and BM parts are then selected, respectively, as

W(t, k) = Aα(k) and B(t, k) = Bα(k).

The AIC part of this beamformer is performed by select-

ing G(t, k) = Gα(t, k) where vectors G1(t, k), . . . ,GI(t, k)
are stored in memory. For the given frame, only Gα(t, k) is

updated by the NLMS algorithm, while the other vectors are

kept the same. This helps the AIC to quickly adapt to the

changing A(t, k).

The beamformer is endowed by a Wiener-like post-filter

applied to the output signal Ŝ(t, k). The filter is defined

through

V (t, k) =
|Ŝ(t, k)|2

|Ŝ(t, k)|2 + |GH
α (t, k)Uα(t, k)|2 . (15)

To summarize, processing of a frame proceeds as follows:

1. For each j = 1, . . . , I , compute Uj(t, k) = BH
j (k)X(t, k).

2. Find α according to (14) and put W(t, k) = Aα(k),
B(t, k) = Bα(k), and G(t, k) = Gα(t, k).

3. Compute the beamformer’s output as Ŝ(t, k) = SFB(t, k)−
GH

α (t, k)Uα(t, k).

4. Update Gα(t, k) according to (12) and (13).

5. Apply post-filter (15), so the final output is S̃(t, k) =
V (t, k)Ŝ(t, k).

3.4. Preparation of RTFs

RTFs for a particular position of the target source can be esti-

mated from noise-free recordings of the source [2, 9, 12, 13]2.

We assume that the target’s location is confined to a certain

area and prepare the set of RTFs for I positions that are regu-

larly distributed within that area.

To this end, a noise-free recording is obtained for each

such position by playing a speech signal from a loudspeaker

placed at that position. RTFs are then estimated in the time

domain. Let zim(n) denote the noise-free recording for the

ith position obtained by the mth microphone. The impulse

response of the RTF, for the mth microphone, is obtained as

the solution of the least-squares problem [9]

aim = argmin
a

N∑
n=1

∣∣∣{a ∗ zi1}(n)− zim(n− d)
∣∣∣2 (16)

where N is the sample length of zim(n), and d is a short in-

teger delay introduced due to causality. The mth element of

Ai(k) is then obtained as the kth element of the Fourier trans-

form of aim.

2An unbiased estimation of the RTF is possible also when stationary noise

is present [2].



Fig. 1. Illustration of the experimental setup in our (non-

rectangular) office. The known positions of the target source,

located in a regular grid, are numbered 1 through 16.

4. EXPERIMENTAL EVALUATION

The experiments presented in this article were conducted in

an office depicted in Fig. 1 to verify the efficiency of the cri-

terion (14) and to evaluate the performance of the proposed

IGSC. Two scenarios are considered, respectively, where the

location of the target speaker is fixed or moving within a

30×30 cm area whose center was at a 1.25 m distance from

a linear microphone array with M = 4 microphones. The in-

terference is another speaker located in the fixed position de-

noted by IF in Fig. 1. The reverberation time T60 of the room

is about 490 ms, the inter-microphone distance is 5.5 cm, and

the sampling frequency is 16 kHz.

The RTFs were computed for the positions within the area

using 4 s of a female interference-free utterance played from

each position. For testing, the target and interference signals

consist of 4 s of female and 8 s of male utterances, uttered by

different speakers. The speech signals were taken from the

TIMIT database [15].

4.1. Fixed target position

The aim of this experiment is to analyze the percentage of the

correctly determined RTF, using various approaches specified

below. The target source is located consecutively in all posi-

tions of the grid (Fig. 1). The correct RTF is therefore known

as a ground truth. Next, we also evaluate the Interference-to-

Signal Ratio (ISR) at the output of the BM, which reflects the

degree of the target cancellation.

We compare the following methods that are all applied in

the frequency domain where the length of the STFT frame

was 2048 samples with a shift of 128 samples3.

1. The minimum variance approach (MVA) [10].

2. The kurtosis-based approach4 that selects the RTF ex-

hibiting maximum sample kurtosis at the BM output.

In place of (14), it computes

α = argmin
j

M−1∑
m=1

∣∣∣∣∣
∑

k

∣∣U j
m(t, k)

∣∣4
(
∑

k |U j
m(t, k)|2)2 − 3

∣∣∣∣∣ . (17)

3. The method based on ICA derived in [9].

4. An “oracle” approach denoted by trueRTF that selects

the ground truth RTF.

5. Another “oracle” approach, denoted by bestRTF, that

selects the RTF for which the BM output yields the

maximum Interference-to-Signal Ratio (SIR). This ap-

proach is designed for the moving target scenario in

the next subsection, where the ground truth RTF is not

given.

The experiment was repeated for each position. The average

percentage is shown in Table 1 and the average ISR at the BM

output is shown in Fig. 2.

input Signal-to-Interference Ratio

−10 dB −5 dB 0 dB 5 dB 10 dB

�1 norm 62.76 80.53 91.24 96.21 97.77

�0.5 norm 74.27 87.52 94.04 96.79 97.96
�0.1 norm 72.82 85.23 91.85 94.97 96.45

�1 norm (TD) 29.63 49.35 67.90 80.44 87.55

�0.5 norm (TD) 27.80 47.09 65.84 78.95 86.31

ICA 58.70 75.13 85.58 91.64 94.43

MVA 28.33 47.70 67.17 80.29 88.01

kurtosis 15.23 19.97 21.73 19.60 17.47

Table 1. Results in terms of correctly determined RTF [%].

The proposed �p-norm-based approach achieves the best

results, especially for p ≈ 0.5. Its performance significantly

drops when (14) is evaluated on signals in the time domain,

denoted by TD in Table 1, which is not the sparsity domain

of speech signals. The ICA-based approach from [9] achieves

the second-best performance, however, at a much higher com-

putational burden.

MVA performs the same in the time domain as in the fre-

quency domain, due to the Parseval equality. Therefore, it

gives similar results to the �p-norm computed in the TD. The

kurtosis-based approach failed in this experiment. The main

reason seems to be the fact that (17) is invariant to the scale

3In total, there are 1485 frames to analyze.
4Kurtosis is used as a contrast function in some ICA methods to separate

independent sources by maximizing their non-Gaussianity [14].
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Fig. 2. The average ISR improvement at the BM output

achieved by the compared approaches when the target’s lo-

cation is fixed.

of signals. This is interesting in view of another fact that the

scale of input signals is also not relevant for the ICA-based

approach, although the ICA approach performs well.

4.2. Moving target scenario

In this experiment, two noisy recordings were considered, of a

target that moves across positions 1 through 9 and 16 through

9, respectively. The proposed IGSC with p = 0.5 is applied to

enhance the target signal. Its performance is compared with

that of the original TF-GSC beamformer [2] and with IGSC

which is endowed by the optimal “bestRTF” selection proce-

dure. TF-GSC assumes fixed RTFs, so we choose suboptimal

RTFs for position 7 and 10, respectively, for the two move-

ments.

Fig. 3 shows the average ISR improvement at the outputs

of BMs. In this scenario, the target occurs in positions for

which the exact RTFs are not available (between the points).

Therefore, the results are generally lower by about 3 dB com-

pared to Fig. 2. The “bestRTF” procedure yields the max-

imum attainable performance, which is best approached by

the �0.5-norm-based method. The BM of TF-GSC loses about

3.5 dB uniformly, due to the fixed RTFs.

The enhancement of the target signal by the compared

beamformers is evaluated in terms of Signal-to-Interference

(SIR) and Signal-to-Distortion (SDR) ratios5 in Figures 4 and

5, respectively. These results are consistent with those in

Fig. 3. In other words, the SIR and SDR of enhanced sig-

nals depend on the blocking ability of the BM part of beam-

formers. The proposed IGSC yields better enhancement of

the target signal than the original TF-GSC. Its performance is

tight to the performance of IGSC using “bestRTF” even when

the input SIR goes below 0 dB.

5The criteria are defined as in [9].
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Fig. 3. ISR improvement averaged over two examples with

moving target speaker.
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Fig. 4. SIR improvement achieved by compared beamformers

as a function of input SIR.

4.3. SiSEC 2013

A modified version of IGSC takes part in the SiSEC 2013

evaluation campaign in the task titled “Two-channel noisy

recordings of a moving speaker within a limited area”. In this

task, the target is a loudspeaker that occurs within a 30x30cm

area. It is recorded by two microphones that are 2 meters

distant from the center of the area. A development dataset is

provided that contains noise-free recordings of the target from

16 positions within the area, which we use for the preparation

of the set of RTFs for IGSC. A testing dataset contains record-

ings of the target, which performs movements within the area,

and an omnidirectional babble noise.

The modifications of IGSC are as follows. The AIC part

is only used to adapt filters G1(t, k), . . . ,GI(t, k). The inter-

ference cancellation (step 3 in Section 3.3) is not performed,
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Fig. 5. SDR achieved by compared beamformers as a func-

tion of input SIR.

because the noise is not directional. Only the post-filtering is

done to attenuate the residual noise at the FB output. Next,

we use the post-filter by [16] instead of the Wiener filter (15),

because it yields better perceptual quality of the estimated sig-

nal. The results are reported on the internet site of the SiSEC

2013 campaign (http://sisec.wiki.irisa.fr).

5. CONCLUSIONS

The selection of RTFs from a prepared set has been improved

using the �p-norm, especially when the power of the target

signal is the same or lower than that of the interference. Us-

ing this approach, a novel variant of informed GSC has been

proposed. The beamformer is able to enhance a target signal

coming from the assumed area better than TF-GSC, assuming

a fixed position of the target.
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