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Abstract

Long exposure hand-held photography is degraded with blur, which is

difficult to remove without prior information about the camera motion.

In this work, we utilize inertial sensors (accelerometers and gyroscopes) in

modern smartphones to detect exact motion trajectory of the smartphone

camera during exposure and remove blur from the resulting photography

based on the recorded motion data. The whole system is implemented on

Android platform and embedded in the smartphone device resulting in a

close-to-real-time deblurring algorithm. The performance of the proposed

system is demonstrated in real-life scenarios.
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Figure 1: Basic application workflow. Together with a taken photograph gyro-
scope data are recorded, which is a base for blur kernel estimation. A deconvo-
lution is then performed to remove blur from the image.

1 Introduction

Blur induced by camera motion is a frequent problem in photography mainly

when the light conditions are poor. As the exposure time increases, involuntary

camera motion has a growing effect on the acquired image. Image stabilization

(IS) devices that help to reduce the motion blur by moving the camera sensor

in the opposite direction are becoming more common. However, such hardware

remedy has its limitations as it can compensate only for motion of a very small

extent and speed. Deblurring the image offline using mathematical algorithms

is usually the only choice we have in order to obtain a sharp image. Motion blur

can be modeled by convolution and the deblurring process is called deconvolu-

tion, which a well-known ill-posed problem. In general, the situation is even

more complicated, since we usually have no or limited information about the

blur shape.

We can divide the deconvolution methods into two categories: methods that

estimate the blur and the sharp image directly from the acquired image (blind
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deconvolution) and methods that use information from other sensors to estimate

the blur (semi-blind deconvolution).

Over the last few years, blind deconvolution experiences a renaissance. The

key idea of new algorithms belonging to the first category is to address the ill-

posedness of blind deconvolution by characterizing the image prior using natural

image statistics and by a better choice of estimators. A frantic activity started

with the work of Fergus et al.[2], who applied variational Bayes to approximate

the posterior by a simpler distribution. Other authors [5, 6, 12, 18] stick to

the “good old” alternating MAP approach, but by using ad hoc steps, which

often lack rigorous explanation, they converge to a correct solution. Levin et

al.in [9, 8] proved that a proper estimator matters more than the shape of

priors. They showed that marginalizing the posterior with respect to the latent

image leads to the correct solution of the blur. The marginalized probability

can be expressed in a closed form only for simple priors that are, e.g., Gaussian.

Otherwise approximation methods such as Variational Bayes [11] or the Laplace

approximation [3] must be used. Complex camera motion often results in blur

that is space-variant, i.e., the blur is a function of a position vector. As a rule,

the space-variant blur cannot be expressed by an explicit formula but in many

cases it has a special structure that can be exploited. If only one type of camera

motion is considered (e.g. rotation), we can express the degradation operator as

a linear combination of basis blurs (or images) and solve the blind problem in the

space of the basis, which has much lower dimension than the original problem.

Whyte et al.[17] considered rotations about three axes up to several degrees and

described blurring using three basis vectors. For blind deconvolution, they used

an algorithm analogous to [2] based on marginalization over the latent sharp

image. Gupta et al.[4] adopted a similar approach, replacing rotations about

x and y axes by translations. State-of-the-art blind deconvolution algorithms
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achieve sometimes awesome results. However, their main limitation is that they

work only in specific situations, they are prone to local extrema, and they are

computationally very demanding.

The second category of deconvolution algorithms (semi-blind) tries to over-

come these drawbacks by using information about the camera motion from other

sources. One possibility is to acquire a pair of images: one correctly exposed

but blurred and one underexposed (noisy) but sharp image. Then we can apply

multichannel blind deconvolution methods, which are better posed, as was pro-

posed for example in [16, 19, 14]. Another possibility is to attach an auxiliary

high-speed camera of lower resolution to estimate the PSF using for example

optical flow techniques [1, 15]. Many devices, such as modern smartphones, are

now equipped with inertial sensors (gyroscopes and accelerometers) that can

give us a very accurate information about camera motion. If we are able to

reconstruct camera path then we can recover blur and perform nonblind image

deblurring. This idea was recently described by Joshi et al.in [7] but they have

designed an expensive measuring apparatus consisting of a DSLR camera and a

set of inertial sensors, and perform image deblurring offline on a computer. This

work is based on the same idea but our aim is to show that image deblurring is

feasible on modern smartphones and not requiring any other devices.

The main contribution of this work is to illustrate that blur estimation with

built-in inertial sensors is possible and to implement image deblurring on a

smartphone, which works in practical situations and is relatively fast to be ac-

ceptable for a general user. The next section shows the relation between the

camera pose and the image blur, and discusses simplifications that we make.

Sec. 3 briefly describes implementation on our test device (Samsung smart-

phone). Sec. 4 shows results of our experiments and addresses pitfalls that are

common for cameras embedded in smartphones.
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2 Camera motion blur analysis

We start the discussion with a general camera motion. Since our primary goal is

a handy implementation for mobile devices, we then introduce simplification of

the problem that allows a fast and memory-conserving solution with promising

results.

2.1 The model

The image degradation model is represented by relation

g = H(u) + n , (1)

where H is a linear degradation operator and n is additive noise. Image coor-

dinate indices are omitted here for simplicity. Our goal is to find an estimate of

the original image u from the observed blurred image g.

To track the effect of camera motion on the output image, we first assume

a standard perspective projection Π : R3 → R2 that transforms a 3D point

[x, y, z] in the observed scene to a 2D location [x′, y′] in the image plane:

Π
(
[x, y, z]T

)
=

[
xf

z
,
yf

z

]T
. (2)

For the sake of brevity, we assume here only the focal length f in the intrinsic

camera matrix. The optical axis is identical with the z axis. During camera

motion, projection of a point p = [x, y, z]T at time τ within the exposure period

is given by

C(τ) = Π

R(τ)

xy
z

+

tx(τ)
ty(τ)
tz(τ)

 = Π (R(τ)p+ t(τ)) , (3)
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where R and t are 3D rotation matrix and translation vector, respectively,

that define the camera pose at time τ . The rotation matrix R(τ) is given by

three rotation angles φx(τ), φy(τ) and φz(τ).

The resulting curve C makes up a trajectory of a trace that is left on the

sensor by a point light source. Assuming a constant illuminance over the expo-

sure period, the light energy emitted from the point is distributed evenly (with

respect to time) over the curve C. This effectively gives us a time parametriza-

tion of a point-spread function (PSF) for a given point, which forms the blur

operator H. The operator H can be written in a form naturally generalizing

standard convolution as

H(u)[x, y] =

∫
u(x− s, y − t)h̃(s, t, x− s, y − t)dsdt , (4)

where h̃ depends on the position (third and fourth variable) and can be regarded

as a space-variant point-spread function.

Now we can draw the relation between h̃ in 4 and the curve C. For any

given 3D point at position p rendered on the image plane to [x′, y′] = Π(p) the

point-spread blur function h̃(s, t, x′, y′) is a 2D function of [s, t], which can be

interpreted as a blurred image of an ideal light point displayed at [x′, y′]. It can

be thus obtained by rendering the curve C on a plane with the total integral

of h̃ (which has to be equal to 1 to conserve distribution of energy) distributed

along the path evenly in respect to the time parameter.

In the next section, we will show how to simplify this model and assume the

space-invariant case, i.e. h̃(s, t, x, y) = h(s, t).
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2.2 Space-invariant simplification

We will consider a situation when the operator H is spatially invariant, so (1)

becomes

g = h ∗ u+ n , (5)

where “∗” denotes convolution and h is a space-invariant PSF.

The PSF formula (3) is spatially variant in general, so it will be modified

for our purposes. First of all, the translation t affects the projection differently

depending on the object distance from the camera. The relation is inversely

proportional, as shown in Fig. 2a. In the case of our test device, if the camera

shifts by 1 mm, objects at distance of 2 m or more move by less than 1 pixel in

the image. We can thus effectively ignore translation as a cause of blur in many

practical situations.
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(a) Influence of 1 mm x or y translation de-
pending on object distance. Angle of view is
60◦; two curves represent different image sensor
resolution.
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(b) Influence of 1◦ rotation about x and
z axis depending on a distance d from the
image sensor center. The full sensor extent
corresponds to d = 2.3 mm; image resolu-
tion is 2048 × 1536.

Figure 2: Dependence of projection shift on translation and z-rotation for a test
device.

Rotation about the optical z axis (yaw) intuitively interferes with the space-

invariant blur assumption. This type of rotation applied on a point light source

placed in the center of the picture (on the optical axis) leaves the projection
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unchanged, but points outside the center form arc-shaped traces that grow to-

wards the image borders. Provided that the camera is rotated with an equal

amount around all three axes, which is a fair assumption under normal circum-

stances, a yaw has the least effect on the resulting blur, especially in the center

of the sensor. The cellphone cameras typically have the focal length close to

the sensor size, which means that only close to the image borders the blur size

produced by yaw is approaching the blur size produced by rotation about x or

y; see 2b.

The last obstacle towards the space-invariant PSF is the perspective projec-

tion itself. Length of a trace caused by x and y rotations are projected slightly

differently depending on the distance from the optical center, because the rec-

tilinear projection (2) casts a point at an angle α from the optical axis to a

point at a distance of f · tan(α) from the image center. The tangent function

is close to linear for small angels, so both x and y rotations by a small angle

α shift a point in the sensor center approximately f · α away in the direction

of the given axis. Using the same rule for all points on the sensor gives us the

space-invariant simplification of (3):

C(τ) ≈

x′
y′

+ f

φx(τ)

φy(τ)

 , (6)

where [x′, y′] is the location of a point in the image. This approximation holds

if z is large, and x′φx � f and y′φy � f , which is true at least in the central

part of the image.
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3 Implementation

As a testing platform, we have chosen a Samsung Galaxy S II smartphone with

Android OS. It is equipped with all the apparatus needed for our experiments,

namely a relatively high-quality camera, motion sensors, a fast CPU and enough

RAM to perform computations.

3.1 PSF estimation

During the photo acquisition, samples of angular velocity are recorded using the

embedded gyroscopes, which are afterwards trimmed to fit the exposure period.

An estimation of the PSF is rendered by integrating the curve position from the

recorded data using (6).

3.2 Deconvolution

State-of-the-art non-blind deconvolution methods use sparse image priors and

the solution is usually found by some iterative minimization algorithms, such as

in [12]. However the limited computational power of the smartphone prevents us

to implement these sophisticated deconvolution methods. We thus use a simple

but fast Wiener filter in the form

Û = G
H∗

|H|2 + Φ
, (7)

where Φ is an estimation of the inverse Signal to Noise Ratio, and G, H and Û

are discrete Fourier transforms of the observed image g, PSF h and the estimated

latent image û, respectively.

Filtering in the frequency domain treats the image as a periodic function,

which causes ringing artifacts around image borders. To overcome this problem,

several less or more sophisticated techniques were proposed in the literature
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[10, 13]. We have found sufficient to preprocess the input image g by blending

the opposite image borders at the width of the PSF, which creates a smooth

transition and eliminates the artifacts.

The intensity values of the output image û sometimes lie outside the 8-

bit range (0-255), therefore we added optional normalization with clipping of

outliers. The normalization is especially useful in the case of larger blurs and

scene with high illumination.

For conversions of the images to frequency domain and back, we use FFT

algorithm implemented in the FFTW library. Utilizing a fast ARM Cortex-A9

CPU with two cores and support for a SIMD instruction set (NEON), FFTW

proved to be remarkably fast on the tested smartphone; see Tab. 1.

resolution no NEON, no hardware FPU NEON, 1 core NEON, 2 cores
1536× 1152 2900 185 110
2048× 1536 5300 330 195
2050× 1538 — 1000 540
3264× 2448 21200 1450 800

Table 1: Speed (in milliseconds) of FFT transform of gray-scale images with
different sizes and different CPU settings.

The acquired images with native camera resolution of 3264 × 2448 is by

default scaled down to 2048×1536 to take the advantage of better performance

of FFTW when the image size is a factor of small primes. Image downsampling

has a negligible effect on the image quality, because native camera resolution is

unnecessarily high. The optical system of the camera has a very small aperture,

which, because of diffraction and optical aberrations, limits the number of pixels

that can be effectively captured by the image sensor.

To perform Wiener filtering, FFT must be applied several times: once for

the PSF and twice (forward and backward-inverse) for each color channel. That

yields a total of 7 FFT operations. With some overhead of bitmap transfers,
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the deconvolution phase for the image resolution 2048 × 1536 takes about 2.6

seconds. The whole process starting from the camera shutter is done in a little

over 6 seconds. This includes image resizing, PSF estimation, compressing and

saving the original and deblurred image files.

4 Results

(a) original (b) TV-L1 (c) our result

(d) PSF

(e) Xu, Jia — blind (f) PSF est.
– Xu, Jia

Figure 3: Test 1 — 1/7 s exposure, 16×59 estimated PSF.

In this section we display several of our results together with estimated PSFs;

see Figs. 3, 4, 5. All results were computed with the signal-to-noise parameter

Φ set to 0.01. This value was determined experimentally to provide the best

looking results. The original intention was to set Φ proportionally to ISO value

extracted from EXIF data of a photo, which should determine the amount of
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(a) original (b) TV-L1 (c) our result

(d) PSF

Figure 4: Test 2 — 1/9 s exposure, 21×28 estimated PSF.

(a) original (b) TV-L1 (c) our result

(d) PSF

Figure 5: Test 3 — 1/2 s exposure, 72×76 estimated PSF.

noise present in the image. However, we found the dependency of Φ on ISO

very negligible. We explain this behavior by the denoising step that the mobile

phone internally performs on the captured photos.

For comparison, we show an advanced non-blind iterative method (TV-L1)
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by Xu and Jia [18]1, which minimizes image Total Variation and data term

in the L1-norm. We also tested blind deconvolution proposed in the same,

which is probably currently the best blind deconvolution method. However, the

result of the first test image shown in Fig. 3e illustrates a total failure of this

method when applied to images taken by our test device. The PSF (Fig. 3f)

estimated by the blind deconvolution method is close to a delta function and

the estimated image (Fig. 3e) is thus a slightly sharpened image. We suspect

that small PSF variations in space and/or the image post-processing done by

the smartphone prevents a successful estimation of the correct motion blur. The

same unsatisfactory behavior was observed in all our tests. However, our results

(c) illustrate that in spite of a relatively simple approach that incorporates the

Wiener filter with the space-invariant PSF estimated by inertial sensors, the

proposed method is capable of producing convincing images exposing many

details that were hidden in the original. The non-blind algorithm of Xu and

Jia, which is using the same PSF estimated by inertial sensors, tends to amplify

the signal, which rather emphasizes noise and false edges than gains signal

improvement. Conversely, high frequency details are more suppressed, probably

due to being treated as noise, despite of careful attempts to tune the parameters

of the method. Within our testing environment, the simplified Wiener filter is

more advantageous as it filters all frequencies evenly which apparently matches

the spectrum characteristics of most of the tested images.

Our results seem to lack slightly contrast, which is largely because of the

normalization. On the other hand, it helps retaining the full dynamic range

without saturation as clearly seen in the comparison Fig. 3.

Our deconvolution process admittedly has downsides, as well. Focusing in a

dark environment may be unsuccessful and then the deconvolved result cannot

1An executable is available for download at http://appsrv.cse.cuhk.edu.hk/~xuli/

deconv.zip
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be sharp even if the PSF estimation is correct, since we lack any means to

estimate the out-of-focus blur.

The subjective quality of the deconvolution output is not entirely consis-

tent. Images presented in this section are the best-looking results. Outputs of

the similar quality are frequently achieved by our method, but sometimes the

result is impaired by visual anomalies worsening its appearance. Most often

it is manifested as ringing artifacts surrounding sharp edges in the picture, as

demonstrated in Fig. 6.

(a) original (b) result (c) PSF

Figure 6: An example of an unsatisfactory result.

The lack of control over camera hardware in the phone (no manual exposure

settings, no access to raw data from the image sensor) and inaccurate timing

of exposure events prevents us to systematically evaluate our method and find

sources of malfunctioning.

The main problem is most likely the space-variant nature of the PSF as

discussed in Sec. 2, which is particularly noticeable when a rotation about the

z axis is significant or a translation movement is present and the scene depth

is small. The example in Fig. 6 is influenced by a combination of both of

these factors. The space-invariant approximation of camera projection is often

apparent in parts close to image borders, because of a relatively wide camera

field of view (60◦).

However, another cause is the shutter mechanism. Contrary to systems with
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mechanical shutter, values of illuminated pixels are here read successively line

by line. The readout from the CMOS sensor takes several tens of milliseconds,

which results in a picture not taken at a single moment, but with a slight time

delay between the first and last pixel row. This process, called rolling shutter, is

therefore another cause of the blur variance as the PSF depends on the vertical

position in the image. The correct approach to PSF estimation is thus shifting

inertial sensor data in time according to the vertical position in the image.

(a) traces of points on LCD

(b) 40 ms (c) 50 ms (d) 60 ms (e) 70 ms (f) 80 ms (g) 90 ms (h) 100 ms

Figure 7: A snapshot of point grid displayed on a LCD screen showing the
rolling shutter effect. The bottom row shows a series of blur kernels rendered
using data from the gyroscope sensor shifted in time. Exposure 1/14 s, PSF
images were created from sensor data starting 40–100 ms after a synchronization
timestamp.

The application programming interface (API) of the tested device does not

allow accurate synchronization between camera and gyroscope samples. There-

fore we have implemented a deconvolution preview, where the user picks the

best option from a set of results created with time-shifted PSFs. The preview

also partly solves the rolling shutter problem since the selected time shift cor-

responds to a horizontal image band of a certain height that can be considered

as acquired at one moment, thus eliminating the rolling shutter effect for that

image part.
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Image post-processing might also present a serious problem for the decon-

volution. Since the original raw data from the image sensor are not available,

we are forced to work with the JPEG-compressed image, which is most likely

processed by a denoising, contrast enhancement algorithm or lens distortion

compensation. These adjustments are undesirable for our purposes, as they

were not taken into account in our model.

Figure 8: Noise in gyroscope data. Synthetically blurred Lena image using
PSF from recorded gyroscope samples and afterwards deblurred using PSF from
measurements with variable amount of noise. Images are from left to right, top
to bottom: original, blurred and 6 deblurred images using original gyroscope
data altered by random gaussian noise with variance from 0 to 0.05 (gyroscope
measurements are in rad/s).

Noise present in gyroscope measurement data can also be a problem, as

displayed in Figs. 8 and 9. This has been examined in a following synthetic ex-

periment. A test image was first blurred using convolution with a PSF counted

from one set of gyroscope samples recorded in our mobile application. An ad-
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ditive noise was added to the image in accordance with the model 1 (40 dB

Gaussian noise was used). Gaussian noise was also added to the gyroscope

samples to simulate errors in sensor measurement. Corrupted image was then

repaired using our deblurring algorithm from the altered motion data. Results

for different amounts of noise in gyroscope samples are shown in Fig. 8. The

mean square error of the result as a function of the gyroscope noise level (vari-

ance) is in Fig. 9. We can see that the performance starts to drop for noise

levels above 0.05 rad/s. The gyroscope noise level typically encountered in the

motion sensors inside mobile devices (in our case Samsung Galaxy S II) is 0.007

rad/s for our sampling rate and it is therefore way below the critical level.

0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1
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0.1

noise var
[rad/s]

MSE

Figure 9: MSE of difference between the original and deblurred image in rela-
tion to amount of added sensor noise. Gaussian noise of variance 0 to 0.1 was
added to gyroscope measurements (angular velocity in rad/s). Deconvolution
algorithm was then performed using computed blur kernels based on these al-
tered measurements. Mean squared error of difference to the original image is
plotted in the graph (pixel value was normalized to 〈0, 1〉 range). The graph
shows mean of 10 iterations for each of the variance values. Lena image was
used for the test.
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5 Conclusion

We have presented an image deblurring method that can effectively remove

blur caused by camera motion using information from inertial sensors. The

proposed method is fully implemented on a smartphone device, which is to our

knowledge the first attempt in this direction and renders the method particularly

appealing for end users. We have justified the space-invariant simplification for

certain camera motions, but simultaneously we have uncovered intrinsic sources

of space-variant blur, such as rolling shutter. The space-variant implementation

of the deblurring algorithm, which would solve some of the current issues, is

in theory possible, but the computational cost on the smartphone may be too

high. It will be a topic of our future research to find out whether this is viable.
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