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Abstract. In the paper we study the impact of incomplete information to precision
of results of stochastic optimization. It is assumed that the stochastic characteristics of
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1. Introduction

In problems of optimization under uncertainty we often deal with a probabilistic
model of optimized system. Then the optimization task consists in the search of a
solution to

inf
v

φF (v) = inf
v

EFϕ(Y, v), (1)

where ϕ is a cost function, v are input variables from certain feasibility set V . Fur-
ther, EF stands for the expectation under distribution function F , and, finally, Y is
a random variable (or vector) with distribution function F . If F is known, we deal
with a “deterministic” optimization. However, our information on probability dis-
tributions governing the system could be non-complete. Either, known distribution
type depends on unknown parameters. Then, as a rule, the estimates of parameters
are plugged into objective function. Or, we have to employ nonparametric estimates,
as is the empirical distribution function. Hence, our information on F is random and
we have to analyze both possible bias and variability of obtained solution (compared
to an ideal solution when F is known). Alternatively, we then can be interested in
a kind of multi-objective optimization, minimizing simultaneously also variability
(measured by variance, or certain inter-quantile range). Nevertheless, standard ap-
proach considers a solution of (1) and uses estimated characteristics instead of ‘true’
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ones. An investigation of usage of empirical (estimated) characteristics in stochastic
optimization problems started already in 70-ties. A number of papers has dealt
with these problems, let us mention here just two: Dupačová and Wets (1984), and
from more recent time Kaňková (2009) with a brief overview and a number of other
references.

The situation is even more complicated if the data available for estimation are
not complete. We shall consider one special type of incompleteness, the random
censoring from the right side. It is quite frequent in the analysis of demographic,
survival or insurance data. The lack of information leads to higher variability (and,
sometimes, to a bias) of estimates and, consequently, to higher uncertainty of optimal
solutions.

The approaches to statistical data analysis in cases when the data are censored
or even truncated are provided by a number of authors. Let us mention here works
of C. Huber (e. g. Huber, 2000), with classification of designs of censored and trun-
cated data and with many references to papers dealing with specific methods of
such data processing. The most of results were derived in the framework of statis-
tical survival analysis and collected also in several monographs (cf. Kalbfleisch and
Prentice, 2002).

The main objective of the present paper is to study the increase of uncertainty
of results of optimization problem when the censoring is causing growing variability
of estimates. We shall deal with both parametric and non-parametric cases. To this
end, certain theoretical properties of estimates under random right censoring will
be recalled. In the next two sections, we shall consider the product-limit estimate
as a generalization of the empirical distribution function, and then the maximum
likelihood estimates of parameters when random right censoring is present. We
shall compare properties of estimates with and without censoring, in nonparamet-
ric case (in Section 2) as well as in the case of estimated parameters (Section 3).
Section 4 contains the main contribution of the paper. We prove the convergence
of optimal values corresponding to estimated distribution function or its estimated
parameters to the optimum (1). Finally, in Section 5 a simple example will deal with
optimal maintenance schedule, properties of obtained ’sub-optimal’ solution will be
illustrated with the aid of simulations. In the last section we discuss briefly another
criterion based on quantiles of random objective function instead on the mean value.

2. Non-parametric case and product-limit estimate

In the present section we shall recall some useful results concerning the analysis
of randomly right-censored data. They are collected in survival analysis literature,
for instance in Kalbfleisch and Prentice (2002). Let us consider a continuous-type
random variable Y characterizing for instance a random time to certain event. Let
another continuous random variable Z be a censoring variable, both be positive,
continuous and mutually independent. Further, let f(y), g(z), F (y), G(z), F (y) =
1−F (y), G(z) = 1−G(z) denote the density, distribution and survival functions of
both variables. It is assumed that we observe just X = min(Y, Z) and δ = 1[Y ≤ Z],
i. e. δ indicates whether Y is observed or censored from right side. The data are
then given as random sample (Xi, δi, i = 1, . . . , N). Notice that the case without
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censoring is obtained when G(t) ≡ 0 on region where F (t) < 1. In the sequel we
shall assume that sup{t : G(t) < 1} ≥ sup{t : F (t) < 1}, so that Z does not cut off
(with probability 1) the right tail of Y . Let us remark here that in some cases we
can deal, for instance, with the logarithm of time. Then the domain of data can be
the whole R1.

A generalization of empirical distribution function is the well known Kaplan–
Meier “Product Limit Estimate” (PLE) of survival function. Let us first sort (re-
index) the data in increasing order, X1 ≤ X2 ≤ · · · ≤ XN , then the PLE of F (t)
has the form

FN(t) =

N
∏

i=1

(

N − i

N − i+ 1

)δi·1[Xi≤t]

. (2)

Again, notice that when all δi = 1, we obtain the empirical survival function. The
following proposition is due to Breslow and Crowley (1974):

Proposition 1. Let T > 0 be such that still F (T ) · G(T ) > 0. Then the random

process

VN(t) =
√
N

(

FN (t)

F (t)
− 1

)

=
√
N

F (t)− FN (t)

F (t)
(3)

converges, on [0, T ], when N → ∞, to Gaussian martingale with zero mean and

variance function

C(t) =

∫ t

0

dF (s)

F (s)2G(s)
. (4)

Here, FN (t) = 1− FN(t). In other words, VN(t) converges in distribution on [0, T ]
to the process W (C(t)), where W (·) denotes the Wiener process. The asymptotic
variance function can be estimated by its empirical version:

CN(t) =
N
∑

i=1

Nδi
(N − i+ 1)2

· 1[Xi ≤ t],

which is consistent in probability, uniformly w.r. to t ∈ [0, T ] (see again Breslow
and Crowley, 1974).

Further, denote DN(t) = VN(t)/(1 + C(t)). For the case without censoring we
obtain that C(t) = F (t)/F (t) and DN(t) =

√
N(F (t)− FN(t)) leading to standard

Kolmogorov–Smirnov statistics. From (4) it is also seen that the variance in the case
with censoring (when G(t) ≤ 1) is larger than without it (i.e. when G(t) = 1 on
whole [0, T ]). Further, it has been proved (see, for instance, Robbins and Siegmund,
1970) that for c, d > 0 and sufficiently large T ,

P

(

sup
0<t<T

|W (t)| < c + d · t
)

.
= 1− 2 exp(−2cd).

Hence, if we take c = d and “time” C(t) instead t, we obtain that approximately

P

(

sup
t

|DN(t)| > c

)

.
= 2 exp(−2c2).
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In order to construct 1 − α band for DN(t) on (0, T ), we set α = 2 exp(−2c2)
and obtain critical value cα =

√

− ln α
2
/2. In the case without censoring cα is the

distribution-free critical value for the Kolmogorov–Smirnov test, namely

P

(

sup
t

|FN(t)− F (t)| ≥ cα/
√
N

)

.
= α.

In the case with censoring, we have

DN(t) =
√
N (F (t)− FN(t)) /F (t)/(1 + C(t)),

hence, corresponding 1−α confidence band for F (t) depends on both F and G and
its width is increasing for larger t. Namely, 1−α borders for |FN(t)−F (t)| on [0, T ]
are given as cα/

√
N · F (t) · (1 + C(t)).

Example: Let us here, as an example, consider so called Koziol–Green model
assuming that G(t) = F (t)a, for some a > 0. Then

C(t) =

∫ t

0

dF (s)

F (t)2+a
=

1

F (t)1+a
− 1

and F (t) · (1 + C(t)) = 1/F (t)a. It tends to infinity with increasing t because
F (t) → 0. A more concrete example is presented in Part 5.

3. Parametric estimates under censoring

In the present part we shall study the influence of censoring to precision of estimated
parameters. It means that we assume that the type of distribution F (y, θ) of random
variable Y is known, unknown is the parameter θ ∈ Θ. The ’true’ value of parameter,
θ0, is estimated as a rule by the method of maximum likelihood (MLE). Regarding
the censoring distribution, except independence of Y and Z we must now assume
that the distribution of Z does not depend on θ, censoring is ’non-informative’.

Desirable properties of the MLE estimates are connected with so called regularity
conditions concerning distribution F (y, θ). Their formulation can be found elsewhere
in statistical textbooks, for instance in Anděl (2005), Ch. 7.3. If they are fulfilled
then there exists a consistent sequence of estimates, i.e. such that θ̂N → θ0 in
probability when N → ∞. Moreover, estimates are asymptotically normal, which
means that the distribution of

√
N(θ̂N − θ0) tends to normal distribution with zero

mean and finite variance.
The comparison of precision of estimates can be based on the Fisher information.

It is defined as

I(θ) = E

(

d lnL(θ,X)

dθ

)2

,

where L(θ,X) is the likelihood of θ based on random variable X . Regularity condi-
tions ensure that I(θ) > 0 exists for all θ ∈ Θ. Naturally, if θ is multi-dimensional,
we consider a vector of partial derivatives and I(θ) is a matrix. What is important
from our point of view, I−1(θ0) is the asymptotic variance of

√
N(θ̂N−θ0) mentioned
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above, where θ̂N is the consistent sequence of MLE-s of θ0 from random sample of
size N .

The form of likelihood and asymptotic properties of the MLE in the case of
random right censoring is described for instance in Kalbfleisch and Prentice (2002),
section 3.4. The log of likelihood (its part depending on θ), is then lnL(θ,X) =
δ · ln f(X, θ) + (1− δ) · ln F̄ (X, θ). If there exist the 1-st derivatives f ′ = df/dθ and
F̄ ′ = dF̄ /dθ, then

E

(

d lnL(θ,X)

dθ

)2

=

∫ ∞

0

Ḡ(x)

(

f ′(x)

f(x)

)2

f(x)dx+

∫ ∞

0

F̄ (x)

(

F̄ ′(x)

F̄ (x)

)2

g(x)dx.

When the second integral is transformed with the aid of per-partes, we obtain that

I(θ) =

∫ ∞

0

Ḡ(x)
(f ′(x)F̄ (x)− f(x)F̄ ′(x))2

f(x)F̄ ((x)2
dx.

It is non-negative and is larger when Ḡ(x) ≡ 1, i.e. when there is no censoring.
A more concrete comparison is presented within the example in Section 5.

Naturally, in practice the MLE is based on the data {Xi, δi}, i = 1, ..., N and
maximizes the log-likelihood function

lnLN(θ) =
N
∑

i=1

δi · ln f(Xi, θ)) + (1− δi) · ln F̄ (Xi, θ))

over θ ∈ Θ. Consistent estimate of the Fisher information is then obtained (compare
again Kalbfleisch and Prentice, 2002) as

IN (θ) =
1

N

(

d(lnLN (θ))
2

d2θ

)

.

4. Consistency of optimum

In this section we are interested in the question whether (and under which assump-
tions) the consistency of estimate of F ensures already the consistency of optimal
solution. Namely, whether optimal values (both φ and v) of problem (1) obtained
from a case with non-complete information on F converge to optimal φ∗ and v

∗,
respectively, obtained when F is known.

There are several ways how to address this problem. One of them can use the
approach proposed in Kaňková (2009) supported by the results from Kaňková and
Houda (2006). Let us recall here the theorem on which the other assertions are
based:

Proposition 2 (Kaňková, 2009). Let F,G be two distribution functions on R, let

v ∈V , V be a compact set. If for every v ∈V :

1. ϕ(y, v) is a Lipschitz function of y on R, with the Lipschitz constant L not

depending on v,

2. finite EFϕ(y, v), EGϕ(y, v) exist,
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3. ϕ(y, v) is a uniformly continuous function on R × V ,

then

| inf
v

EFϕ(Y, v)− inf
v

EGϕ(Y, v)| ≤ L

∫

R

|F (y)−G(y)|dy.

It is seen that we need two sets of assumptions. The first concerning the prop-
erties of criterion function ϕ(y, v), as for instance those required in Proposition 2
(though they can seem to be rather strong). Then, the second set of assumptions
should concern the closeness of distributions, here expressed via the Wasserstein
metric. Hence, we should derive such a closeness from the convergence of estimated
distribution functions, which could be rather complicated problem. For the case
of noncensored data it is solved, under specific conditions on function ϕ(y, v), in
Kaňková (2009).

4.1. Approach based on convergence of means

As the criterion (1) is expressed via the expectation, we shall focus our attention
to the convergence of empirical means computed from censored data. Several such
results are available in the framework of statistical survival analysis, e.g. Gill (1983),
Akritas (2000) and others. We shall refer here to the paper of Volf (1987), where
the following strong consistency result of Rejto (1983) is utilized.

Proposition 3 (Rejto, 1983). Let us consider the random censoring model with

distribution functions F,G continuous. Let there exist a, b ∈ (0, 1] and a real τ such

that aF (t)b ≤ G(t) on [τ,∞). Then almost surely

sup
−∞<t<∞

|FN(t)− F (t)| = O
(

[

log N

N

]
1

2+b

)

. (5)

Again, FN(t) = 1− FN (t) and FN(t) denotes the PLE of survival function F (t)
of random variable Y .

The following proposition establishes the existence of strongly consistent estimate
of the mean, generalizing slightly the result of Volf (1987).

Proposition 4. Let h(y) be an integrable function with finite mean

h̄ =
∫∞

∞
h(y)dF (y). Further, let the following hold:

1. h(y) has bounded first derivative, |h′(y)| ≤ C < ∞.

2. Assumptions of Proposition 3 are fulfilled with some a, b, τ .
3. Let AN → ∞ be a positive, increasing sequence such that for N → ∞

AN ·
(

log N

N

)
1

2+b

→ 0.

Then h̄N =
∫ AN

−AN

h(y)dFN(y) is the strongly consistent estimate of h̄.
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Proof. Denote first hN =
∫ AN

−AN

h(y)dF (y), hence hN → h̄. Let, for given N , XN,i

be ordered data, XN,1 ≤ XN,2 ≤ XN,N . Further, denote K,L such indices that

K = min{i : XN,i ≥ −AN} − 1, L = max{i : XN,i ≤ AN}+ 1.

Denote, omitting index N , TK = −AN , TL = AN , Ti = XN,i for i = K +1, ..., L− 1.
Then we can rewrite the estimate

h̄N =
L
∑

i=K+1

h(Ti)(FN(Ti)− FN (Ti−1)) =

= h(AN )FN(AN)− h(−AN )FN(−AN )−
L
∑

i=K+1

FN(Ti−1)(h(Ti)− h(Ti−1)).

Notice that the last term equals sum of integrals

∫ Ti

Ti−1

FN (y) · h′(y)dy,

because FN(y) = FN (Ti−1) on [Ti−1, Ti). Further, by per-partes integration we obtain

∫ AN

−AN

h(y)dF (y) = F (AN)h(AN)− F (−AN)h(−AN )−
∫ AN

−AN

h′(y)F (y)dy.

Then h̄N − hN = h(AN )(FN(AN)− F (AN))− h(−AN )(FN (−AN)− F (−AN ))−

−
∫ AN

−AN

h′(y)(FN(y)− F (y))dy.

From bounded derivative of h(y) it follows that both |h(−AN )|, |h(AN)| ≤ C ·(AN+
D), where D is some finite constant, for instance |h(0)|.

Therefore we may conclude that

|h̄N − hN | ≤ {2C(AN +D) + 2CAN} · sup
y

|FN(y)− F (y)|,

which tends to zero a.s. due to assumptions 2 and 3.
�

Remark. The proposition says that when considering the mean ’theoretically’, we
should have in mind such a truncated form. Any sequence AN fulfilling assumption
3 may be considered. In practice, as we always deal with finite N , this means no
restriction.

It is also seen that the condition of bounded derivative of h(y) can be relaxed,
that it suffices to assume that

AN · sup
−An≤y≤AN

|h′(y)| · sup
y

|FN(y)− F (y)| → 0.
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4.2. Main result

In the follow-up we shall denote φF (v) = EFϕ(Y, v), assuming that it exists and is
finite, further φN(v) = EFN

ϕ(Y, v), the estimate of the former based on estimated
distribution function (the product limit estimate) FN(y). As we want to use results
of Proposition 4, we have to consider truncation by an appropriate sequence AN .
As it depends just on F and G, it can be the same for all ’empirical means’ con-
sidered here. The goal is to show that the convergence concerns also the infima of
φN , φF and, eventually, the convergence of optimal v. First, let us formulate several
assumptions:

A1. Variable v ∈ V , where V is a compact set in R1.

A2. Functions ϕ(y, v) are continuous in v on V , uniformly w.r. to y ∈ R1.

A3. The assumptions of Proposition 2 are fulfilled for some a, b, τ .

A4. Functions ϕ(y, v) have bounded first derivative w.r. to y, |∂ϕ(y,v)
∂y

| ≤ C < ∞,
for all v ∈ V .

The assumptions imply some rather sharp properties. Thus, A4 supposes that there
exist linear majorizing functions to ϕ(y, v). Further, from A1 it follows that we deal
with minimum instead of infimum, and there always exists at least one solution in
V . Therefore, let us denote

v∗F = argminv φF (v), φ
∗
F = φF (v

∗
F ), v

∗
N = argminv φN(v), φ

∗
N = φN(v

∗
N).

Lemma 1. From A2 it follows that functions φH(v) are continuous in v ∈ V ,

uniformly for all distribution functions H(y).

Proof. Consider v0 ∈ V , ε > 0 and a distribution function H(y). Than, due to
A2, we can select such δ > 0 that for each v : |v− v0| ≤ δ is |ϕ(y, v)−ϕ(y, v0)| ≤ ε,
for each y ∈ R1. Then

|φH(v)− φH(v0)| ≤
∫ ∞

0

|ϕ(y, v)− ϕ(y, v0)| dH(y) ≤ ε.

�

Theorem 1. Let assumptions A1 – A4 hold. Then, for N → ∞,

1. φ∗
F = limφ∗

N almost surely,

2. There exists a sub-sequence v∗N,k ⊂ {v∗N}, k = 1, 2, ... such that it converges

almost surely, when k → ∞, to some v∗0 ∈ V such that v∗0 ∈ {arg min φF (v)}.
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Proof. As each φ∗
N ≤ φN(v

∗) and |φN(v
∗)−φ∗

F | → 0 a.s. (due to Proposition 4 and
A4), then both lim inf φ∗

N ≤ φ∗
F and lim sup φ∗

N ≤ φ∗
F , a.s. Denote φ = lim inf φ∗

N .
We want to prove that φ = φ∗

F a.s.

i) First, there exists (a.s.) a sub-sequence of indices {N1} ⊂ {1, 2, ...} such that
φ = limN1→∞ φ∗

N1, with corresponding sequence of solutions v∗N1. Then, due
compactness of V , there is another sequence {N2} ⊂ {N1} such that there
a.s. exists limN2→∞ v∗N2 = v ∈ V .

ii) From A2 it follows that also limN2→∞ φN2(v) = φ a.s.

iii) It holds that φ ≤ φ∗
F ≤ φF (v), a.s. On the other hand, from Proposition 3 it

follows that (also a.s.) limN→∞ φN(v) = φF (v). When we compare it with ii),
we conclude that a.s. φ = φ∗

F = φF (v).

Thus, the first point of the theorem is proved. Notice that as φ∗
F is not random,

the others are deterministic (with probability 1), too.

iv) Finally, it is seen that v is desired limit solution, i.e. that v ∈ {argmin φF (v)}
a.s. If the set {argmin φF (v)} is just one point, that also v coincides with it.

�

We have proved just the convergence of optimal solutions, not establishing the
rate of such a convergence. It would require a more sophisticated analysis of the
right tail of both distributions F and G, similarly like it is carried out in Kaňková
(2009). Notice that for the present result no explicit assumption concerning the
distributions tails was needed. Implicitly, certain conditions concerning tails are
hidden in the assumption of existence of the means and in assumption borrowed
from Rejto (1983). It indicates that the right tail of censoring distribution G should
be heavier then the same tail of the distribution F .

4.3. Consistency in parametric case

In the present part we shall refer to discussion and assumptions concerning the
distributions considered in Part 3. We assume that the distribution of Y fulfills the
regularity conditions and that there exists a sequence of strongly consistent MLE
θ̂N . We are interested in the convergence of corresponding criterion functions. Let
us first introduce some notation:

φ(v, θ) =
∫∞

−∞
ϕ(y, v)f(y, θ)dy, φN(v) = φ(v, θN), φF (v) = φ(v, θ0), further

v∗F = argminv φF (v), φ
∗
F = φF (v

∗
F ), and v∗N = argminv φ(v, θ̂N), φ

∗
N = φ(v∗N , θ̂N ).

If we use Taylor expansion at the ’true’ value θ0, we obtain that

φ(v, θ̂N)− φ(v, θ0) =

∫ ∞

−∞

ϕ(y, v)f(y, θ̂N)dy −
∫ ∞

−∞

ϕ(y, v)f(y, θ0)dy =

=

∫ ∞

−∞

ϕ(y, v)f ′(y, θN)dy · (θ̂N − θ0), (6)

where, for sufficiently large N , θN is arbitrarily close to θ0, f
′(y, θ) = ∂f(y,θ)

∂θ
. Let us

formulate the following assumption inspired by (6):
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A5. There exists a compact neighborhood O of θ0 and a positive number K < ∞
such that |φ′(v, θ)| = |

∫∞

−∞
ϕ(y, v)f ′(y, θ)dy| ≤ K, for each v ∈ V and θ ∈ O.

Theorem 2. Let θ̂N be a strongly consistent sequence of estimates of θ0, further let

assumptions A1, A2, A5 hold. Then, for N → ∞,

1. φ∗
F = limφ∗

N almost surely,

2. There exists a sub-sequence v∗N,k ⊂ {v∗N}, k = 1, 2, ... such that it converges

almost surely when k → ∞, lim v∗N,k = v∗0 and v∗0 ∈ {arg min φF (v)}.

Proof. The proof can follow, step by step, the proof of Theorem 1, except point
iii). The aim of iii) was to prove that a.s. limN→∞ φN(v) = φF (v). Here the same
result follows directly from (6) and assumption A5.

�

5. Example

Let us consider the following rather simple example of optimization problem: A com-
ponent of a machine has its time to failure Y given (modeled) by a continuous-
type probability distribution with distribution function, density, survival function
F, f, F̄ = 1− F , respectively. The cost of repair after failure is C1, the cost of pre-
ventive repair is C2 < C1. For the simplicity we assume that only complete repairs,
’renewals’, are provided, i.e. after each repair the component is new (exchanged) or
as new. Let τ be the time from renewal to preventive repair, we wish to select an
optimal value of τ .

Let us, as a criterion function, consider the mean time of component availability
to the unit of cost, namely

ϕ(y, τ) =
y

C1

if y ≤ τ, ϕ(y, τ) =
τ

C2

if y > τ.

Our task is to find optimal τ from a reasonable closed interval T , i.e. to maximize

φF (τ) = EFϕ(Y, τ) =

∫ τ

0

y

C1
dF (y) +

τ

C2
F (τ). (7)

In such a simple case the optimal solution can be found directly, by solving equation
dφF (τ)/dτ = 0. In our case

dφF (τ)

dτ
=

τ

C1
f(τ) +

1

C2

(

F (τ)− τf(τ)
)

.

In the sequel the lifetime distribution will be specified and we shall compare the
deterministic solution provided F is known, and the variability of ’sub-solutions’
in cases when lifetime distribution is estimated, in parametric or non-parametric
setting, from censored and non-censored data. Namely, let the distribution of Y
be Weibull, with parameters a = 100, b = 2, i.e. its survival function is F (t) =

exp
(

− ( t
a
)b
)

, numerical characteristics are EY ∼ 89, sd(Y ) ∼ 46. Costs of repairs
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Figure 1: φF (τ) vers. τ , with optimal point

were fixed as C1 = 10, C2 = 1. When the distribution function F is known, there
exists an unique optimal solution with

τ ∗ = a
( C1

(C1 − C2)b

)1/b

= 74.5356 (8)

and maximal working time per cost unit φF (τ
∗) = 44.7644. Figure 1 displays the

graph of φF (τ).
In the next parts we provide a numerical study where it is assumed that the

distribution of variable Y is estimated from data. In all four cases (parametric or
nonparametric case, without or with censoring) 100 samples of 100 observations Yi

are generated from the Weibull distribution mentioned above. In cases with censor-
ing, they are censored by the censoring variables Zi having uniform distribution on
[0, 250], hence with survival function G(z) = (250 − z)/250 (value 250 corresponds
roughly to 0.998 quantile of distribution of Y ). The rate of censoring is then about
36% ∼ EY/250.

non-cens.: sample sample censored: sample sample
I I-std mean std I I-std mean std

a 3.80 · 10−4 5.13 100.050 5.904 2.64 · 10−4 6.15 99.683 6.211
b 0.409 0.154 2.003 0.155 0.287 0.187 2.004 0.187

τm 74.734 4.185 74.580 5.009
φ(τm) 44.632 0.195 44.576 0.275

Table 1: Comparison of theoretical and sample-based characteristics of estimates
and optimal solutions

5.1. Parametric case

In the first part of the study the Weibull-type distribution was taken for granted,
its parameters were estimated from generated samples of data, by the maximum
likelihood method. Hence, 100 couples of estimates am, bm, m = 1, 2, ..., 100 were ob-
tained. They are displayed in Figure 2, left plot shows estimates from non-censored
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Figure 2: Maximum likelihood estimates of parameters (am, bm) from 100 samples
of non-censored (left) and censored data (right)
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Figure 3: Optimal solutions τm and corresponding φF (τm) based on estimates dis-
played in Figure 2, for non-censored (left) and censored (right) cases

cases, the right plot corresponds to censored cases. From those values their means
and sample standard deviations were computed. Simultaneously, we computed the-
oretical Fisher information I for both parameters and approximate standard devia-
tions of estimates I-std=

√

1/I/N , for extent of sampled data N = 100. All these
characteristics are collected in Table 1. Further, to each estimated couple of param-
eters, an optimal solution τm was computed from (8). To do it, we computed the
corresponding value φF (τm), i.e. the cost at τm was computed w.r. to the ’true’ F .
They are shown in Figure 3, again for non-censored (left) and censored cases (right).
Table 1 contains also sample means and standard deviations of those ’sub-optimal’
τm and φF (τm). It is seen that the variability of results increases with censoring,
though not strongly.

5.2. Nonparametric estimate of distribution function

Let us now imagine that we do not know the type of distribution of Y and there-
fore we estimate it with the aid of the product-limit estimator (i.e. as the empirical
distribution function when censoring is absent). Figure 4 displays cloud of 100 esti-
mates obtained from 100 generated samples, the cases without censoring are plotted
in the left subplot, the right subplot shows estimates obtained from censored data.

181



0 100 200 300
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Time

F N

0 50 100 150 200 250
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Time

Figure 4: Set of 100 estimates of distribution function, FN(t), from non-censored
(left) and censored data (right). ’True’ distribution function F (t) is plotted by solid
curve
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Figure 5: Optimal solutions τm and corresponding φF (τm) based on nonparametric
estimates displayed in Figure 4, for non-censored (left) and censored (right) cases

It is well seen how the variability in the right subplot increases for large times.
Theoretically, if we take α = 0.05 and N = 100, the half-width of 95% confidence
band for ’true’ distribution function, in the non-censored case, is given approxi-
mately (see Part 2) as cα/

√
N = 0.136. As regards the censored data, function C(t)

(here defined on [0, 250)) has no analytical form, nevertheless, we can compute it
numerically. We have seen in Part 2 that, at a given t, the half-width of 1−α band
is given as dN,α(t) = cα/

√
N · F (t) · (1 + C(t)). We computed it at three points

corresponding roughly to three quartiles of utilized Weibull distribution. Namely,
at points t = 55, 85, 120 we obtained dN,α(t) = 0.142, 0.158, 0.195, respectively.

non-cens.: mean std cens.: mean std
τm 76.751 9.154 78.288 11.585

φF (τm) 44.123 0.839 43.763 1.553

Table 2: Sample means and standard deviations of τm and φF (τm) corresponding to
samples plotted in Figure 5

Figure 5 displays optimal solutions τm, each obtained as the solution of (8)
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with m-th estimate of F , m = 1, 2, ..., 100. Again, we then computed corresponding
φF (τm), i.e. w.r. to ’true’ F . The left subplot shows the case without censoring, the
right subplot then results from censored samples. Notice (expected) larger variability
(i.e. uncertainty) in censored data cases. Table 2 contains sample characteristics of
obtained ’sub-optimal’ solutions.
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Figure 6: Empirical distribution of average of proportions (time-to-renewal / cost-
of-renewal), from 500 renewals, for τ = 60, – histogram from 1000 replications

6. Criterion based on quantiles

Criterion based on averaging, as maxτ EFϕ(Y, τ) in the preceding example, does not
take in account possible variability of r.v. Y and is actually reasonable for optimizing
over long time period. Even then the variability can be large. It is here shown just
with the aid of simulation. We generated a series of 500 renewals according the
preceding example, i.e. from Weibull(a = 100, b = 2) distribution, for fixed τ = 60.
We computed always the relation of time to renewal to its cost and computed the
mean from these 500 renewals. Such sequence was replicated 1000 times. The result
is displayed in Figure 6.

We can as well compute directly distribution of values of function ϕ(Y, τ), for
each fixed τ . It is easy if ϕ(Y, τ) is monotone w.r. to Y . Then we can try to optimize
certain quantiles of this distribution.

In our example, we consider random variable Zτ = ϕ(Y, τ), with property Zτ =
Y
C1

if Y ≤ τ and Z(τ) = τ
C2

if Y > τ . If Y ∼ Weibull(a, b) and certain τ is selected,
the conditional distribution of random variable Zτ |Zτ ≤ τ

C1
has distribution function

FZ(z) =
1− exp(−( z·C1

a
)b)

(1− exp(−( τ
a
)b)

,

i.e. Zτ has on interval (0, τ/C1) Weibull distribution with parameters (a/C1, b) and
Zτ = τ/C2 with probability P (Y > τ).

Thus, if we wish to maximize certain α-quantile of Zτ (and still C1 > C2), optimal
τ ∗(α) should be such that P (Y > τ ∗(α)) = 1−α, i.e. τ ∗(α) is the α quantile of the
distribution of Y . Guaranteed value reached by Z with probability 1 − α is then
τ ∗(α)/C2. It is a consequence of the form of function ϕ(y, τ).
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For instance for α = 0.1 and Y ∼ Weibull(100,2) we obtain that τ ∗(α) = 32.4593
and 90% guaranteed value of Z is τ ∗(α)/C2 = 32.4593, too, because C2 = 1.

7. Conclusion

We have studied the impact of randomly right-censored data to the increase of
variability of statistical estimates and, consequently, to the imprecision of solution
in a stochastic optimization problem. We have compared theoretical as well as
empirical behavior of estimates in the parametric or non-parametric setting, in the
cases of fully observed or censored data. We have proved asymptotic consistency of
solutions based on censored data. Further, the influence of data incompleteness to
optimal solutions has been studied on randomly generated examples.
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