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Abstract In this paper we study the dynamical behav-
ior of the one-dimensional discrete-time system, the
so-called iterated map. Namely, a bimodal quadratic
map is introduced which is obtained as an amplifica-
tion of the difference between well-known logistic and
tent maps. Thus, it is denoted as the so-called differ-
ence map. The difference map exhibits a variety of be-
haviors according to the selection of the bifurcation
parameter. The corresponding bifurcations are studied
by numerical simulations and experimentally. The sta-
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bility of the difference map is studied by means of
Lyapunov exponent and is proved to be chaotic ac-
cording to Devaney’s definition of chaos. Later on, a
design of the electronic implementation of the differ-
ence map is presented. The difference map electronic
circuit is built using operational amplifiers, resistors
and an analog multiplier. It turns out that this elec-
tronic circuit presents fixed points, periodicity, chaos
and intermittency that match with high accuracy to the
corresponding values predicted theoretically.

Keywords Chaotic behavior · Lyapunov exponent ·
Bifurcation parameter · Bifurcation diagram ·
Stability analysis

1 Introduction

Iterated maps are simple looking discrete-time dynam-
ical systems which can exhibit transitions from order
to chaos. Famous and broadly studied examples of uni-
modal maps are the tent map and the logistic map, be-
ing the subject of constant investigation in many ar-
eas such as communication systems [1], generation of
pseudo-random sequences [2–4], neural networks [5],
switching systems [6] and cryptography [7–11] and
part of the interest for these systems is linked to the
fact that they provide an easy and academic way to un-
derstand how complex and chaotic behavior can arise
from simple dynamical models. Even more remark-
able is the fact that studies of low-dimensional maps
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have proven to be profitable in understanding the basic
mechanisms responsible for the appearance of chaos
in a large class of dynamical systems.

Furthermore complex behavior may be provided by
the so-called bimodal, or even k-modal maps, [12].
This paper introduces yet another bimodal map, based
on the difference between logistic and tent maps mul-
tiplied by a new bifurcation parameter. This new sys-
tem is therefore called the difference one and is care-
fully analyzed theoretically, numerically and experi-
mentally through electronic circuit.

One of the most useful and widely accepted defi-
nition of chaos is the given by Devaney [13], which
we will call Devaney-chaos. Roughly speaking, three
conditions are required, (1) the sensitive dependence
upon the initial condition, (2) the topological transitiv-
ity, and (3) the dense distribution of the periodic orbits.
The third condition is often omitted for being too strin-
gent [14]. Fortunately, there are other ways to char-
acterize the dynamic behavior, like the result of Li–
Yorke [15] which can be used to prove the existence
of chaos in a map, the authors state that if there ex-
ists a point of period three then there exist points with
other periods and the system is chaotic. On the other
hand we have the Lyapunov exponents [16–18]. With
the aid of their diagnostic, one can measure the av-
erage exponential rates of divergence or convergence
of nearby orbits in the phase space. In general, sings
of the Lyapunov exponents give a qualitative idea of
the variety of dynamics that may exhibit, ranging from
fixed points via limit cycles and tori to more com-
plex chaotic attractors. Also, bifurcation diagrams are
excellent tools to study dynamical behavior and un-
derstand mechanisms such as the so-called a cascade
of period-doubling bifurcations, encountered qualita-
tively in many physical systems of interest or math-
ematical models that have been electronically imple-
mented [19, 20].

Electronic implementation of chaotic systems have
been applied to several engineering developments, fur-
thermore they have been of great help to validate
certain theories concerning chaos. Since its incep-
tion three decades ago, there are different implemen-
tations of Chua’s circuit [21–23]. Historically seen,
Chua’s circuit was the first successful physical imple-
mentation of a system designed to exhibit chaos [24].
This circuit is the first system rigorously proved to
be chaotic [25]. Chua’s circuit is a continuous-time
dynamical system where chaos can be observed ex-

perimentally. The original Chua’s system has a dou-
ble scroll but the diode has been modified in order
to generate chaotic multi-scroll [26]. The behavior of
the difference map is simpler than Chua’s circuit to
comprehend and it has been proved chaotic. The be-
havior of Chua’s oscillator is due to the fact that it
contains five different parameters, whereas for dif-
ference map is only one. There have been reported
several electronic implementations of continuous-time
dynamical systems, such systems are based on third-
order differential equations see [27–31], but few in
the area of discrete-time dynamical systems. Further-
more, discrete-time dynamical systems present advan-
tage and be useful in applications like encryption sys-
tems, radar systems, secure communication systems,
among others.

Some discrete dynamical systems have been imple-
mented by using digital integrated circuits, for exam-
ple in [32] presents a digital implementation of the tent
map. The problem that arises using digital implemen-
tation is that the system only takes a finite number of
states. Electronic circuits have been designed, imple-
mented and tested to accurately realize the logistic dif-
ference equation [19] or the tent-map difference equa-
tion [20] by using analog devices in order to have an
infinite number of values that can be visited.

In this paper, we enlarge the set of maps known to
be chaotic by presenting a chaotic map based on the
difference between the logistic map and the tent map.
The difference map, more precisely, enables us to con-
struct a bimodal map which is chaotic in the sense that
it has positive Lyapunov exponent. We also present an
electronic implementation of the difference map based
on analog devices, which at the same time is a good
engineering model of the corresponding mathematical
system. Through the variation of only one control pa-
rameter, one can examine the bifurcation diagram of
the realized system and we have been able to repro-
duce the theoretical diagram with high accuracy.

The possible application of this circuit implemen-
tation would be independent analog chaos generator
usable for encryption purposes, e.g. as independent
device to cipher. In recent years, a growing number
of cryptosystems based on continuous systems utilize
the idea of synchronization of chaos. However, recent
studies show that the performance of continuous sys-
tems is very poor and insecure. The insecurity results
mainly from the insensitivity of synchronization to
systems parameters [33–36] i.e., the synchronization
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of a pair of chaotic systems is possible even if they
have mismatch parameters.

This paper is organized as follows. In the next sec-
tion we recall some basic definitions; while Sect. 3 in-
troduces the difference map, including its theoretical
and numerical study and presents its properties. Sec-
tion 4 contains a description of an electronic circuit
implementation of the difference map and the experi-
mental bifurcation diagram which matches the theoret-
ically predicted results. Some conclusions and outlook
are given in the final section.

2 Basic definitions

This paper aims to contribute in the area of the one-
dimensional discrete-time systems, namely to the sys-
tems of the form

xk+1 = f (xk), k = 0,1,2, . . . ,N.

Here xk ∈ � and x0 is the initial condition, such dy-
namical system is usually called a map, as it is fully
determined by its right hand side. To ensure bounded-
ness of trajectories, the study is usually restricted to
maps that are mapping some closed interval into it-
self and without any loss of generality one may con-
sider the closed interval [0,1] only. The simplest maps
are the so-called unimodal maps, while their general-
ization, the so-called k-modal maps may present even
more rich dynamical behaviors, [12].

To be more specific, denote I := [0,1] and recall
that the critical point c of the continuous piecewise
smooth map f (x) : I �→ I is c ∈ I where f is differ-
entiable and f ′(c) = 0.

Remark 1 The critical point c occurs for f ′(c) = 0
or f ′(c) does not exist. But continuous smooth maps
always present f ′(c) = 0.

First, let us repeat the definition of the k-modal
map, introduced in [12].

Definition 1 The map f : I �→ I is called the k-
modal one, if it is continuous on I and it has k critical
points denoted by c0, c1 , . . . , ck−1 in I . Moreover,
there exist intervals Ii , i = 0, . . . , k − 1,

⋃k
i=1 Ii−1 =

I , such that ∀i = 0, . . . , k − 1 it holds ci ∈ Ii and
f (ci) > f (x,β), ∀x ∈ Ii and x �= ci , where β is a pa-
rameter. The case k = 1 will be further simply referred

as to the so-called unimodal map, while the case k = 2
as the bimodal one.

Remark 2 The above definition does not constrain a
function to have only k critical points. However we
only considered those that are local maxima on a
subinterval.

Definition 2 The logistic map is defined as

fL(x,α) = αx(1 − x), (1)

where parameter α ∈ [0,4] ⊂ �.

The logistic map was first presented by Verhulst
[37] as a model for the growth of species and it is one
of the classical dynamical systems. The logistic map
has been extensively studied and other properties can
be found in [38] while some basic properties can be
found in [39, 40].

Definition 3 The tent map is defined as

fT,(x,μ) =
{

μx, for x < 1/2,

μ(1 − x), for x ≥ 1/2,
(2)

where parameter μ ∈ [0,2] ⊂ �.

The logistic and tent maps are obviously unimodal
ones, as they are continuous on I with a single crit-
ical point c0 = 0.5 and they increase for x ∈ [0,0.5)

and they decrease for x ∈ [0.5,1]. Their bifurcation
diagrams using α and μ as control parameters demon-
strate a very rich dynamics [41, 42].

Example 1 The following quadratic map:

fQ(x, γ ) = γ (1 − 2x)

{
x, if x < 0.5,

(x − 1), other case,
(3)

is the bimodal map in the sense of the Definition 1.
As a matter of fact, the map given by Eq. (3) has
three critical points and two of them are c0 = 0.25 and
c1 = 0.75 located at intervals I0 = [0,0.5) and I1 =
[0.5,1], respectively. The other critical point c = 0.5
due to f ′

Q(0.5) does not exist. Notice that this critical
point does not satisfied the Definition 1. Thus the map
given by Eq. (3) is a bimodal map.
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Fig. 1 Difference map for different valued of β: 1.333 (line
formed by circles), 2.666 (dotted line) and 4 (line formed by
triangles)

Definition 4 (Devaney’s Definition of Chaos) [14] Let
(X;d) be a metric space. Then, a map f : X → X is
said to be Devaney-chaotic on X if it satisfies the fol-
lowing conditions.

1. f has sensitive dependence on initial conditions.
That is, there exists a certain ε > 0 such that,
for any x ∈ X and δ > 0, there exists some y ∈
X where the distance d(x;y) < δ and m ∈ ℵ =
{1,2,3, . . .} so that the distance d(f m(x);
f m(y)) > ε.

2. f is topologically transitive. That is, for any pair
of open sets U,V ⊂ X, there exists a certain m ∈ ℵ
such that f m(U)

⋂
V �= ∅.

3. f has dense distribution of the periodic orbits. That
is, suppose Y is the set that contains all periodic
orbits of f , then for any point x ∈ X, there is a
point y in the subset Y arbitrarily close to x.

The concept of neighborhood of a point x ∈ X is
important for demonstrating the second condition of
Devaney’s definition of chaos and is given as follows.

Definition 5 A neighborhood of a point x ∈ X is a
set Nδ(x) consisting of all points y ∈ X such that the
distance d(x, y) < δ. The number δ is called the radius
of Nδ(x).

3 Difference map

The main contribution of this paper is to present the
so-called difference map and to provide its implemen-
tation as an electronic circuit. The difference map, de-
noted as fD(x,β), will be a particular case of the

Fig. 2 Stability of the fixed points. The asterisks and circles
denote stable and unstable fixed points, respectively

above described bimodal quadratic map equation (3)
denoted fQ(x, γ ) : [0,1] → [0,1] with γ = 2β , where
parameter β ∈ [0,4] ⊂ �. This difference map is con-
structed based on the difference between logistic map
and tent map, which explains such a terminology.
More precisely, consider the following.

Definition 6 Consider the logistic and tent maps with
maximum bifurcation parameters α = 4, μ = 2, re-
spectively. Defined fD(x,β) as the difference between
these two maps multiplied by the parameter β ∈ [0,4],
namely, fD(x,β) = β(fL(x,4) − fT (x,2)), i.e.:

fD(x,β) =
{

2βx(1 − 2x), for x < 1
2 ;

2β(x − 1)(1 − 2x), for x ≥ 1
2 .

(4)

Indeed, the difference map defined in the Defini-
tion 6 is exactly the bimodal map equation (3) with
γ = 2β . Now, β is a new bifurcation parameter which
amplifies the difference between the logistic map and
the tent map. This new parameter belongs to the in-
terval [0,4], notice that for β = 4 the difference map
fD(x,β) : [0,1] → [0,1]. Figure 1 shows the differ-
ence map given by Eq. (4) for different values of β:
1.333 (line formed by circles), 2.666 (dotted line) and
4 (line formed by triangles). Notice that the differ-
ence map always has a fixed point at 0 and it can
have others depending on the value of β at 2β−1

4β
,

6β−1−
√

4β2−12β+1
8β

and 6β−1+
√

4β2−12β+1
8β

.
To analyze the behavior of the discrete-time dy-

namical system we put the map as its right hand side,
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Fig. 3 Bifurcation diagram for the difference map given
by Eq. (4)

i.e. the system

xk+1 =fD(xk,β), for x0 given and k = 0,1,2,3, . . .

The difference map can behave as a bimodal or
unimodal map according to the β bifurcation param-
eter value. For example, if β = 2, then for any initial
condition x0 ∈ [0,1], fD(x,β) behaves after the first
iteration as an unimodal map fD(x,β) : [0,0.5] →
[0,0.5]. The stability of fixed points of the difference
map can be attractive or repulsive as is shown in Fig. 2.
An asterisk denotes an attractive fixed point and a cir-
cle denotes a repulsive fixed point. The fixed point lo-
cated at zero is attractive for β ∈ [0,0.5) and repul-
sive for β ∈ [0.5,4]. The second fixed point is given
by 2β−1

4β
which is attractive for β ∈ [0.5,1.495) and

repulsive for β ∈ [1.495,4]. The third fixed point lo-

cated at 6β−1−
√

4β2−12β+1
8β

is always repulsive for β ∈
[2.915,4] and last one given by 6β−1+

√
4β2−12β+1
8β

is attractive for β ∈ [2.915,3.235) and repulsive for
β ∈ [3.235,4].

It is well known that an attractive fixed point does
not let oscillations meanwhile a repulsive fixed point
can yield periodic orbits and even chaotic orbits. Fig-
ure 3 shows a bifurcation diagram of the orbit of the
difference map fD(x0, β), which is on [0,1] × [0,4].
Two sequences of the period-doubling bifurcations ap-
pear approximately at β = 1.5 and β = 3.2312. For
β ∈ [0,2] the difference map resembles to the logis-
tic map but it oscillates in the interval [0,0.5], and for

Fig. 4 Lyapunov exponent of the difference map

β ∈ [2,4] it behaves as a bimodal map and it can os-
cillate in the interval [0,1].

The Lyapunov exponent, which is denoted by λ,
gives the global stability of the system equation (3)
and it is shown in Fig. 4. For β ∈ [0,0.5] the system
only has a fixed point which is attractive and λ < 0, the
orbit converges to the fixed point. For β ∈ [0.5,1.5)

the system has two fixed points: one attractive and
the other repulsive and λ < 0 due to the orbit con-
verges to the attractive fixed point but when β = 1.5
the system has a bifurcation and the value of λ = 0.
For β ∈ (1.5,2.915) the system has two fixed points
and both are repulsive and λ < 0 when the orbit pe-
riodically oscillates or λ > 0 when the orbit oscillates
chaotically. For β ∈ (2.915,3.235) the system has four
fixed points and three of them are repulsive and the
other fixed point is attractive, λ < 0, thus the orbit
converges to the attractive fixed point again and also
when β = 3.235 another bifurcation occurs and there-
fore λ = 0. For β ∈ (3.235,4] the system maintains
its four fixed points but now all of them are repulsive.
The orbit oscillates periodically or chaotically when
λ < 0 and λ > 0, respectively. It is worth mentioning
that the Lyapunov exponent was defined for unimodal
systems; however, it measures the average exponential
rates of divergence or convergence of orbits no mat-
ter if the system is k-modal because the system is one
dimensional.

Theorem 1 The difference map fD(x,β) is Devaney-
chaotic on [0,1] for β = 4.
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Fig. 5 The difference map and the subintervals J 1
i , i = 0,

1,2,3. Circles denote critical points, squares denote fixed points
and triangles denote η

Proof From Definition 4, we need to prove three con-
ditions: (1) the sensitive dependence upon the initial
condition, (2) the topological transitivity and (3) the
dense distribution of the periodic orbits.

We start by demonstrating the last property. We
need to prove that there exists a Y subset of the inter-
val I = [0,1] constitutes for periodic orbits, and that
Y is dense in I . The I interval can be divided by J 1

0 =
[0, c1

0], J 1
1 = [c1

0, η
0
0 = 0.5], J 1

2 = [η0
0 = 0.5, c1

1] and
J 1

3 = [c1
1,1] (see Fig. 5), and each intervals contains

one fixed point of the difference map fD , Δ1 = {p1
0 =

0,p1
1 = 0.4375,p1

2 = 0.5899,p1
3 = 0.8476}, respec-

tively. These fixed points in the closed interval I be-
long to Y as periodic orbits of period one, where
c1

0 = 0.25 and c1
1 = 0.75 are the critical points. Notice

that fD : J 1
i → [0,1], i = 0, . . . ,3, then each subinter-

val resembles the difference map for f 2
D . Notice that

fD(0) = fD(0.5) = fD(1) = 0 and fD(c1
0 = 0.25) =

fD(c1
1 = 0.75) = 1. The foregoing observation let us

to infer that for all x ∈ I and if f k
D(x) = 0.5 then

f k+1
D (x) = 0.

The fixed points correspond to the intersection be-
tween fD and the identity function fI (x) = x. If
we consider the intersection between the second it-
eration f 2

D and fI we find that these functions in-
tersect at 16 points, the set of fixed points Δ1 and
a set of periodic points of period two Δ2. Now the
interval I consisted of 16 subintervals J 2

0 = [0, c2
0],

J 2
1 = [c2

0, η
1
0], J 2

2 = [η1
0, c

2
1], J 2

3 = [c2
1, c

1
0], J 2

4 =
[c1

0, c
2
2], J 2

5 = [c2
2, η

1
1], J 2

6 = [η1
1, c

2
3], J 2

7 = [c2
3,0.5],

Fig. 6 Distribution of the periodic orbits of period two, circles
denote critical points, squares denote fixed points, and triangles
denote η

J 2
8 = [0.5, c2

4], J 2
9 = [c2

4, η
1
2], J 2

10 = [η1
2, c

2
5], J 2

11 =
[c2

5, c
1
1], J 2

12 = [c1
1, c

2
6], J 2

13 = [c2
6, η

1
3], J 2

14 = [η1
3, c

2
7]

and J 2
15 = [c2

7,1]. Figure 6 shows the subintervals
J 2

i , i = 0,1,2, . . . ,15, the fixed points are marked
with squares and the periodic points with period
two with asterisk, Δ2 = p2

0,p
2
1,p

2
2,p

2
3, . . . , p

2
11. The

set {c2
0, c

2
1, c

2
2, c

2
3, c

2
4, c

2
5, c

2
6, c

2
7} contains the critical

points of f 2
D and η1

i = fD(x) = 0.5, i = 0, . . . ,3.
The periodic points of period one and two belong to
Y ⊃ Δ1 ∪Δ2. In general, the intersections between f n

D

and fI give the periodic points of period n and may
be periodic points of less period. I is comprised by
subintervals Jn

i , i = 0, . . . ,4n − 1 and the end points
of the intervals are given by the critical points of f k

D ,
ηk−1 = f k−1

D (x) = 0.5, k = 1, . . . , n, and the previous
end points. The particularity is that each subinterval
Jn

i contains at least a periodic point and |Jn
i | → 0

when n → ∞. Thus for any x ∈ I , there is a point y in
the subset Y arbitrarily close to x, so this proves that
periodic points are dense in [0,1].

In order to demonstrate that fD is topologically
transitive. We consider a pair of open sets Nδ(y1),

Nδ(y2) ⊂ I , for any y1, y2 ∈ I , we need to show that
there exists a certain m ∈ N ={1,2,3, . . .} such that
f m

D (Nδ(y1)) ∩ Nδ(y2) �= ∅, i.e., we need to show that
at least one orbit with initial condition x0 ∈ Nδ(y1)

evolves to Nδ(y2) � f m
D (x0). First we consider two

open sets Nδ(y1) and Nδ(y2) arbitrarily located at I

as is shown in Fig. 7. In the previous paragraphs we
discuss that each subintervals J k

i tends to zero when k
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Fig. 7 There exists an orbit such that two points with a neigh-
borhood comes arbitrarily close

Fig. 8 Transitivity of an orbit of period n (f n
D) of difference

map

tends to infinity, also we know that each subinterval J k
i

is mapped onto the interval I , f k
D : J k

i → I . Thus,
consider a subinterval Jm

i ⊂ Nδ(y1). as is shown in
Figs. 8 and 9. Accordingly f (Jm

i ) = I ⊃ Nδ(y2) then
f m

D (x0) ∈ Nδ(y2), for any x0 ∈ Nδ(y1), this proves that
fD is topologically transitive.

Finally, we need to demonstrate sensitive depen-
dence on initial conditions of the difference map, so
that we start to define ε = |I |/2, where |I | = 1, such
that for any x01 ∈ I and any δ > 0 there is a x02 ∈
Nδ(x01) such that the distance between |f m

D (x01) −
f m

D (x02)| ≥ ε.
So if we consider the subinterval Jm−1

i such that
Jm−1

i ⊂ Nδ(x01) then there is a x02 ∈ Jm−1
i such that

Fig. 9 A zoom of Fig. 8 in order to appreciate the transitivity
of an orbit of period n where f (Jm

i ) ⊇ I ⊃ Nδ(y1)

Fig. 10 Circuit diagram of an electronic map

|f m
D (x01) − f m

D (x02)| ≥ 1/2. Thus we have sensitive
dependence on initial conditions is important to note
that the definition of sensitivity does not require that
the orbit of x02 remains far from x01 for all iterations.
We only need one point on the orbit to be far from the
corresponding iterate of x01.

Now the proof is completed. �

Remark 3 The Li–Yorke theorem can be used to
demonstrate chaos, but for the purposes of this paper
Theorem 1 is sufficient.

4 Electronic implementation of the difference map

An electronic circuit of a discrete map is made up
by the implementation of two parts: (1) the discrete
map circuit, and (2) the iterative process circuit, see
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Fig. 11 Block diagram of
the difference map used to
construct the electronic
circuit

Fig. 10. Some electronic implementations are based
on microprocessor or microcontrollers in one or both
of its parts; however this leads to a discrete space.
From Definition 4, one can immediately see that no
map is Devaney-chaotic if X is a discrete space. Thus,
a chaotic system needs to be implemented electron-
ically by analog devices. First we will focus on ex-
plaining the circuit of the difference map.

The experimental development of this map is
achieved by means of electronic devices as multipli-
ers, operational amplifiers, diodes, and resistors. In
the same spirit that other implementations of this kind
of circuits [19, 43] analog multipliers have been em-
ployed with a normalization of the signal by a factor
of about 10. This normalization is necessary because
of the physical restrictions in the analog multiplier.
The starting point is a block diagram of the differ-
ence map that is shown in Fig. 11. The output of the
electronic circuit has three branches: The first gener-
ates the logistic map (node A) and the last two corre-
spond to the tent map (node B and C). Typically, these
circuits contain several operational amplifiers, which

perform linear operations (e.g., integration and sum-
mation), as well as a couple of integrated circuits that
perform the nonlinear operations (i.e., multiplication).
Here, we describe a new circuit contains active com-
ponents, speeds of radio frequencies, and is capable of
reproducing the transition from steady state to chaos
as observed in the difference map equation when the
bifurcation parameter is varied.

Figure 12 shows a schematic diagram of the elec-
tronic circuit realization of the difference map. The
output of the circuit is analyzed using the voltages at
the nodes: A, B, C, D.

The A node voltage is given by the M1 multiplier
which has four input terminals (x1, x2, y1, y2) and an
output terminal given by W = (x1−x2)(y1−y2)

10 . Inputs
x1 = Vin(R2R4)/(R1R3) and y2 = Vin(R2R6)/(R1R5)

are given by operational amplifiers U2 and U3, respec-
tively. Inputs x2 and y1 are 0 V and 5 V, respectively.
Hence, the output at A node is given by

VA =
(

Vin
R2R4

R1R3

)(

5 − Vin
R2R6

R1R5

)

/10, (5)
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Fig. 12 Schematic diagram
of the difference map
electronic circuit

the A node voltage is Vin(1 − Vin) after evaluating
components values of the Table 1, this signal corre-
sponds to the logistic map fL without considering the
α bifurcation parameter.

The B node voltage is given by the U4 amplifier
output which is fed back to the inverting input, the out-
put voltage is

VB = −VinR13/R12. (6)

The C node voltage is given by the U5 amplifier
output which is a piecewise linear signal, then

VC =
{

0, for Vin < R7
2R8

;
R11
R10

(
R9Vin
R7

− R9
2R8

), for Vin ≥ R7
2R8

.
(7)

Equations (6) and (7) correspond to the tent map,
remember that fT (x,μ) is defined by two parts, to en-
sure that the map is symmetric the bifurcation param-
eter μ must be the same on both sides. We can see that
μ is given by R13/R12 and R11/(2R10). This yields
the following restrictions: R11 = 2R13 and R10 = R12.

The U7 amplifier output is the adding of A, B and
C node voltages which correspond to D node voltage,
giving

VD = −R17

(
VA

R16
+ VB

R15
+ VC

R14

)

, (8)

it is worth mentioning that the ratio R17/R16 is
the parameter α = 4. Thus, the D node voltage is
(−fL + fT ) that is indeed the difference map invested
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Table 1 The values of the electronic components employed in
the construction of the difference map electronic circuit

Device Value

R1,R3,R5,R6,R7,R8,R9,

R10,R12,R16,R18 10 k
 Resistor

R4 4 k
 Resistor

R11,R14,R15,R17 40 k
 Resistor

R13 20 k
 Resistor

R19 40 k
 Potentiometer

D1, D2 1N4148 Diode

U1, U2, U3, U4, U5, U6, U7, U8 TL084 Op. Amp.

M1 AD633 Multiplier

without taking into account the bifurcation parame-
ter β .

Finally, the Vout voltage is given by the U8 inverting
amplifier, the output is (R19/R18)VD . Assuming ideal
performance from all components, the circuit output
in Fig. 12 is modeled by the following equation:

Vout = R19

R18

⎧
⎪⎨

⎪⎩

4Vin(1− Vin) − 2Vin, forVin < 1
2 V;

4Vin(1− Vin) + 2Vin − 2,

forVin ≥ 1
2 V.

(9)

Then, Eq. (4) can be derived from Eq. (9) by the
change of variables Vin = xn, Vout = xn+1 and β =
R19/R18.

The second part of the circuit is responsible for
make the iterative operation, (see Fig. 10), this circuit
considers a microcontroller PIC16F88 of Microchip,
and two hold and sample LF398 of National Semi-
conductors in order to hold the Vout signal given by
Eq. (9). That is, hold and sample circuits have been
used as an analog memory in order to store the value
of xk and get xk+1. In this way the electronic circuit
shown in Fig. 12 generates the iterative operation. Ob-
viously, there are different ways to perform this itera-
tive operation, but this is a matter that depends on the
design of the application. Figure 13 shows a schematic
diagram for this part of the circuit, one can see that
each device LF398 (U1 and U2) has an input for ac-
tivation, the signal for both hold and sample devices
come from the microcontroller PIC16F88.

The time of each trigger to activate devices is de-
fined for the designer, in this case we set 20 ms be-
tween each shot, where the duration of each shot is
1 ms, these times are programmed into the micro-
controller and can vary depending on the application.

Fig. 13 Schematic diagram of the iterative circuit, U1 and U2
are LF398 and the MC microcontroller is a PIC16F88

Fig. 14 Times of activation for hold and sample

Figure 14 shows a diagram with the time of activation
of each hold and sample device.

Once both circuits are tuned in correct operation
the difference map begins its iterative process. Fig-
ure 15 shows a time series for β = 4. In spite of para-
sitic reactance, finite bandwidth of active components,
and other experimental perturbations, the presented
electronic circuit closely displays the behavior of the
mathematical model given by Eq. (4). We have imple-
mented this design on a printed circuit board (PCB)
manufactured in our laboratory. In the experimental
circuit the TL084 operational amplifiers and LF398
hold and sample devices have been supplied with a
power source at ±15 V and soldered directly to the
PCB without a socket, also a source power of −0.5 V
is used for proper operation of the tent map. The volt-
age Vdc has been supplied by a variable dc supply with
an output range of 0–15 V.

The value of the bifurcation parameter β can be
fixed at certain value by simply adjusting the poten-
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Fig. 15 The time series with chaotic dynamics generated by the
tent map for β = 4

Fig. 16 Experimental bifurcation diagram for the difference
map

tiometer R19 located in the operational amplifiers U8.
In order to explore the full range of the dynamics ac-
cessible to this circuit, we have experimented with dif-
ferent values for R19. The value of this potentiometer
has been adjusted in the closed interval [0 
,40 k
].
Then the value of β has been varied to obtain the bifur-
cation diagram shown in Fig. 16, where fixed points,
periodic oscillations, cascade of period-doubling bi-
furcations and chaos can be clearly seen. It is possi-
ble to see that the circuit exhibits the entire range of
behaviors of the difference map. In fact, our experi-
mental results of the dynamics of this circuit are found
to be in good agreement with numerical simulations.

Note that this circuit only produce a bimodal map
in order to construct a circuit with k modal we need to
use another technique as comparator circuits in order
to define the partition of the space and after this con-
struct a logistic map on each partition using multipliers
devices.

5 Conclusion

In this paper we introduced a new discrete-time dy-
namical system of one dimension based on the differ-
ence of the logistic and tent map. This map is a bi-
modal map that presents chaotic behavior according

to its Lyapunov exponent. One of the main proper-
ties of this map is that it can show the behavior of a
unimodal map or a bimodal map by setting the β pa-
rameter. A difference map electronic circuit has been
presented here and its implementation using only ana-
log components as operational amplifiers, multipliers,
diodes, and resistors was also provided. Thus, this de-
sign can be manufactured in just one chip because
the final electronic circuit contains only semiconduc-
tors and passive components. Its experimental behav-
ior was tested and compared with the numerical be-
havior given by the difference map equation 4. The
circuit replicates the whole known range of behaviors
of the difference map and it has many potential appli-
cations, for example: random number generation, fre-
quency hopping, ranging, and spread-spectrum com-
munications. As the outlook for further research, the
possibility of encryption using stream ciphers based
on the analog circuit is considered. This is the object
of currently ongoing research.
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