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Abstract

This paper studies synchronization of a dynamical complex network consisting of nodes being
generalized Lorenz chaotic systems and connections created with transmitted synchronizing signals.
The focus is on the robustness of the network synchronization with respect to its topology. The robustness is
analyzed theoretically for the case of two nodes with two-sided (bidirectional) connections, and numerically
for various cases with large numbers of nodes. It is shown that, unless a certain minimal coherent topology
is present in the network, synchronization is always preserved. While for a minimal network where
synchronization is global, the resulting synchrony reduces to semi-global if redundant connections
are added.
& 2013 The Franklin Institute. Published by Elsevier Ltd. All rights reserved.
1. Introduction

The research topic of complex networks has revoked considerable interest in the past few
years. Examples of complex networks in interest include the Internet, World Wide Web, food
webs, electric power grids, metabolic networks, and biological neural networks, among many
others [1,2]. Traditionally, complex networks were studied via random graph theory, introduced
by Erdös and Renyí [3], which have been extended to a wide extent in the last decade.
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This paper studies the synchronization phenomenon of dynamical complex networks (DCN),
where all nodes are identical chaotic systems (but usually with different parameters and/or initial
conditions). Compared to existing results, there are two novel features in our new approach.
First, nonlinear synchronizing connections between nodes are allowed; secondly, a directed
graph as a model for DCN is considered, in contrast to the general studies where only linear
coupling and undirected networks are discussed [4–7]. Note that a general approach to the local
synchronization of chaotic systems for any linear coupling scheme was described in [8]. The
objective here is to study the synchronizability of the network when some nodes establish or lose
certain connections. This notion is referred to as structural robustness of DCN synchronization.
The motivation comes from the consideration that in a network numerous participants try to
synchronize to each other for some reason (e.g. for chaotic secure communication [9,10]), while
some participants may connect to or disconnect from some of their partners under certain
conditions, but these should not damage the overall synchrony of the network. It will be shown
that with an increasing number of connections, synchronization is only semi-global, and it may
become even worse as the number of connections continue to increase, in the sense that very
high gains (coupling strengths) are needed to maintain the synchrony of the whole network.

This paper aims to study DCN consisting of the so-called generalized Lorenz system (GLS)
[11,12]. It was already shown in [12] that two GLS's in master–slave configuration can be
synchronized using a single scalar connection. Further, some bidirectionally coupled
synchronization results on GLS were obtained in [13], using nonscalar, but linear connections.
The present paper will continue the initial study presented in [14], considering both scalar
nonlinear bidirectional connection between two GLS's, with mathematical proof of the
convergence, and a study of more complex network topologies of up to eight GLS nodes.
As an example of good synchronization properties even for larger number of nodes and
connections, Fig. 9 shows some possible topologies of eight-node networks and Fig. 10
illustrates their error dynamics. While mathematical proofs for more complex cases are
unrealistic, numerical studies show quite interesting behavior, e.g. increasing the numbers of
nodes and connections usually leads to increasing sensitivity with respect to initial
synchronization errors.

The rest of the paper is organized as follows. Some notions related to the DCN and the
synchronization problem are introduced in the next section. The DCN of GLS is then discussed
in Section 3, together with theoretical analysis on the DCN with two coupled nodes for its
synchronization. Numerical simulations on the GLS-based DCN, with 3, 4 and 8 nodes, are
presented in Section 4. Finally, conclusions are given in the last section.
2. Synchronization of dynamical complex networks

Consider a DCN of N identical nonlinear nodes, with each node being a chaotic system,
described by

_ηi ¼ f ðηiÞ þ ∑
N

j ¼ 1
cjiϕðηi; hðηjÞ;LÞ; ð1Þ

where ηi ¼ ðη1; η2;…; ηn; Þ⊤∈Rn is the state vector of node i; i¼ 1;…;N, L¼ ðl1; l2;…; lnÞ⊤ is
the vector of coupling gains, hð�Þ is a scalar synchronizing output of each system, ϕ is nonlinear
coupling with ϕðη; hðηÞ;LÞ≡0 ∀η;L and C¼ ðcijÞi;j ¼ 1;…;n is the adjacency matrix that has no
loops, i.e. i≠j. Here, cij is not always equal to cji, because the graph is directed, i.e. the adjacency
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matrix may be nonsymmetrical, but if cij ¼ cji ¼ 1, then the connection between node i and node
j is called as coupled or duplex coupling. Without loss of generality one can set
cii ¼ 0 ∀i∈f1; 2;…;Ng; due to the above assumption that ϕðη; hðηÞ;LÞ≡0 ∀η;L. Network (1) is
said to be (asymptotically) synchronized if, ∀i; j∈f1; 2;…;Ng

lim
t-∞

ðηiðtÞ−ηjðtÞÞ ¼ 0: ð2Þ

A network, with cij ¼ 1 ∀i; j∈f1; 2;…;Ng; i≠j; is called complete N-node DCN. A network,
where C is a cyclic matrix (i.e. each its row and column has precisely one nonzero entry), and is
called cyclic DCN. Finally, a network is disconnected, if there is re-numbering of the nodes
making C block diagonal; otherwise, it is connected. One can easily see that the above notions
have clear interpretation, e.g. a complete network contains all possible connections (see e.g. the
network (h) in Fig. 1), while in a cyclic network each node has exactly one inbound and one
outbound connection, so it creates a directed cyclic chain of connections (see e.g. (b) in Fig. 1, or
network in Fig. 6). Finally, disconnected network could consist of two or more independent
subnetworks.
Obviously, a disconnected network can not be synchronized in general. Nevertheless, being

connected is only necessary for a network to be synchronizable. This leads to the following
definition.

Definition 2.1. The DCN (1) is said to be synchronizable if there exists an integer
μ∈f1; 2;…;Ng, such that for every s∈f1; 2;…;Ng there exists a sequence of integers
fκ1;…; κlg satisfying

κ1 ¼ μ; κl ¼ s; cκ1;κ2 ¼⋯¼ cκl−1;κl ¼ 1:

If the above integer μ is unique, then the node with number μ is called the master of DCN (1).
Synchronizable network is called minimal, if removing any connection makes it not synchronizable.
Fig. 1. Some possible topologies of a three-node networks with directed connections among nodes.
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Synchronizable network in the terminology of the graph theory is a directed graph that
contains a rooted directed spanning tree, where master is a root. Each edge (connection) is
considered to be directed away from the root [15] and the root is a dynamical system (node,
vertex), which influences directly or indirectly all other systems (nodes, vertices) [16]. If a
network is a rooted directed spanning tree, then the network is minimal. A graph is a directed
spanning rooted tree if it is a tree as an undirected graph and there is a directed path from the root
(master) to every other node [16]. A minimal network is always unidirectional.

Note that the above synchronizability definition makes sense only for networks being directed
graphs. For undirected graphs, it is sufficient to replace it by the simple property of being
connected. The following properties obviously hold:
1.
Fig
λ1;2
ena
A minimal synchronizable network always has a master.

2.
 A cyclic network is always synchronizable, but never minimal.
An example of a connected network, which is not synchronizable, is shown in Fig. 2. In Fig. 1,
networks (a) and (c) are minimal ones having node 1 as their master. Finally, Fig. 3 gives a full
list of all four-nodes minimal synchronizable DCN.
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. 2. Lack of synchronizability of a three-node network, with λ1 ¼ 8, λ2 ¼−16, λ3 ¼−1; l1; l2 ¼−35 and τ¼ 0:5, where

;3 are eigenvalues of approximate linearization fulfilling the well-known Shilnikov's inequality −λ24λ14−λ3 and τ
bles fine chaos tuning. (a) Synchronization errors of a three-node network. (b) Topology of a three-node network.

Fig. 3. List of all four-node minimal synchronizable directed networks.
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3. Generalized Lorenz systems and their synchronization in DCN

In this section, a DCN with nodes being the so-called generalized Lorenz system (GLS) is
studied. GLS is a generalization of the classical Lorenz system containing it as a particular case.
Full details about GLS may be found in [11,17], where in particular the so-called generalized
Lorenz canonical form was introduced there. This form enables to generate rich parameterized
chaotic behavior. Here, another canonical form is reviewed in detail with the following theorem
established in [12].

Theorem 3.1. GLS is state equivalent to the following system, further referred to as the observer
canonical form:

dη
dt

¼
ðλ1 þ λ2Þη1 þ η2

−λ1λ2η1−ðλ1−λ2Þη1η3− ðτþ1Þ
2 η31

λ3η3 þ K1ðτÞη21

2
64

3
75 ð3Þ

K1ðτÞ ¼
λ3ðτ þ 1Þ−2τλ1−2λ2

2ðλ1−λ2Þ
: ð4Þ

An important feature of the above canonical form is that it contains only four parameters,
where λ1;2;3 are eigenvalues of the system linearization fulfilling the well-known Shilnikov's
inequality −λ24λ14−λ3 and τ enables fine chaos tuning. Moreover, the observer canonical
form of GLS provides a possibility to synchronize two GLS's coupled in a master–slave
configuration using only scalar signal η1, as in [12].
The main theoretical result of this section is the following theorem that generalizes the

mentioned result to the case with symmetric (or duplex) synchronizing connection between two
GLS's.

Theorem 3.2. Consider a DCN consisting of two GLS in the canonical form (3) and (4) with the
states η; η̂, outputs η1; η̂1, and its uniformly bounded trajectory ηðtÞ, t≥t0, coupled as follows:

dη̂
dt

¼
ðλ1 þ λ2Þη̂1 þ η̂2

−λ1λ2η̂1−ðλ1−λ2Þη̂1η̂3− ðτþ1Þ
2 η̂31

λ3η̂3 þ K1ðτÞη̂21

2
64

3
75þ c12

ðλ1 þ λ2Þη̂1
−λ1λ2η̂1−ðλ1−λ2Þη̂1η̂3− ðτþ1Þ

2 η̂31

K1ðτÞη̂21

2
64

3
75

0
B@

−

ðλ1 þ λ2Þη1
−λ1λ2η1−ðλ1−λ2Þη1η̂3− ðτþ1Þ

2 η31
K1ðτÞη21

2
64

3
75þ

l1ðη̂1−η1Þ
l2ðη̂1−η1Þ

0

2
64

3
75
1
CA; ð5Þ

dη
dt

¼
ðλ1 þ λ2Þη1 þ η2

−λ1λ2η1−ðλ1−λ2Þη1η3− ðτþ1Þ
2 η31

λ3η3 þ K1ðτÞη21

2
64

3
75þ c21

ðλ1 þ λ2Þη1
−λ1λ2η1−ðλ1−λ2Þη1η3− ðτþ1Þ

2 η31
K1ðτÞη21

2
64

3
75

0
B@

−

ðλ1 þ λ2Þη̂1
−λ1λ2η̂1−ðλ1−λ2Þη̂1η3− ðτþ1Þ

2 η̂31

K1ðτÞη̂21

2
64

3
75þ

l1ðη1−η̂1Þ
l2ðη1−η̂1Þ

0

2
64

3
75
1
CA; ð6Þ



S. Čelikovský et al. / Journal of the Franklin Institute 350 (2013) 2936–2948 2941
where l1;2o0 are gains to be designed. The synchronization connection in Eq. (5) equals to the
following equation:

ðλ1 þ λ2Þe1
−λ1λ2e1−ðλ1−λ2Þe1η̂3− ðτþ1Þ

2 e1ðη̂21−η̂1η1 þ η21Þ
K1ðτÞe1ðη̂1 þ η1Þ

2
64

3
75þ

l1
l2
0

2
64

3
75e1; ð7Þ

where e1 ¼ η̂1−η1 and e1¼0, if η1 ¼ η̂1. If e1¼0, then system (5) is equal to the observer
canonical form of GLS (3). Then,
1.
 For c12¼0, c21¼1 or c21¼0, c12¼1, and for all gains l1;2o0, one has limt-∞
ðηðtÞ−η̂ðtÞÞ ¼ 0 globally and exponentially.
2.
 For c12¼1, c21¼1, and for every bounded region of initial conditions of system (5) and (6),
there exist sufficiently large gains l1;2o0 such that limt-∞ðηðtÞ−η̂ðtÞÞ ¼ 0.

Proof. The first claim is a straightforward consequence of a result in [12], where global
synchronization of the master–slave configuration of two GLS was proved. To prove the second
claim, denoting e¼ ðe1; e2; e3Þ⊤ ¼ η−η̂, and deducing (6) from Eq. (5), one obtains

_e ¼ ~Aeþ
0

αe1 þ β1e
2
1 þ β2e

3
1 þ γe3

−K1ðτÞð2η1ðtÞe1 þ e21Þ

2
64

3
75; ð8Þ

αðtÞ≔ 3ðτ þ 1Þη21ðtÞ
2

þ ðλ1−λ2Þη3ðtÞ; β2≔
τ þ 1
2

; β1ðtÞ≔
3ðτ þ 1Þη1ðtÞ

2
;

γðtÞ≔ðλ1−λ2Þη1; ~A ¼ diagfAðl1; l2Þ; λ3g; Â ¼
2l1−ðλ1 þ λ2Þ 1

2l2 þ λ1λ2 0

" #
:

Notice that ÂðθÞ is Hurwitz ∀θ40, where

ÂðθÞ≔Aðl1ðθÞ; l2ðθÞÞ ¼
−θ 1

−θ2 0

� �
; ð9Þ

where

l1ðθÞ ¼
−θ þ λ1 þ λ2

2
; l2ðθÞ ¼

−θ2−λ1λ2
2

:

In particular, there exists a matrix S such that

SÂð1Þ þ Âð1Þ⊤S¼ −I2; S40; S⊤ ¼ S;

and, moreover, S is a constant matrix independent of θ. Further, consider a Lyapunov function
candidate

VðeÞ ¼ ½e1; θ−1e2�S½e1; θ−1e2�⊤ þ ðθ−1e3Þ2
2

;

and compute its full derivative along trajectories of system (8) and (9), to obtain

_V ¼ −θðϵ21 þ ϵ22Þ þ λ3ϵ
2
3 þ K1ϵ3ð2η1ðtÞϵ1 þ ϵ21Þ þ 2½ϵ1; ϵ2�S½0; αϵ1 þ β1ϵ

2
1 þ β2ϵ

3
1 þ γϵ3�⊤;
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where

ϵ1≔e1; ϵ2≔θ−1e2; ϵ3≔θ−1e3:

Notice that α; β1;2; γ are dependent only on system parameters and ηðtÞ, which is bounded by
assumption of the theorem. Therefore, there exist a constant R2 and a smooth function R1ð�Þ such
that

_V≤−θðϵ21 þ ϵ22Þ þ λ3ϵ
2
3 þ jR1ðϵ1Þϵ1ðϵ1 þ ϵ3Þ þ jR2ϵ2ðϵ1 þ ϵ2 þ ϵ3Þj:

Notice that R1,2 do not depend on θ. As a consequence, selecting

θ¼ θðe1Þ≔maxfjR1ðe1ðtÞÞj; jR2jg þ R;

where R40 is a big enough constant, guarantees that _V≤−R3∥ϵ∥2; R340. By definition of V(e),
there exist real constants c24c140 such that

c1½e21 þ ½θ−1e2�2� þ ½θ−1e3�2=2≤∥VðeÞ∥≤c2½e21 þ ½θ−1e2�2� þ ½θ−1e3�2=2:
As a consequence, it holds that ∀s40

∥e∥≤s⇒∥VðeÞ∥≤c2s; ∥VðeÞ∥≤s⇒
���e1���≤ s

c1
:

Now, semi-global exponential synchronization is achieved in the following way: for any s40,
taking gains (9) with θ¼maxje1j≤sðc2=c1Þθðe1Þ guarantees exponential convergence in the region of
initial errors ∥eð0Þ∥≤s. Indeed, such a selection of gains guarantees that _V≤−R3∥ϵ∥2; R340, for
all ∥eðtÞ∥≤s, since the above inequalities ensure that ∥VðeðtÞÞ∥≤c2s which, in turn, guarantees
that je1j≤sðc2=c1Þ. As a consequence, V(e) decreases along trajectories, which guarantees that
inequality ∥VðeðtÞÞ∥≤c2s holds and, consequently, je1ðtÞj≤sðc2=c1Þ. In other words, for any e(t)
with ∥eð0Þ∥≤s, it holds that for all t≥0, _V≤−R3∥ϵ∥2; R340; and therefore e(t) goes to zero
exponentially as t-∞. □

Now, consider a DCN consisting of N nodes, each being a GLS defined by

_ηi1
_ηi2
_ηi3

2
664

3
775¼

ðλ1 þ λ2Þηi1 þ ηi2

−λ1λ2ηi1−ðλ1−λ2Þηi1ηi3− ðτþ1Þ
2 ðηi1Þ3

λ3ηi3 þ K1ðτÞðηi1Þ2

2
664

3
775þ ∑

N

j ¼ 1
cji

ðλ1 þ λ2 þ l1Þðηi1−ηj1Þ
ð−λ1λ2 þ l2Þðηi1−ηj1Þ−
ðλ1−λ2Þðηi1−ηj1Þηi3−
ðτþ1Þ
2 ððηi1Þ3−ðηj1Þ3Þ

8>><
>>:

9>>=
>>;

K1ðτÞððηi1Þ2−ðηj1Þ2Þ

2
666666664

3
777777775
; ð10Þ

with a possibly non-symmetric 0–1 coupling matrix

C¼

c11 c12 ⋯ c1ðN−1Þ c1N
c21 c22 c23 ⋯ c2N
c31 c32 ⋱ ⋱ ⋮
⋮ ⋮ ⋮ cðN−1ÞðN−1Þ cðN−1ÞN
cN1 cN2 ⋯ cNðN−1Þ cNN

2
6666664

3
7777775
:
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As a matter of fact, Theorem 3.2 verifies that synchronization of the 2-node DCN (10), at least
semi-globally, does not depend on the topology of its connections, as long as the corresponding
DCN remains synchronizable.

For DCN with N nodes, the following result is a straightforward consequence of claim 1 of
Theorem 3.2.

Theorem 3.3. Consider DCN (10), which is assumed synchronizable and minimal. Then, it is
globally exponentially synchronized.

Proof. Since DCN is by assumption synchronizable and minimal, each node, except the master
node, has exactly one node which sends synchronizing signal to it. It is called the preceding one.
Therefore, using Theorem 3.1, case 1 with c12¼1, c21¼0, one has that each of these nodes is
synchronized with its unique preceding node, therefore all nodes are synchronized with the
master node. □

4. Numerical experiments

As indicated by Theorem 3.2 for non-minimal synchronizable DCN's, only semi-global
synchronization is possible in general. This theorem, nevertheless, considers a two-node network
only. In this section, it is shown experimentally that this property holds even for networks with a
larger number of nodes.

More specifically, consider several four-node DCN of GLS in the form of Eq. (10). The first
example is presented by Fig. 2, which is not synchronizable in the sense of Definition 2.1. Simulations
confirm that the network is indeed not synchronized. In Fig. 4, Theorem 3.2 is illustrated. One can see
that two nodes with a duplex connection (i.e. neither is master or slave) are synchronized; but for initial
synchronization errors up to 1, quite strong gains are needed. In Fig. 5, a completed connected DCN
with four nodes is synchronized, i.e. information is transmitted from any node to all other nodes. Again,
strong the synchronizing gains are needed. Fig. 6 shows the special case of a cyclic network, indicating
that synchronization persists with the same parameters as in the case of Fig. 5. Fig. 7 presents a network
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Fig. 4. Synchronization of a two-node network, with λ1 ¼ 8, λ2 ¼−16, λ3 ¼−1, cij ¼ 1ði≠jÞ, l1; l2 ¼−40 and τ¼ 0:5.
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network.
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with a cycle and master–slave topologies. Fig. 8 shows the special modification of the network
illustrated in Fig. 7 with unstable connection from first and third nodes to second node. Here, the
network has unstable connection between first and second nodes, and between third and second nodes,
respectively. When simulation is starting, connection from first node to second node is stable (switch
on) during one thousand of iterations (fixed step size in simulation is equal to 0.001). In the same time,
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Fig. 8. Synchronization of a network with λ1 ¼ 8, λ2 ¼−16, λ3 ¼−1; l1; l2 ¼−40 and τ¼ 0:5. (a) Synchronization errors
of four-node network. (b) Topology of four-node network. Here, the connection from first node to second node
(interrupted line) is switched on/off every thousand of iterations. If connection from first node to second node is off, then
connection from third node to second node (dotted line) is on. All the time network stays connected.

Fig. 9. Some possible topologies of a eight-node networks with directed connections among nodes.
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Fig. 10. Synchronization errors of eight-node networks shown in Fig. 9 (a), (b), (c), (d), respectively, with λ1 ¼ 8,
λ2 ¼−16, λ3 ¼−1; l1; l2 ¼−10 and τ¼ 0:5.
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connection between third and second nodes is switched off, until first and second nodes are connected
again. From one thousand to two thousands of iterations the connection between second and third
nodes is on, and connection between first and second nodes is off. In every one thousand of iterations
connections are switching. All the times, network stays at synchrony. In Fig. 9 some possible topologies
of a directed eight-node networks are presented and Fig. 10 illustrates their synchronization errors.

Actually, many more experiments have been carried out, all showing that the above-described
a nice robust structural property always holds, subject to the requirement that the network does
not lose its synchronizability (see Definition 2.1). Regarding semi-global versus global
performance, an interesting observation is that for particular initial conditions and gains, a
synchronizable network is always either synchronized or diverging to infinity. This was actually
predicted by the proof of Theorem 3.2.
5. Conclusions

The main conclusion drawn from the present investigation is that for general cases one can
only guarantee semi-global synchronization while for minimal synchronizable configurations one
can always achieve global exponential synchronization. It should be pointed out that both
synchronizability and minimality are mere properties of the network topology. In other words,
synchronization may be determined from some graph-theoretic properties of the network, once
one knows how to synchronize the simple master–slave configuration of two nodes. This
therefore is of fundamental importance, at least for chaos synchronization.
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