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Abstract. The stochastic optimization problem is, as a rule, formulated in
terms of expected cost function. However, criterion based on averaging does
not take in account possible variability of involved random variables. That is
why the criterion considered in the present contribution uses selected quantiles.
Moreover, it is assumed that the stochastic characteristics of optimized system
are estimated from the data, in non-parametric setting, and that the data may
be randomly right-censored. Therefore, certain theoretical results concerning
estimators of distribution functions and quantiles under censoring are recalled
and then utilized to prove consistency of solution based on estimates. Behavior
of solutions for finite data sizes is studied with the aid of randomly generated
example.
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1 Introduction

Let us consider an optimization problem with utility function ϕ(y, v), where v are input variables from
certain feasibility set V and values y are random, results of a random variable (or vector) Y with
distribution function F . Standardly, corresponding stochastic optimization problem can be formulated
as supv EF ϕ(Y, v), where EF stands for the expectation w.r. to F . If F is known, we actually deal with
a “deterministic” optimization case. However, criterion based on averaging does not take in account
possible variability of r.v. Y and is actually reasonable for optimizing over long time period. Even then
the variability of solution can be large. That is why the present paper is devoted to optimization of
quantiles of random criterion Z(v) = ϕ(Y, v). Alternatively, we can be interested in a kind of multi-
objective optimization, simultaneously reducing also variability of solution (measured by variance, or
certain inter-quantile range).

Further, our information on probability distribution could be non-complete. Either, known distribu-
tion type depends on unknown parameters. Or, we have to employ nonparametric estimates of F . Then,
as a rule, the estimates are plugged into objective function. Hence, we have to analyze both possible
bias and increased variability of obtained solution (compared to an ideal solution when F is known). An
investigation of usage of empirical (estimated) characteristics in stochastic optimization problems started
already in 70-ties. A number of papers has dealt with these problems, let us mention here just Kaňková
(2010) with an overview and a number of other references.

In the present paper we consider even more complicated case when distribution function F should be
estimated from the data censored randomly from the right side. Such situation is quite frequent in the
analysis of demographic, survival or insurance data. The lack of information leads to higher variability
of estimates and, consequently, to higher uncertainty of optimal solutions. The approaches to statistical
data analysis in cases when the data are censored or even truncated are provided by a number of authors.
The most of results were derived in the framework of statistical survival analysis and collected in several
monographs (cf. Kalbfleisch and Prentice, 2002, or Andersen et al, 1993).

The main objective of the present paper is to study the increase of uncertainty of results of quantile
optimization problem when the censoring is causing growing variability of non-parametric estimate of F .
Therefore, in the next section, certain theoretical properties of estimates under random right censoring will
be recalled. We shall consider the product-limit estimator as a generalization of the empirical distribution
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function, and corresponding estimator of quantiles. Their properties in cases with and without censoring
will be compared. In Section 3 the consistency of solution employing estimated quantiles is proven.
Finally, in Section 4 a simple example deals with optimal maintenance schedule, properties of obtained
’sub-optimal’ solution are illustrated with the aid of simulations.

2 Estimators of distribution and quantile functions

Let us consider a continuous-type random variable Y characterizing for instance a random time to certain
event. Let another continuous random variable U be a censoring variable, both be positive, continuous
and mutually independent. Further, let f(y), g(u), F (y), G(u), F (y) = 1 − F (y), G(u) = 1 − G(u)
denote the density, distribution and survival functions of both variables. It is assumed that we observe
just X = min(Y, U) and δ = 1[Y ≤ U ], i. e. δ indicates whether Y is observed or censored from right
side. The data are then given as random sample (Xi, δi, i = 1, . . . , N). Notice that the case without
censoring is obtained when G(t) ≡ 0 on region where F (t) < 1. Let us remark here that in some cases
we can deal, for instance, with the logarithm of time. Then the domain of data can be the whole R1.

A generalization of empirical distribution function is the well known Kaplan–Meier “Product Limit
Estimate” (PLE) of survival function. Let us first sort (re-index) the data in increasing order, X1 ≤
X2 ≤ · · · ≤ XN , then the PLE of F (t) has the form

FN (t) =
N∏

i=1

(
N − i

N − i + 1

)δi·1[Xi≤t]

. (1)

Again, notice that when all δi = 1, we obtain the empirical survival function. The following proposition
is due to Breslow and Crowley (1974):

Proposition 1. Let T > 0 be such that still F (T ) ·G(T ) > 0. Then the random process

VN (t) =
√

N

(
FN (t)
F (t)

− 1
)

=
√

N
F (t)− FN (t)

F (t)
(2)

converges, on [0, T ], when N →∞, to Gaussian martingale with zero mean and variance function

C(t) =
∫ t

0

dF (s)
F (s)2 G(s)

. (3)

Here, FN (t) = 1 − FN (t). In other words, VN (t) converges in distribution on [0, T ] to the process
W (C(t)), where W (·) denotes the Wiener process. The asymptotic variance function can be estimated
by its empirical version:

CN (t) =
N∑

i=1

Nδi

(N − i + 1)2
· 1[Xi ≤ t],

which is consistent in probability, uniformly w.r. to t ∈ [0, T ] (see again Breslow and Crowley, 1974).

Let us now recall also properties of empirical quantiles. ’True’ p-quantile, for any p ∈ (0, 1), is defined
as Q(p) = min{x : F (x) ≥ p}, and is obtained as a unique solution of equation F (x) = p provided F
is strictly increasing. Empirical quantile is then defined as QN (p) = min{x : FN (x) ≥ p}. Let now
p ∈ (0, F−1(T )), where T is from Proposition 1. Notice that QN (p) is well defined only if FN (x) ≥ p for
some x, therefore with probability tending to 1 when N →∞. The following statement can be found for
instance in Andersen et al (1993), Ch.IV.3 .

Proposition 2. Let f(x) > 0 in the neighborhood of Q(p). Then the empirical quantile QN (p) is
P-consistent and asymptotically normal, namely, for each c < 1/2

N c · (QN (p)−Q(p)) →P 0,
√

N(QN (p)−Q(p)) →d N(0, S(p))

and asymptotic variance equals

S(p) =
(1− p)2 · C(Q(p))

f(Q(p))2
.
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It follows that the variance of (QN (p)−Q(p)) can be estimated by

SN (p)
N

=
(1− p)2 · CN (QN (p))

N · fN (QN (p))2
, (4)

which is complicated by inevitable estimation of density function, as a rule with the aid of kernel method.

If we denote DN (t) = VN (t)
/
(1 + C(t)), then for the case without censoring we obtain that C(t) =

F (t)
/
F (t) and DN (t) =

√
N(F (t) − FN (t)) leading to standard Kolmogorov–Smirnov statistics. Notice

also that then we obtain a well known result asvar[
√

N(QN (p)−Q(p))] = p(1−p)
f(Q(p))2 .

Further, from (3) it is also seen that the variance in the case with censoring (when G(t) ≤ 1) is larger
than without it (i.e. when G(t) = 1 on whole [0, T ]).

3 Criterion based on quantiles, consistency

Let the optimization problem be now formulated as maximization of a p-quantile of distribution of random
variable Z(v) = ϕ(Y, v), for some selected p ∈ (0, 1). If function ϕ(y, v) is monotone increasing in y for
each v, i.e. when there exists its inverse function ϕ−1(z, v), also increasing in z, then the distribution
function of Z(v), for fixed v, is FZ(z, v) = F (ϕ−1(z, v)). Therefore also quantiles of Z(v) can be expressed
as function of quantiles of Y , namely QZ(p, v) = ϕ(Q(p), v) and optimal v depends directly on Q(p).
In general, however, connection between distribution and quantiles of variables Y and Z(v) is not so
straightforward and has to be analyzed, for instance with the aid of simulation.

Let the following assumptions hold:

A1. Let p ∈ (0, F−1(T )) and let f(x) > 0 in a neighborhood of Q(p).

A2. Function ϕ(y, v) is bounded, increasing and continuous in a neighborhood of y = Q(p), uniformly
w.r. to v ∈ V .

A3. V is compact and ϕ(Q(p), v) is continuous in v ∈ V . Hence, it is continuous uniformly in V .

Further, denote v∗ = arg maxv ϕ(Q(p), v), ϕ∗ = ϕ(Q(p), v∗), v∗N = arg maxv ϕ(QN (p), v), ϕ∗N =
ϕ(QN (p), v∗N ). When V is compact, at least one v∗ exists, while v∗N is defined with probability tending
to 1.

Proposition 3. When assumptions A1, A2, A3 hold, then

1. ϕ∗N → ϕ∗ in probability,

2. there exists a.s. a (random) subsequence N(k) ⊂ {N} and v̄ ∈ {v∗} such that v∗N(k) → v̄ a.s.

Proof.

i) From notation above, it follows that a.s. ϕ∗N ≥ ϕ(QN (p), v∗) and ϕ∗ ≥ ϕ(Q(p), v∗N ).

ii) Further, P-consistency of QN (p) and A2 imply that, in probability, ϕ(QN (p), v∗) → ϕ∗ and also
ϕ∗N − ϕ(Q(p), v∗N ) → 0.

From i) and ii) assertion 1 follows, namely ϕ∗N → ϕ∗ in P. Moreover, it is also seen that

iii) ϕ(Q(p), v∗N ) → ϕ∗ in P.

iv) The existence of converging subsequence v∗N(k) follows from compactness of V . Then the uniform
continuity of ϕ(Q(p), v) ensures that ϕ(Q(p), v∗N(k)) → ϕ(Q(p), v̄) in P.

This, together with iii), yields that ϕ(Q(p), v̄) = ϕ∗ a.s.

Thus, except convergence of optimal values we showed also existence of a random sequence of solutions
converging towards the set of optimal solutions {v∗}. If v∗ is unique, then v̄ = v∗ a.s.

31st International Conference on Mathematical Methods in Economics 2013

~ 1006 ~ 



4 Example

Let us consider the following rather simple example of optimization problem (see also Volf, 2012): A com-
ponent of a machine has its time to failure Y given (modeled) by a continuous-type probability distribution
with distribution function, density, survival function F, f, F̄ = 1 − F , respectively. The cost of repair
after failure is C1, the cost of preventive repair is C2 < C1. For the simplicity we assume that only
complete repairs, ’renewals’, are provided, i.e. after each repair the component is new (exchanged) or as
new. Let τ be the time from renewal to preventive repair, we wish to select an optimal value of τ .

Let us, as a criterion function, consider the proportion of component availability time to the unit of
cost, namely

ϕ(y, τ) =
y

C1
if y ≤ τ, ϕ(y, τ) =

τ

C2
if y > τ.

4.1 Optimization of the mean

Let us first search for an optimal τ , from a reasonable closed interval T , maximizing the mean

φF (τ) = EF ϕ(Y, τ) =
∫ τ

0

y

C1
dF (y) +

τ

C2
F (τ).

Optimal solution can be found directly, by solving equation dφF (τ)/dτ = 0. In our case

dφF (τ)
dτ

=
τ

C1
f(τ) +

1
C2

(
F (τ)− τf(τ)

)
.

Assume that the distribution of Y is Weibull, with parameters a = 100, b = 2, i.e. its survival function is
F (t) = exp

(
−(

t
a

)b
)
, corresponding numerical characteristics are EY ∼ 89, sd(Y ) ∼ 46, median(Y ) ∼ 83.

Further, let the costs be C1 = 10, C2 = 1. When the distribution function F is known, there exists an
unique optimal solution with

τ∗ = a
( C1

(C1 − C2)b

)1/b

= 74.5356

and maximal mean of working time per cost unit φF (τ∗) = 44.7644.

We can also compute directly the distribution of random variable Z(τ) = ϕ(Y, τ), with property
Z(τ) = Y

C1
if Y ≤ τ and Z(τ) = τ

C2
if Y > τ . If Y ∼ Weibull(a, b) and certain τ is selected, the

conditional distribution of random variable Z(τ)|Z(τ) ≤ τ
C1

has distribution function

FZ(z) =
1− exp(−( z·C1

a )b)
(1− exp(−( τ

a )b)
, (5)

i.e. Z(τ) has on interval (0, τ/C1) Weibull distribution with parameters (a/C1, b) and Zτ = τ/C2 with
probability P (Y > τ). Therefore, we can compute variance and standard deviation. Namely, for optimal
τ∗ sd(Z(τ∗)) = 34.5. If we wish to reduce it, we have to accept certain trade-off. For instance, τ = 52
yields approximately EZ(τ) = 40.4, so that just by 10% smaller value than the maximum, while standard
deviation is reduced to sd(Z(τ)) = 20.7.

4.2 Optimization of quantiles

Let us return to the criterion based on a quantile. Above, in (5), the distribution of Zτ has been derived,
the quantiles QZ(p, τ) follow immediately from it. Figure 1 shows their form, from two different points of
view. It follows that if we wish to maximize certain α-quantile of Zτ , optimal τ∗(α) should be such that
P (Y > τ∗(α)) = 1 − α, i.e. τ∗(α) is the α quantile of the distribution of Y . Guaranteed value reached
by Z with probability 1− α is then τ∗(α)/C2. It is a consequence of the form of function ϕ(y, τ).

For instance for α = 0.1 and Y ∼ Weibull(100,2) we obtain that τ∗(α) = 32.4593 and 90% guaranteed
value of Z is τ∗(α)/C2 = 32.4593, too, because C2 = 1. If we wish to achieve a higher value of Z with
sufficiently large probability, we can select for instance τ = 45. As it corresponds roughly to 18%-quantile
of Y , such a choice guarantees that P (Z(τ) = 45) ∼ 0.82. On the other hand, if we take τ∗ maximizing
the mean EF ϕ(Y, τ), it guarantees that P (Z(τ) = 74.5) ∼ 0.57 and P (Z(τ) < 7.45) ∼ 0.43. It is seen
that even here a kind of trade-off, with the use of multi-criteria approach, is reasonable.
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Figure 1 Quantiles QZ(p, τ) of variable Z(τ), left as a function of τ for given p = 0.5, right as a function
of p for given τ = τ∗
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Figure 2 Histogram of generated sample quantiles QN (p), for N = 100 and p = 0.1, computed from
non-censored (left) and censored (right) data cases

4.3 A numerical study

In this part we provide a numerical study where it is assumed that the distribution of variable Y is
estimated from data. In both considered cases (without or with censoring) M = 1000 samples of N = 100
and N = 300 observations Yi are generated from the Weibull distribution specified above. In cases with
censoring, censoring variables Ui have uniform distribution on [0, 250], hence with survival function
G(u) = (250 − u)/250 (value 250 corresponds roughly to 0.998 quantile of distribution of Y ). The rate
of censoring is then about 36% ∼ EY/250.

It is assumed that the type of distribution of Y is not known and therefore F is estimated non-
parametrically with the aid of the product-limit estimator (i.e. as the empirical distribution function
in the case without censoring). Thus, M estimates F

(m)
N ,m = 1, ..., M are obtained, from each the

empirical quantile is computed, for given p. Figure 2 displays histograms of these M estimated quantiles,
for N = 100, p = 0.1, the cases without censoring are plotted in the left subplot, the right subplot shows
estimates obtained from censored data. Incorrect specification of the quantile shifts slightly both the
guaranteed value and its probability, either decreases the value and increases probability, if QN (p) < Q(p),
or, in the opposite case, increases the value and decreases its probability.

It is well seen how the variability in the right subplot has increased due to censoring. Table 1
compares sample means and standard deviations computed from M=1000 values Q

(m)
N (p) with true Q(p)

and standard deviations (denoted ’as-std’) obtained as square roots of approximate variances S(p)/N ,
with S(p) from Proposition 2. It is well seen how sample characteristics approach theoretical values.
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p=0.1 non-cens.: sample sample censored: sample sample
N Q(p) as-std mean std as-std mean std

100 32.46 5.135 32.11 5.077 5.378 33.16 5.283
300 32.46 2.962 32.96 2.926 3.105 32.61 3.090

p=0.5
100 83.26 6.006 82.82 5.826 6.907 83.53 6.990
300 83.26 3.467 83.34 3.466 3.988 83.34 3.961

Table 1 Comparison of theoretical and sample-based characteristics of empirical quantiles for p = 0.1 and
p = 0.5, N = 100 and N = 300

5 Conclusion

We have studied the impact of variability of statistical estimates to uncertainty of solution in a stochas-
tic optimization problem formulated via certain quantiles of utility function. We compared two cases,
namely that the stochastic characteristics of the problem were estimated, in a non-parametric way, from
fully observed or from randomly right-censored data. Therefore, theoretical properties of estimators of
distribution function and quantiles from censored data were recalled, in order to compare them with the
behavior of estimates in real situations. Such a comparison was performed with the aid of a simple op-
timization problem example and randomly generated data. Simultaneously, the convergence of solutions
based on estimated quantiles to optimal solution was proven.
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