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Blind Verification of Digital Image Originality:
A Statistical Approach
Babak Mahdian, Radim Nedbal, and Stanislav Saic

Abstract—Manymethods for verifying the integrity of digital im-
ages employ various fingerprints associated with acquisition de-
vices. Data on an acquisition device and fingerprints are extracted
from an image and confronted with a reference data set that in-
cludes all possible fingerprints of the acquisition device. This al-
lows us to draw a conclusion whether the digital image has been
modified or not. Thus it is critical to have a sufficiently large, reli-
able, and true reference data set, otherwise critical miscalculations
can arise. Reference data sets are extracted from image data sets
that in turn are collected from unknown and nonguaranteed envi-
ronments (mostly from the Internet). Since often software modifi-
cations leave no obvious traces in the image file (e.g., in metadata),
it is not easy to recognize original images, from which fingerprints
of acquisition devices can be extracted to form true reference data
sets. This is the problem addressed in this paper. Given a database
consisting of “unguaranteed” images, we introduce a statistical ap-
proach for assessing image originality by using the image file’s
header information (e.g., JPEG compression parameters). First a
general framework is introduced. Then the framework is applied
to several fingerprint types selected for image integrity verification.

Index Terms—Blind verification, camera fingerprints, image
forensics, image forgery detection, image originality, image trust-
worthiness, JPEG compression.

I. INTRODUCTION

T RUSTWORTHINESS of digital images has an essential
role in many areas, including: forensic investigation,

criminal investigation, surveillance systems, intelligence ser-
vices, medical imaging, and journalism. As a result, verifying
the integrity of digital images and detecting the traces of
tampering without using any protecting preextracted or preem-
bedded information has become an important and hot research
field of image processing [1].

A. Reference Sets for Verification of Digital Image Integrity

When verifying the integrity of digital images, one of the
critical tasks is to determine if a given image is original or ad-

Manuscript received February 03, 2013; revised May 15, 2013 and July 24,
2013; accepted July 27, 2013. Date of publication August 01, 2013; date of cur-
rent version August 15, 2013. This work was supported in part by the Ministry
of the Interior of the Czech Republic under Project MV CR, VG20102013064,
and in part by the Czech Science Foundation under Project GACR 13-28462S.
The associate editor coordinating the review of this manuscript and approving
it for publication was Prof. Alex ChiChung Kot.
B. Mahdian and S. Saic are with the Institute of Information Theory and Au-

tomation, Academy of Sciences of the Czech Republic, 182 08 Prague 8, Czech
Republic (e-mail: mahdian@utia.cas.cz; ssaic@utia.cas.cz).
R. Nedbal is with the Fondazione Bruno Kessler, Trento 38122, Italy (e-mail:

nedbal@fbk.eu).
Color versions of one or more of the figures in this paper are available online

at http://ieeexplore.ieee.org.
Digital Object Identifier 10.1109/TIFS.2013.2276000

Fig. 1. Typical digital camera system.

ditional modifications have been done to the digital image or
its metadata. There are several methods how to approach this
problem. An effective way is to extract a certain set of features
from the digital image file and match them to the corresponding
camera model. (We shorten “camera model” to “camera” in the
text.)
For instance, having a digital image of resolution of

2000 1600 pixels and a claim that the digital image has been
captured by a particular camera model (camera model name is
found in digital image metadata), we can simply check if that
particular camera device can produce digital images with such
a resolution. Thus if we know that the camera always produces
digital images with resolution 1200 1200, we obviously can
draw a conclusion that the above claim is false. Consequently,
we can conclude that the digital image has been modified and
processed by software.
The above example illustrates how the image resolution can

be employed as a feature (of a particular camera model) to deter-
mine the image integrity. The feature is an impression left by the
camera. Generally, the traces of an impression from the friction
ridges of any part of a human or other primate hand are called
fingerprint. Using this analogy and for the sake of simplicity, we
denote camera associated features left in digital images (e.g.,
metadata or JPEG compression parameters) as camera finger-
prints . In the literature, camera fingerprints are of various types.
In this paper, the term camera fingerprint refers only to the kind
of features (fingerprints) that help to link the digital image to
a specific camera model (e.g., Nikon Coolpix P80) with some
degree of uncertainty.
A typical camera has several components (see Fig. 1) that

leave fingerprints useful for integrity verification of digital im-
ages. Fingerprints left by the post processing and compression
components are the most interesting for our purpose as they
characterize a camera model.
Obviously, it is critical that the information about the

camera fingerprints (image resolution, etc.) be true and guar-
anteed. Otherwise, miscalculations can arise which might have
catastrophic impacts on people’s lives. In our example, we
considered a single digital image. In such a case, finding a cor-
responding camera model to evaluate fingerprints is a feasible
task (though it still might be time-consuming). However, in

1556-6013 © 2013 IEEE
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a real-life verification system, digital images from a plethora
of camera models have to be verified. Thus it is desirable
that guaranteed information about fingerprints (of as many as
possible digital cameras) be available for a real time use.
A “perfect approach” would be based on collecting finger-

prints directly from manufactures. Unfortunately, our attempt
has revealed that manufacturers do not have such a type of in-
formation themselves: the data they provided were rather impre-
cise and noisy. Another safe approach would be based on (direct
or reliable) access to tens of thousands of acquisition devices.
Unfortunately, this is not feasible. Thus to collect a sufficiently
large set of camera fingerprints (for as high as possible number
of image acquisition devices), researchers resort to collecting
large image sets from online photo sharing websites (e.g., Flickr
is a popular photo sharing website providing an online API for
easy access to its photos).
The problem is that photos in the reference data sets are col-

lected from unknown environments (mostly from the Internet),
where software modifications leave misleading modifications in
image metadata. Consequently, it is not easy to determine which
images are original and usable for extracting fingerprints of their
acquisition devices. This consequence is addressed in this paper.
Specifically, we introduce a statistical approach for handling in-
formation noise in databases consisting of “unguaranteed” im-
ages. This is a critical task for major forensics methods that
require large-scale collections of reliable data. First a general
framework is developed. Then the framework is demonstrated
on several specific fingerprint types.
The rest of the paper is organized as follows. The next

subsection gives a motivating example. Section II introduces
the related work. After that, some basic concepts are pre-
sented to build up the necessary mathematical background.
Section IV presents the main technical contribution—the
statistical method. The following section shows experimental
results demonstrating the efficiency of the method. In the last
section, we discuss some subtleties revealed by the experiment,
recall main properties of our approach and a highlight the main
contributions.

B. Motivating Example

As aforementioned, a collection of reference camera finger-
prints is usually extracted from the Internet. Therefore, it is a
must to understand how image data are transferred to Internet
storage places. Unfortunately, this important point is missed in
the related published work.
To analyze image integrity, consider quantization tables

(QTs), which encode digital images to JPEG format (see Sub-
sect. V for more information on quantization steps and the
JPEG procedure), as a fingerprint type. Indeed, QTs have been
used as fingerprints in various works [2]–[4] since different
image acquisition devices and software editors typically use
different QTs.
Let us download one million digital images from a typical

photo sharing site and extract a reference fingerprint data set.
To discard nonoriginal (i.e., manipulated) images and create a
reliable reference data set, photos containing obvious traces of
modifications are eliminated. To further eliminate nonoriginal

TABLE I
QTS (LUMINANCE IN ZIG-ZAG ORDER AND NUMBER OF ITS APPEARANCES)

Fig. 2. Typical ways of uploading photos to photo-sharing sites (reprinted from
Flickr.com).

images, only those that form sufficiently big clusters of images
with the same paired make, model, resolution, and QTs are re-
tained and employed to extract camera fingerprints. Today, this
is the most commonly used approach for denoising reference
fingerprint data sets used by researchers [2], [3].
For the sake of illustration, assume that Table I shows fin-

gerprint values (QTs) (of a single camera) extracted from all
the downloaded images. Employing the above simple denoising
method, where we set the threshold for discarding clusters to
five entries, we simply end up with a conclusion that QTs shown
in the first two rows are true fingerprint values of the camera.
The approach seems to be rational. But the problem is that

in reality only the third row belongs to the camera and all the
other ones are QTs generated by software editors. The reason
behind this is visualized in Fig. 2: the growing popularity of
social web sites like Facebook or smart phones (iPhone, etc.)
brings a number of new channels for photo upload to web sites
like Flickr etc. An example of a traditional channel is a web
browser. Today, there are also desktop versions of photo up-
loaders. Another transfer bridge is by directly using e-mail. Last
but not least, there are a high number of apps allowing image up-
load using mobile devices.
Many of these channels modify photos during the transfer

process automatically: they recompress or resize photos in
order to achieve a more effective transfer speed, or they change
image metadata for adding some marketing information, etc.
As a result, there are large clusters of nonoriginal photos. Size
of individual clusters are dependant on popularity of specific
transfer tools and cameras. Taking into account the capability of
these modifications to change the camera generated fingerprints
without leaving any obvious traces of modification in image
data (e.g., metadata), it is apparent that the illustrated informa-
tion denoising method totally fails. So far, known methods for
integrity verification undervalue or ignore this fact, and thus
they might end up with completely incorrect results, causing
critical consequences.
Hence the question of what fingerprints belong to cameras

and what fingerprints are produced by software is the main topic
of this paper. The proposed solution is general and applicable to
any fingerprint type.
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II. RELATED WORK

In general, there are two approaches for verifying the integrity
of digital images: active and passive-blind approaches.

A. Active Approaches

The area of active methods can be divided into:
• the data hiding approach [31] (digital watermarks [1], [25],
[32] are most popular), where some secondary data are
embedded into the image,

• the digital signatures approach [30], [34].

B. Blind Methods

In this work, we focus on blind methods [22]. In contrast to
active methods, they need no prior information about the image
being analyzed. For example, there are blind methods for de-
tecting
• image splicing [24], [18],
• traces of inconsistencies in color filter array interpolation
[28], [14],

• traces of geometric transformations [20], [27],
• cloning [19], [13], [11],
• computer graphics generated photos [6], [23],
• JPEG compression inconsistencies [10], [29], [21].

All these methods are most often based on the fact that forgeries
can bring specific detectable statistical changes into the image.
There is a group of efficient blind methods based on the fact

that each imaging device introduces specific fingerprints into
the photo during the process of photo creation. Considering a
typical digital camera system as shown in Fig. 1, we can no-
tice several points in the system that are characteristic for each
camera model, e.g., the demosaicking method or compression
properties employed by the device. (Also, we can notice points
exhibiting unique fingerprints dependent on individual devices
like sensor-based noise propagated to photos). Since these fin-
gerprints can be corrupted when a photo is digitally edited, they
form efficient tools for forensic analysis of digital images.
There are a number of proposed fingerprints to verify the

image integrity.
1) Image Thumbnails: Eric Kee and Hany Farid [2] have

employed embedded image thumbnails to create camera finger-
prints. These fingerprints are based on the fact that the creation
of a thumbnail is modeled with a series of filtering operations,
contrast adjustment, and compression, which significantly differ
between camera manufacturers and photo-editing software.
2) Imaging Sensor Properties: Jessica Fridrich et al. [9], [5],

[12] analyzed how photo-response nonuniformity (noise-like
patterns caused by inhomogeneity of the silicon wafer from
which the sensor is made) of imaging sensors can be used for a
variety of image forensic tasks including forgery localization.
3) Demosaicking: Sevinc Bayram et al. [2], Mehdi Kharrazi

et al. [16], Sevinc Bayram et al. [3], Ashwin Swaminathan et
al. [31] used the traces of demosaicing to analyze photos.
4) Sensor Dust: Sensor dust characteristics (e.g., Ahmet

Emir Dirik et al. [7]) showed that the location and shape of
dust specks in front of the imaging sensor and their persistence
make dust spots a useful fingerprint for digital single lens reflex
cameras.

5) Quantization Tables: Hany Farid [8], [15] proposed to
use the quantization tables to distinguish between original and
modified photos, etc.
Also, there are methods dealing with identification of source

cell-phones (e.g., Oya Celiktutan et al. [33] used binary sim-
ilarity measures, image quality measures and higher order
wavelet statistics to achieve this goal).

III. BASIC NOTATIONS AND PRELIMINARIES

In this section, we introduce elementary concepts and outline
JPEG compression needed for further exposition.

A. Digital Images

A digital image is a file consisting of
1) pixel data
2) and metadata.
Metadata can be internal or external. For example:
• ID of the user that has taken the photograph,
• properties of the camera with which the photograph has
been taken,

• the size of the photograph, etc.

B. Cameras

1) Camera Fingerprints: More formally, we say that a digital
image has attributes, and the imagemetadata are their respective
values, which characterize the digital image. Essentially, some
attribute values are dependent on the camera with which the dig-
ital image has been taken. As already mentioned in Section I-A,
we refer to such camera associated features left in the digital
image as camera fingerprints .
The properties that characterize an acquisition device

(camera) explicitly include (cf. Section II-B), e.g.,
• its maker and model,
• the output file format,
• imaging sensor properties,
• the digital zoom interpolation method,
• the color filter array interpolation method used to encode
an image etc.

Some of these properties identify a camera uniquely, and some
of them can be considered as camera model fingerprints.
2) A Camera ID Vector and a Fingerprint Vector: Here, we

assume a fixed tuple of properties sufficient for unique identifi-
cation of any camera. We denote such a tuple by , a camera
ID vector . Next, we assume a tuple of camera attributes, whose
values pose suitable fingerprints of most cameras on the current

market. We denote such a tuple of fingerprints by , a finger-
print vector. Note that a camera leaves different fingerprints in
different digital images, and accordingly, each camera ID vector
is associated with a set of fingerprint vectors.

C. Data

1) A Reference Data Set: Let denote our reference data set
– a subset of the ternary Cartesian product of sets
• of camera ID vectors of all existing cameras,
• of all possible fingerprint vectors,
• of user IDs representing (all potential) camera end users.
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Let each element of , which is a tuple constituted by con-
catenation of a camera ID vector, a fingerprint vector, and a

user ID, , represent a photograph (e.g., downloaded

from the Internet). We say that, in accordance with ,
the photograph has been taken by the (camera) user with the

camera that has left the fingerprint vector .
2) Information Noise: Many photographs have been soft-

ware-manipulated: a software application has changed a photo-
graph metadata so that the changed fingerprint vector does not
match the camera with which the photograph actually has been

taken. This is information noise in . For instance,
(from ) represents a photograph taken with the camera by

the user . Nevertheless, it does not necessarily entail that is

the fingerprint of . In fact, and/or present vectors of

values that might have been software-manipulated and thus
may or may not be real, genuine fingerprint vector of . This
is the noise inherent in .

IV. A STATISTICAL APPROACH FOR NOISE REMOVAL

In general, the question arises: Given observation represented
as , our reference data set, can we quantify the “confidence”

that can be (real) fingerprint vector of , where and

are a camera ID vector and a fingerprint vector found in
metadata of a digital image of interest? We show how to make
a lower estimation of this confidence. Our approach is based on
statistical hypothesis testing.
Now we introduce some basic terminology and notation from

probability theory needed for further exposition.

A. A Null Hypothesis and a Test Statistic

In brief, we analyze information noise inherent in statisti-
cally. Specifically, given a “testing” tuple

our default position is that can’t be a (real) fingerprint vector
of . That is, all the tuples from containing both and

represent information noise only. Accordingly, we set out
the following null hypothesis

and introduce a test statistic, which, in general, is a numerical
summary of that reduces to a set of values that can be used to
perform the hypothesis test. It will be seen that the test statistic
enables to estimate how unlikely is under the assumption.
In particular, we determine the upper estimation of the proba-
bility of (possible) observing the test statistic that is at least as
extreme as the test statistic that has been actually observed.
Definition 1 (Test Statistic): Let denote the mapping

that maps each pair from the binary Cartesian product
to the cardinality ( denotes the set of nonnegative

integers) of the set of all and only those users who, in accordance

with , have taken some image with the camera cm that leaves

the fingerprint vector . Then the test statistic is defined as the

image of under :

Taking into account possible software manipulations,

or (or both) in the reality might have been changed (“dam-
aged”) in metadata of the photograph by a software application
used by a user to modify the photograph. Actually, presup-
poses that any photograph that indicates in its metadata and

must have been software-modified. Accordingly, under ,

is the number of all the (distinct) users (captured in
) who have modified photographs with software applications

that, in accordance with , have left and in metadata of
respective photographs.
Speaking in broad terms, we conclude that the number

of these users is too big to be attributed exclusively to
and information noise in if the number exceeds a specified
threshold. To determine the threshold, we define the sam-

pling distribution of . The sampling distribution
is derived from three parameters that partially capture our
knowledge on . It will be seen that this sampling distribution
is the hypergeometric distribution.
To work with data that have desirable statistical properties

wrt. , , we restrict ourselves only to some specific test
subset of – tuples containing camera ID vectors from some
set . Essentially, includes camera vectors only of those
cameras (“ -cameras”)

a) that never produce ,
b) each user has taken exactly the same number of pho-
tographs with a -camera.

a) can be ensured by an expert—at least to a certain degree of
certainty. b) can be achieved by a random selection from our
database: Consider photographs taken by a user with a
-camera for example.We have to select a certain number of such
photographs arbitrarily and disregard them if the user has
taken to many photographs with the -camera. Both a) and
b) are crucial for the statistical modeling.
Definition 2 (A Test Subset of Cameras): is a set of

camera ID vectors such that:
i. For each camera (identified by) from , its finger-

print vectors are (always) different from .
ii. As, in accordance with , fingerprint vectors of are

always different from , we include in .
iii. There is a fixed positive integer such that, for any pair

of from and a user ID , exactly photographs
are represented as respective tuples in . That is,

(1)

where

(2)
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B. Initial Probabilities

First we address the initial probability space, denoted as the
triplet where is a sample space, its powerset,
and the probability measure that takes the
simple form: for any event , i.e.,
, where is a uniform probability mass function,
i.e., for each from .
Next, we introduce events , i.e., subsets of .
• represents reading a tuple (from ) with from :

(3)

That is, includes exactly those photographs that have
been taken with some “ -camera” (a camera identified
with an ID vector from ). Note that, in accordance
with the third requirement on (Def. 2),

where
• The event represents reading a tuple (from ) with the
camera ID vector :

(4)

That is, includes exactly those photographs that have
been taken with the -camera. Note that, in accordance
with the third requirement on , where

.

• The event represents reading a tuple (from ) with

from and the fingerprint vector :

That is, includes exactly those photographs with the
fingerprint that have been taken with some -camera. As

depends on and , we denote its cardinality as

the value of a two variable function :

(5)

• An event represents reading a tuple (from ) with
from and the user ID :

(6)

That is, includes exactly those -photographs that
have been taken by a user . Note that this equation co-
incides with (2).

Most importantly, note that Con-
sequently, we need to derive the distribution of the cardinality
of . To this end, we use only the partial knowledge of
captured by its numerical characteristics:

and . First we will be concerned with the conditional

probability of given , which is the probability
of , given the occurrence of , defined by the following
equality: . Then we will study
how the conditional probability changes after new evidence is
taken into account: we will consider removing specific tuples
from (Section IV-C). This will provide us with all the knowl-

edge we need to derive the probability model of
(Section IV-D).
Lemma 1 (Conditional Probability): coin-

cides with the unconditional (marginal) probability of :
.

Proof: First observe that it follows from and the first
two requirements on (Def. 2) that

(7)

Then the lemma follows readily from the Bayes’ theorem:
.

As a result, we get:

the probability that a tuple chosen arbitrarily from
also is in , i.e., .

C. Probabilities After Removing Tuples

Now we will study how the conditional probability changes
after new evidence is taken into account.
1) Conditional Probability After Removing A 1-th Tuple:

Suppose that we have removed a tuple from .
How has this affected the (conditional) probability that another
tuple from is also in ? To answer this question, we consider
another pair of events, where , and
pursue the conditional probability of given . To this end,

we introduce a new probability space denoted as

where , and where the conditional
probability can be expressed easily. Again, we
assign the probability measure the following, simple form:

for any event , i.e., , where
is a uniform probability mass function, i.e.,

for each from .
To sum up,
• represents reading a tuple (from ) different from any
tuple from :

Note that, in accordance with (3) and(6), , and thus
by (1), .

• The event represents reading a tuple (from ) with the
camera ID vector but different from any tuple from
:
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Note that either

(8)

and thus we have by (4) and (6), which entails
, due to (1), or

(9)

and thus , which entails .
• The event represents reading a tuple (from ) with

from and the fingerprint vector but different from

:

The following two lemmata justify addressing conditional
probability in the newly defined probability
space .

Lemma 2 (Invariance of Conditional Probabilities): The
conditional probability of given in the probability space

coincides with the conditional probability of
given in the probability space :

Proof: The assertion of the lemma follows readily
from the uniformity of respective probability mass func-
tions . Indeed,

.
Lemma 3 (Conditional Probability): coincides

with the unconditional (marginal) probability of :

Proof: It can be observed that it follows from and
the requirements on (Def. 2) that if
we assume that all the users whose IDs are in tuples in are
equally probable to modify their photographs with a software
application. This is a simplifying assumption, but we argue
that it doesn’t poses significant accuracy damage to our model.
Then the lemma follows from the following chain of equalities:

.
As a result, we get the probability (in the initial

probability space ) that a triplet chosen
at random from also is in :

, which is equal to

,

if (8) holds, or

, otherwise, i.e., when (9) holds.
2) Conditional Probability After Removing An -th Tuple:

Repeating the above train of thoughts, it can be observed that we
arrive at the following general rule describing the conditional

probability of given from which some tuples have been
removed. Suppose that
• is defined as from which we have removed tuples:

, and
• values from coincide with .

Then the probability that another triplet

read from also is included in is

(10)

provided that fulfills the three requirements and holds.

D. A Probability Model of the Test Statistic

In this subsection, we view as a random phe-
nomenon and show how its probability model is derived from

(10). Specifically, we show that can be modeled as
a random variable that follows the hypergeometric probability
distribution. Perhaps the easiest way to see this is in terms of
the urn problem, well-known in statistics.
The urn problem is an idealized mental exercise in which

some objects of real interest—such as tuples from are rep-
resented as colored balls in an urn. One pretends to draw (re-
move) one or more balls from the urn; the goal is to determine
the probability of drawing one color or another, or some other
properties.
We use the well known urn model that contains red and blue

balls that are not returned to the urn once drawn. Knowing that
out of balls in the urn are red, it is easily seen that the

probability of drawing a red ball provided that out of balls
drawn from the urn are red is equal to the to ratio,

(11)

i.e., the proportion of red balls remaining in the urn. In partic-
ular, note that it is well known in probability theory and statistics
that the number of red balls in a sequence of draws from this
urn (without replacement) has the hypergeometric distribution
whose probability mass function

is defined by the following rule:

(12)

Consequently, observing that
• Equation (11) coincides with the rule (10) if we set

(13)

and view
— the tuples re-
moved from as red balls
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— and the other tuples, removed from , as blue
balls,

• Equation (5) holds, i.e., the cardinality of is ,
the following theorem is clear upon reflection.
Theorem 1 (Sampling Distribution of Test Statistic): Suppose

that holds, and fulfills all the three requirements (Def. 2).
Then the sampling (discrete cumulative) distribution of the test

statistic coincides with the hypergeometric (cumu-
lative) distribution function

defined by the following rule

(14)

where is given by (12),(13), and .

E. Confidence of Correctly Rejecting the Null Hypothesis

Now we discuss an important subtlety of the three require-
ments on in the above theorem. Admittedly, the first one may
be hard to fulfill as we might have no prior information on cam-
eras. Specifically, we might not know cameras that never leave

the fingerprint vector in images. In fact, even no expert might
know such cameras. Accordingly, we, in general, are able to ful-
fill the first requirement on only partially—to some degree
of certainty less or equal to 100%. The following corollary ad-
dresses the estimate of the -value

(15)

which is interpreted as the probability of observing a value for

the test statistic at least as extreme as , assuming
that the null hypothesis is true and fulfills all the three
requirements.
Corollary 1 ( -Value): We get an upper estimation of the
-value if the first requirement on is fulfilled only partially.
Proof: To see the assertion of the corollary, recall that,

among others, the first requirement on conditions the in-
dependence of events and (refer to Lemmata 1 and 3).
Without the guarantee that the requirement is fulfilled, their
independence can’t be assumed any more. That is, the condi-
tional probability of given may not coincide with
the unconditional (marginal) probability of .
More formally, in the probability space , the con-

ditional probability of given is no more than the uncon-
ditional (marginal) probability of if and the second and
third requirements on hold:

(16)

Essentially, this claim follows from the observation that the
equality, in general, can’t be assumed any more in (7). Instead,
observe that holds. Therefore, following
the lines of the proof of Lemma 1, we get (16). Similarly,
it can be observed that neither the independence of and

can be assumed any more, and by the same argument
as above, we get Then repeating the
train of thoughts as in Section IV-C, it can be seen that

, i.e., the rule (10) may

overvalue . Because of this, it follows from properties
of
• sampling (cumulative) distributions, which define finite
numerical , monotonically increasing sequences with the
greatest members equal to 1,

• the hypergeometric distribution,
that the (real) sampling (discrete cumulative) distribution

of , is greater or equal to (14) for any nonneg-
ative integer that is less or equal to :

Now the corollary is immediate by (15).
Note that rejecting entails accepting the alternative hy-

pothesis , namely that is a (possible) fingerprint that a camera
may leave in a photograph metadata. As a result, the con-

fidence of correct accepting the alternative hypothesis can be
quantified by the value with the well-known, rigorous

interpretation: the estimate of the probability
of observing a value for the test statistic less extreme than

if the null hypothesis is true and provided that
fulfills all the three requirements (Def. 2). The presented sta-

tistical approach provides a lower estimate of this probability.

V. BASICS OF JPEG COMPRESSION

Since camera fingerprints employed to verify the originality
of digital images in the next (experimental) part are directly
related to the JPEG encoder and file format, it is necessary to
briefly introduce the basic idea behind JPEG.
Every JPEG image file consists of a sequence of segments

carrying information about the image, codec, producer, etc.
Each segment begins with a marker having binary format 0xFF
followed by a byte indicating what kind of marker it is. For in-
stance, 0xFFD8 defines SOI (Start of image), which means the
entry point of the JPEG image file. On the other hand, 0xFFD9
defines EOI (End of image), which means the ending point
of the JPEG image file. Typical JPEG files contain markers
defining a thumbnail image, used Huffman tables, Quantization
tables (QTs), etc. Basic format of markers is shown below:

Although JPEG file can be encoded in various ways, the most
common algorithm is the following one. Typically, the image is
first converted from RGB to YCbCr, consisting of one lumi-
nance component (Y), and two chrominance components (Cb
and Cr). Then each component is split into adjacent blocks of
8 8 pixels. After this step, each block undergoes a discrete co-
sine transform (DCT) resulting in 64 DCT coefficients, ,
for each block. In the next step, all coefficients are
quantized. This is done by simply dividing each component in
the frequency domain by a constant for that component and then
rounding to the nearest integer. Quantization steps for each DCT
frequency and are defined in quantization tables .
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These QTs can be found in the EXIF of JPEG file and are de-
noted by a marker called DQT (Define Quantization Table) be-
ginning with 0xFF and followed by 0xDB. In the final step, en-
tropy coding is carried out. For more detailed information on
JPEG, please refer to [34].

VI. EXPERIMENTAL RESULTS

Section IV introduced a statistical method for addressing the
noise in reference knowledge databases. In order to demonstrate
its efficiency, we need to evaluate the power of the test, which is
the probability that the test will reject the when is false,
i.e., the probability of not committing an error of the second kind
(making a false negative decision). To this end, we applied the
presented method to a collection of a large number of random
digital images that are original, i.e., not modified by software.

A. Proposed Fingerprints

There are a number of fingerprints which can be used to
distinguish between original and altered JPEG images. In this
experiment, we chose the following JPEG-related fingerprint
types:
• – EXIF markers,
• – luminance and chrominance quantization tables,
• – information on the JPEG thumbnail image:
— the thumbnail width and height,
— luminance and chrominance QTs, and Huffman tables,
used in encoding the thumbnail image,

— chroma subsampling scales of the thumbnail image
(both horizontal and vertical directions).

First of all, we tried to employ widely used libraries for ex-
traction of JPEG related data to extract the above mentioned fin-
gerprints. Unfortunately, we learned that these libraries are not
capable of extracting so detailed and precise features from JPEG
files due to high variety of JPEG file formats available onmarket
as well as due to a number of imperfections brought into JPEG
files by camera or software producers. For these reasons, we
created our own JPEG forensics fingerprint reader. This reader
was optimized and applied to 5 millions JPEG images of var-
ious formats in the period of 6 months.

B. Reference Image Data Set

As pointed out in previous sections, to automatically differen-
tiate between noisy and original data, we need a large reference
data set. Therefore we collected a large number of digital im-
ages from a noncontrolled image arena. Keeping at disposition
a variety of popular photo-sharing servers from which photos
can be downloaded, we opted for Flickr, one of the most popular
photo sharing sites. We downloaded 5 million images labeled as
“original”. Nevertheless, as has been pointed out, Flickr, in fact,
is an “uncontrolled arena:” Flickr photos are with no guarantee
that they have been captured with the camera as “officially” in-
dicated in their metadata. Indeed, Flickr has no practical reason
to filter out modified images. Most often seen camera makers
in our database are Apple, Canon, Casio, Eastman Kodak, Fuji,
Hewlett-Packard, Nikon, Nokia, Panasonic, Pentax, Olympus,
Samsung, Sony, etc.

C. Power of Test

Power of the test, is defined as , where is the probability
of the error of the second type, also referred to as false negative
rate, i.e., “failing to reject ” in our setting. (Please note that
“failing to reject ” means “not to reject when is not
true.”)
To carry out experiments, we picked 24 cameras (see

Table II). Each camera has been used to capture 100 digital
images of indoor and outdoor scenes resulting in a set of 2400
digital images in total. These images are guaranteed to be
original: they present our ground-truth data.
Since camera settings can directly affect fingerprint values

such as, e.g., quantization tables, we have imposed no restric-
tions on them when capturing ground-truth digital images. All
photographers producing ground-truth data were totally free to
capture photos as they wished. In this way, we attempted to min-
imize any systematic influence on experimental test data and re-
sults. Moreover, photos downloaded from the Internet forming
the reference image data set also had no restrictions on camera
settings.
For every image and each of the three types of fingerprints, we

have repeated a statistical test procedure with the significance
level set to 1% and 5%, which is the probability of the error of
the first kind, also referred to as false positive rate, i.e., mistak-
enly rejecting provided that is true. Thus we have ob-
tained six sequences (columns) of results in Table II, revealing
the powers of our test for respective combinations of finger-
prints and significance levels. For example, the column headed

shows a sequence of 24 values that correspond
to the power of the test based on the fingerprint type
at the significance level 1%.
To perform the experimental test, we assumed presumably the

most common and arguably also the most challenging scenario
with a lay user, who has no background knowledge concerning
camera properties (e.g., of a specific camera fingerprint values).
Accordingly, we opted for a coarse, ignorant approach and in-
cluded all the cameras from , our reference data set, in the set
, the parameter of the sampling distribution of the test statistic.

Consequently, in accordance with Corollary 1, we had to expect
to obtain a rather coarse upper estimate of the -value.
To fully understand the results shown in Table II, it is crucial

to point out that knowledge represented by the reference set is
limited due to the size of this database. Thus, it happens that
a particular fingerprint obtained from an image being tested is
not found in the reference set. Apparently, the more we want
to eliminate this problem, the bigger reference image data set
we have to accumulate to capture bigger knowledge. Still, con-
sidering the high variety of cameras and software packages,
it is impossible to create a complete reference image data set
covering all existing fingerprints. Nonetheless, there are several
ways how to deal with this kind of fingerprints that have no as-
sociated data in the reference data set. In our experiments, we
opted for drawing no conclusion about the originality of this
kind of tested fingerprints, filtering them out from results. This
happened
• 341 times for ,
• 528 times for ,
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TABLE II
POWER OF THE TEST. DATA IN EACH CELL (A NUMBER OF TIMES OF REJECTING CORRECTLY – OUT OF 100 TESTED IMAGES THAT HAVE BEEN TAKEN WITH A

SHOWN CAMERA MAKER, CAMERA MODEL) ARE OBTAINED USING 2400 JPEG IMAGES ACQUIRED BY 24 DIFFERENT CAMERAS

• 783 times for out of 2400 tested images in each
case. i.e., 7200 extracted fingerprints in total.

VII. DISCUSSION AND SUMMARY

We point out that in accordance with Corollary 1, results of
our experiments are affected by the test subset of cameras
(Def. 2) in the expected fashion. For example, note the value 57
for Olympus SP600UZ in the column in Table II. It
says that 43 out of 100 tests on images captured by Olympus
SP600UZ failed to reject . This is the biggest error of the
second kind that we have obtained in our experiments. Most
of these tests fail to reject because the fingerprint value
used in these tests is commonly produced by too many other
camera models. Because of this, our coarse, ignorant approach,
when all the cameras from (our reference data set) are in-
cluded in the set (the parameter of the sampling distribution
of the test statistic) is “too ignorant,” resulting in fulfilling the
first requirement on only partially. Hence, by Corollary 1, we
get too coarse upper estimations of 43 respective -values for
the fingerprints in the tested images captured by Olympus
SP600UZ: all 43 were greater than the significance level 1%.
Nevertheless, none of them was greater than the significance
level 5% as is documented by the corresponding 100 value in
the column.
Careful selection of cameras to be included in , which can

be managed by an expert or based on an appropriate heuristics
(exploiting some background knowledge concerning cameras),
will improve results remarkably: it will make the estimate of the
-value more accurate, which in turn will eliminate rare huge
errors of the second kind. Altogether, this will result in increase
of the already high power of the test, and thus we get a lower

probability of failing to reject when is (really) false (the
error of the second kind).
It is clear that also the definition of fingerprint vectors is cru-

cial for the accuracy of the presented approach. Recall that we
took into account three various fingerprint vectors in our exper-
iments. Comparing values in respective columns in Table II, it
is seen that respective fingerprint vectors yield different results.
Most importantly, observe that a big error of the second kind
associated with one fingerprint vector is usually “compensated”
by very small error of the second kind associated with another
fingerprint vector and vice versa. Pursuit for an ideal fingerprint
vector that would yield the least error of the second kind is a
very tempting challenge, which however requires bigger prac-
tical experience with the proposed method as well as further in-
vestigation and extensive testing. Therefore it is left for future
research.
Our goal was to estimate confidence that a given digital image

truly may have been taken by a camera indicated in the image
metadata. We based ourselves on carefully selected fingerprints:
we confronted them with a large database of various kinds of
acquisition devices and their fingerprints, extracted from im-
ages coming from an uncontrolled environment. Handling the
information noise inherent in such a reference database popu-
lated with data from “unguaranteed” sources is a complex task
as cameras and pieces of software often have complex and un-
predictable behavior. Indeed, many pieces of software modify
images (e.g., enhance the contrast or rotate the image) without
leaving any obvious traces in their JPEG file metadata. Despite
this, the proposed approach proves to be extremely effective. On
top of that, the approach is general and can be applied straight-
forwardly to other features formed by acquisition devices and
software packages stored in various image file formats.
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