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Abstract We present new temporal-evolution diagnostics of solar flares. The high-order
statistical moments (skewness and kurtosis) of the Hα images of active regions during solar
flares were computed from their initial phases up to their maxima. The same method was
used for quiet active regions for tests and comparison. We found that temporal profiles of
the Hα statistical moments during flares roughly correspond to those observed in soft X-rays
by the GOES satellite. Maxima of the cross-correlation coefficients between the skewness
and the GOES X-rays were found to be 0.82 – 0.98, and the GOES X-rays are delayed
0 – 144 seconds against the skewness. We recognized that these moments are very sensi-
tive to pre-flare activities. Therefore we used them to determine the flare starting-time and
to study the pre-flare quasi-periodic processes. We determined the periods of these pre-flare
processes in an interval of 20 – 400 seconds by using special convolution filters and Fourier
analysis. We propose to use this method to analyze active regions during the very early
phases of solar flares, and even in real time.

Keywords Sun: solar flares · Moments · Frequency analysis · Pattern recognition

1. Introduction

There are various processing methods for analyzing solar active regions. The processing
algorithms are designed for data observed by ground-based or satellite instruments consid-
ering the wavelength, time sequence, sampling frequency, temporal and spatial resolution,
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etc. Solar observations are made in a broad spectral range: from the shortest wavelengths of
hard X-rays, followed by soft X-rays, extreme ultra-violet (EUV), via the optical lines up
to the radio emission range. A detailed overview of image-processing techniques in solar
physics, starting from the simple preprocessing algorithms up to 3D reconstructions, expert
systems, and machine learning, has been given by Aschwanden (2010).

In addition to these image-processing methods, there are methods analyzing physical pa-
rameters measured in solar active regions. For example, Leka and Barnes (2003a, 2003b)
used the statistical moments (mean, variance, skewness, and kurtosis) of magnetic-field pa-
rameters in active regions in searching for preflare signatures of solar flares.

The most common ground-based observations of solar active regions and solar flares are
made in the Hα line. There is a global network of Hα observations monitoring solar activ-
ity for space-weather prediction: see, e.g., www.ngdc.noaa.gov or bass2000.obspm.fr/home.
For this purpose, an automatic processing system for solar-flare detection in Hα full-disk
images has also been developed in the Kanzelhöhe Observatory (Veronig et al., 2000). This
system is based on the image-segmentation (region and edge detections) method.

While during a preflare phase the brightness at different locations of the active region on
the Hα images continually varies, at the beginning of the flare the Hα brightness at flare
ribbons strongly increases. This is due to particle beams and conduction fronts coming from
the primary energy-release site in the low corona to the chromosphere, where the Hα line is
formed, (e.g. Fárník et al., 1983).

Each digital Hα image consists of pixels of different brightness. The brightness can be
statistically described by its distribution as well as by the high-order statistical moments.
These moments have applications in signal- and image processing (e.g. Albendea et al.,
2010; Jindal, Jindal, and Kaur, 2010) and in hyperspectral analysis (Chiang, Chang, and
Ginsberg, 2001). In astrophysics they are used for example in investigating statistical system
behavior, mass-density field distribution, statistical studies of the interstellar medium (Coles
and Jones, 1991; Burkhart et al., 2009), in pattern analysis of cosmic structure formation
(Takada and Jain, 2002), statistical modeling of lines in atomic spectra (Pain et al., 2009),
detection of non-Gaussianity deviations (Grossi et al., 2008), etc. A detailed study of the
statistical moments in pattern recognition is given by Flusser, Suk, and Zitová (2009). The
generalized spectral-kurtosis estimator (Nita and Gary, 2010b) and its statistics (Nita and
Gary, 2010a) have been developed for a new generation of radio telescopes to detect and
remove radio-frequency interference from radio-astronomy data. Another type of statistical
moments considered in astronomical image-processing was described by Alipour, Safari,
and Innes (2012), who used the Zernike moments for automatically detecting solar events
observed in the EUV emission.

In this article we study the temporal evolution of the statistical moments (skewness and
kurtosis) of Hα images of active regions during solar flares. We compare the moments com-
puted for flaring and flare-quiet regions and search for preflare signatures.

Our article is organized as follows: The first two sections cover the theoretical back-
ground of the statistical moments, skewness and kurtosis filtering, and analysis methods. In
Section 4 we describe the data specification, analysis, and results. Finally, the results are
discussed.

2. The Statistical Moments – Skewness and Kurtosis

Simple statistical moments such as the mean [EX], the standard deviation [S =√
E(X − EX)2], and the high-order moments are used in pattern recognition as regional de-

http://www.ngdc.noaa.gov
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scriptors. These functions quantitatively describe the structural shape of a region, its bound-
aries, texture content, etc. The use of moments in statistics is presented e.g. by Dudewicz
and Mishra (1988).

The third moment about the mean [μ3 = E(X − EX)3] after scaling normalization is
called the skewness [m3] of the distribution of the random variable [X]:

m3 = 1

S3
E(X − EX)3. (1)

The skewness is a measure of reflection symmetry, i.e. if the distribution of X is sym-
metric, then μ3 = 0. If the distribution is steeper to the left (right) of μ, it is denoted skewed
to the right (left), respectively.

The fourth moment [m4] about the mean [μ4 = E(X −EX)4], called kurtosis, is defined
similarly:

m4 = 1

S4
E(X − EX)4. (2)

It is used as a measure of how “heavy” the tails of distribution are, and expresses the peaked-
ness. The distribution is said to be leptokurtic, platykurtic, or mesokurtic. The Gaussian
distribution has m4 = 3, therefore sometimes the value m̂4 = m4 − 3 is used. When the
platykurtic distribution with m̂4 < 0 is broader than Gaussian, the mesokurtic distribution
has m̂4 = 0, i.e. the same kurtosis as Gaussian, and the leptokurtic distribution with m̂4 > 0
is narrower than Gaussian.

In discrete form we work with the realizations of X, and statistical characteristics as
moments are only estimated, e.g. the average [μ] is an estimate of the mean [EX] and the
standard deviation [σ ] is an estimate of S. The dimensionless third and fourth moments are
computed from the image histogram. In this sense the skewness of one image is estimated
as the third moment normalized to scaling by the standard deviation

s = 1

σ 3

1

N

N−1∑

i=0

(xi − μ)3, (3)

and similarly the normalized fourth moment: kurtosis

k = 1

σ 4

1

N

N−1∑

i=0

(xi − μ)4, (4)

where xi is the ith realization of the random variable [X]. In our case xi is the brightness of
the ith pixel of a chosen part in the Hα image, where N is the total number of pixels in the
area.

In practice, we have an observational sequence of the Hα active-region images cover-
ing the time of solar flares. We compute the high-order moments [si , ki ] of each image
in the whole data sequence to obtain the temporal evolution of these moments. They ex-
press a flare-evolution in a new way, see e.g. Figure 1. It is very interesting to see the fast
increase of both moments even before the GOES X-rays are increasing; time delays in cross-
correlations between the skewness and GOES X-rays are given in Table 1. It indicates that
the distribution of the pixel brightness changes rapidly at this time.



196 S. Šimberová et al.

Figure 1 Typical temporal evolution of skewness (top) and kurtosis (bottom) during flare development. The
moment’s curve can be divided into two parts: preflare time interval, i.e. the time interval before the flare
starting time (determined by an analysis of the moment evolution), and the time interval after this start time.

The observation is often distorted by high-frequency noise, therefore some type of filter-
ing is appropriate. A simple filtering can be computed as the convolution
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Table 1 Data specification – time intervals of the observed (processed) image data [UT], cadence in min−1,
the max. cross-correlation coefficient CCmax] between the skewness and GOES X-rays, the Kendall rank
correlation coefficient KCRC, and corresponding GOES time delay against the skewness [s].

Label Processed sequences Cadence CCmax KCRC Time delay

Start End

O_030212 13:52 13:59 60 0.95 0.70 93

O_030221 14:58 15:13 20 0.98 0.66 27

O_030319 09:32 10:00 12 0.86 0.75 144

O_031218 12:25 12:43 12 0.90 0.69 42

K_110307 12:05 12:25 10 0.82 0.42 5

K_110910 07:04 07:31 10 0.90 0.59 0

s ′
i =

ng∑

j=−ng

si−j gj , (5)

where 2ng + 1 is the length of the filter [g]. In the discrete case, the filter is a finite sequence
of real numbers. An appropriate filter for our purpose should not change the signal amplitude
or move the data, i.e. it should be energy-preserving and zero-mean:

ng∑

i=−ng

gi = 1,

ng∑

i=−ng

igi = 0. (6)

It should also continuously include derivatives (i.e. be smooth), because each discontinuity
causes a deterioration in the removal of high frequencies. Therefore the Gaussian with all
continuous derivatives is very popular. We used a sampled version in the discrete case:

gi = 1

σg

√
2π

e
− i2

2σ2
g , i = −ng,−ng + 1, . . . , ng, (7)

where σg is the standard deviation of the filter that controls how high frequencies are filtered
out. The half-width [ng] of the filter must be sufficient; it should be at least ng = 3σg . We
mostly used ng = 4σg in our experiments.

After filtering these moment curves, we searched for significant points (times) in these
curves. We determined the flare start time defined here as the time at which there is a maxi-
mum of the second derivative of the skewness (kurtosis) curve. For other significant points,
see Appendix A.

An analogy of the derivatives equaling zero in the continuous function are differences in
changing its sign in the discrete case. These difference can be computed as the convolution
with the first derivative filter {−1,1}, similarly, the second derivative as the convolution with
the Laplacian {1,−2,1}. The third derivative can be estimated by the filter {−1,3,−3,1},
but we preferred to search for significant points as maxima of the Laplacian. The Gaussian
and Laplacian can be combined into one filter, proposed in 2D by Marr and Hildreth (1980).
The 1D version is

gli =
(

i2

σ 2
g

− 1

)
1

σ 3
g

√
2π

e
− i2

2σ2
g , i = −ng,−ng + 1, . . . , ng. (8)
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The convolution filter in Equation (5) expects equidistant sampling, i.e. the time between
adjacent samples is constant during the whole sequence. This is often not the case of a solar-
flare data-cube. The sampling is mostly dense during the flare-up to the maximum with a
slow decline after this interval (Veronig et al., 2000). We considered the sampling density
in the filtering and either interpolated missing data (which is more accurate) or changed σg

according to the sampling. The decision depended on the data patterns and the investigated
time segment.

3. Moment-Oscillation Analysis

There are several integral transformations for a signal temporal analysis. The traditional
one is Fourier transformation [FT], see its normalized form in Appendix B. The FT can be
understood as a decomposition of the signal into a weighted sum (linear combination) of
sinusoidal functions with various frequencies. The harmonic u is expressed relative to the
length n of the signal, i.e. the specific u means u oscillations per n samples. If the sampling
frequency is fs, then the actual frequency f = fs u/n. If some harmonic [us] is dominant in
the signal, then the amplitude spectrum [|F(u)|] has a significant local maximum at u = us.
Typically, the global maximum is at F(0), but it does not express any oscillations, therefore
we are interested in all local maxima of |F(u)| with the exception of that at zero in the
oscillation analysis.

If the normalizing coefficient [1/n] is used in the direct FT, amplitudes of two signals of
different lengths can be compared more easily. We used resemblance [rsb = 2|F(u)|/n] in
our experiments, because a pure sinusoidal function then has value unity at its frequency, so
rsb can be understood as the ratio (in percent) of the analyzed signal to the ideal sinusoidal
signal.

If the signal f (x) is real, i.e. its imaginary part is zero, then the spectrum is reflectively
symmetric and an analysis of the harmonics u > n/2 is meaningless. Moreover, the high
harmonics are often distorted by noise and sampling errors, therefore we analyzed only low
harmonics for u = 1,2, . . . ,16.

The formula for the inverse FT in Equation (11) implies that the FT is suitable for signal
analysis, where the dominant frequencies are present throughout the whole sequence. If
the signal is divided into small segments so that only one frequency is dominant in each
segment and the different frequencies are dominant in other segments, then some other type
of transformation is suitable, e.g. the wavelet transformation. If the signal can be divided into
larger segments, where a few frequencies are dominant (as in our case), then a FT computed
in this specified segment seems to be a more appropriate solution.

4. Real-Data Analysis

4.1. Data Specification

Two kinds of Hα data sets with different temporal and spatial resolution from the Kanzel-
höhe and Ondřejov observatories were used. See an overview of the real data sets in Table 2.

The Kanzelhöhe sets contain full-disk observations, while those from the Ondřejov ob-
servatory are always the details with higher resolution; examples of one image of real
data-cubes from Kanzelhöhe and Ondřejov are shown in Figure 2. As complementary data,
GOES-8, -10, and -12 were used for additional information about the event. An active-region



Hα Image Moments 199

Table 2 Analyzed events (label date syntax – year, month, day): K_yymmdd – Kanzelhöhe observation,
O_yymmdd – Ondřejov observation.

Label Event NOAA Flare location Flare GOES X-ray
classificationBegin Max End

O_030212 SF 7120 N11W26 13:54 14:00 14:15 B7.7

O_030221 SF 8310 N15E07 15:12 15:15 15:22 C3.7

O_030319 SF 3530 S15W57 09:42 09:52 09:57 M3.7

O_031218 SF 4480 N10E47 12:34 12:36 12:40 C2.9

K_110307 SF 1750 N10E19 12:20 12:21 12:23 C2.0

K_110910 SF 9350 N12W61 07:23 07:30 08:03 M1.1

Figure 2 The full-disk observation – Kanzelhöhe (left), resolution 1 pix = 1.02 × 1.02 arcsec, the highest
cadence is ten images per minute. The detail observation – Ondřejov (right), resolution 1 pix = 0.5 × 0.5
arcsec, customary cadence 60, 30, or 12 images per minute. Spatial extent: 347′′ × 195′′ .

selection from the Kanzelhöhe sequence is shown in Figure 3. A plane of the image data-
cube prepared for the Ondřejov sequence processing is shown in Figure 4. The different
length of the processed sequences depends on the observational mode at each observatory.

4.2. Data Analysis

The mutual comparison of the m3, m4, and μ temporal evolution of the flare event observed
at Ondřejov is presented in Figure 5. The moment’s curves m = f (t) of the skewness and
kurtosis are very similar, and both unambiguously enable us to identify the flare starting
time according to the above-mentioned methodology, see Figure 1. From the composed
image in Figure 5 it is clearly visible that the low-order moments represented here by mean
[μ] do not provide any relevant information about the position of the main zero of the third
derivative, or “turning point”; see Appendix A for details. This time is important not only
for determining the flare start but, for the oscillation analysis in the pre-flare times.

Additionally, we analyzed the behavior of the third and fourth moments simultaneously
in a dynamically developing event and also in a quite region. Selecting two various areas
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Figure 3 10 September 2011, Kanzelhöhe (left) full-disk observation 2048 × 2048 pix, (right) one plane of
the subimage data-cube to be processed; resolution 1 pix = 1.02 × 1.02 arcsec. Spatial extent: 517′′ × 517′′ .

Figure 4 Ondřejov observation, (left) the original size 720 × 540 pix and (right) one sample of the data
sequence prepared for processing. Resolution 1 pix = 0.5 × 0.5 arcsec. Spatial extent: 347′′ × 195′′ .

enables the full-disk observation from Kanzelhöhe. The active and quiet regions are marked
and their corresponding third moments are presented in Figure 6. The moments were com-
puted in the same time-sequences; in the quiet region the values of m3 vary around zero
while m3 of the active region with arising flare fluctuates with values more than one order
higher.

An automatic significant-point search is shown in Figure 7. At first glance the course of
m3 = f (t) already gives some information about important turning ponts during observa-
tion. Applying the Marr filter (Equation (8)) enables an automatic identification of changes
in the noisy moment curve. The absolute maximum of the Marr-filter curve then determines
the precise position of the main turning point assigned as the flare starting time. Likewise,
the subsidiary maxima also give useful information, especially the period of maxima. The
choice of the Marr-filter mask size depends on the type of data. The high-resolution data
(Ondřejov) tend to need a smaller mask size (59 or 81 samples), while the data with lower
resolution are analyzed by a mask of size 81 or 121 samples. According to our experiments,
the mask size of 81 smaples is convenient and indicative for both types.
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Figure 5 The skewness m3 (black), kurtosis m4 (dotted red), and mean μ (dashed green) of the Ondřejov
observation O_030221 composed image. The zero-time in the plots is 14:58:16 UT.

We compared the moment curves with soft X-ray curves observed by the GOES satellites
for all investigated events. The two examples of the Ondřejov and Kanzelhöhe events are
shown in Figures 8 and 9. As can be seen here, the skewness curve roughly corresponds to
the GOES one. Furthermore, the moments are much more sensitive to preflare activities than
the GOES X-rays, showing strong variations of the moment at these times, in contrast to the
smooth GOES curve. We also computed the cross-correlation coefficients and time delays
between the skewness [m3] and GOES X-rays for all six events, see Table 1. We found
very good correlations. Furthermore, in all events we found that the GOES X-ray curves are
delayed (0 – 144 seconds). To obtain some information about the rank correlation, i.e. the
similarity of the orderings of the data when ranked by each of the quantities, we computed
the Kendall rank correlation coefficient

τ = ccp − dcp
1
2n(n − 1)

, (9)

where ccp is the number of concordant pairs, dcp is the number of discordant pairs, and
n is the number of samples in the observed sequence. For details see Nelsen (2001). The
coefficient must be in the range −1 ≤ τ ≤ 1; if the agreement between the two rankings is
perfect, the coefficient is 1. For reversible ranking τ = −1, if both random-value sequences
are independent, the coefficient is approximately zero. The values of coefficient τ (KCRC
column) are listed in Table 1.

During solar flares, the light areas grow relative to the dark ones in Hα images. There-
fore the right tail of the light-distribution function (i.e. histogram) is more significant than
the light distribution of a quiet area. Both skewness and kurtosis are increasing during the
rise of the flare. While these trends are common to all observations, the specific range of
values varies with the observation mode (CCD camera specification and settings, sensing
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Figure 6 The full-disk Kanzelhöhe observation K_110307, subimages with an active and quiet area (top),
the third moments – skewness of the corresponding sequences (bottom). The upper curve (solid) represents
the third moments of the active region and the lower curve (dotted) the third moments of the quiet area, both
with the same time-axes. The zero-time in the plot corresponds 11:30:39 UT.
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Figure 7 Significant and start points searching in the moment curves (black) and Marr-filter convolution
(mask size 81 – dotted magenta line, mask size 121 – dashed green line). Upper panel – Ondřejov O_030212;
lower panel – Kanzelhöhe K_110910.

threshold, contrast settings, etc.). For instance, in event O_030221, the original approximate
Gaussian histogram with the skewness m3 ≈ 0 and kurtosis m4 ≈ 3 is deformed up to m3 ≈ 1
and m4 ≈ 7; see Figure 1. In the other events, m3 varies from −1.3 (negative values – the
distribution function is skewed to the left) to 3.7 (positive values – skewed to the right), and
m4 varies from 1.5 to 27 in our experiments.
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Figure 8 Skewness [m3] over a period of the flare (black), its convolution with the Marr filter 121 (dashed
green), and GOES-12 X-ray, 1.0 – 8.0 Å, three seconds (dotted red) for comparison in time. Observation
Ondřejov O_031218.

Table 3 lists results of the time-sequence analysis of the studied events. The oscillation
analysis was performed in the preflare times, close to the assigned start time. Events con-
taining data more than 18 minutes before the flare starting-time show oscillations for the
first frequency maxima at about four minutes and the second maxima at about two – three
minutes.

Figure 10 shows the results of the oscillation analysis in two events. It shows the be-
ginning of the amplitude spectrum from the first to the sixteenth harmonics with the most
interesting frequencies. They were located using the local maxima converted to the oscilla-
tion periods in seconds (see Table 3).

5. Discussion and Conclusions

We presented a new method for flare diagnostics in a sequence of Hα active-region images.
This method is based on computations of the high-order statistical moments of these images.
Our experimental verifications on real-data sequences led to a determination of the flare
starting time.

We found that time profiles of the Hα statistical moments during flares roughly corre-
spond to those observed in soft X-rays by the GOES satellite. Furthermore, it was found that
the maxima of the cross-correlation coefficients between the skewness and the GOES X-rays
are 0.82 – 0.98, and the GOES X-rays are delayed 0 – 144 seconds relative to the skewness.
The Kendall rank correlation coefficient provides interesting information concerning the
association between the measured quantities m3 and GOES.

We discovered an increased sensitivity of these moments to preflare activity; therefore we
used the m3 and m4 moments to determine characteristic oscillations in the preflare phases.
Periods of these oscillations were found in the interval of 20 – 400 seconds. These periods
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Figure 9 Skewness [m3] over a period of the flare (black), its convolution with the Marr filter 81 (dashed
green), and GOES-12 X-ray, 1.0 – 8.0 Å, two seconds (dotted red) for comparison in time. Observation
Kanzelhöhe K_110910.

Table 3 Time-sequence analysis: The start means the beginning of the observed sequence, EndC is the end
of sequence, EndA is the end of the analyzed preflare stage, ST is the flare starting-time. Format of time
[hh:mm:ss]. Frequency analysis: max – positions of first and second maxima on harmonic scale, rsb – their
resemblance to sin(x), 1/f – oscillation periods.

Event O_031218 O_030319 O_030221 O_030212 K_110910 K_110307

Processed sequences

Start 12:25:30 09:32:05 15:04:53 13:52:34 07:04:00 11:50:35

EndC 12:43:00 10:00:00 15:13:00 13:59:16 07:31:02 12:29:57

EndA 12:30:30 09:49:30 15:13:00 13:55:34 07:19:34 12:12:02

ST 12:29:00 09:48:15 15:08:51 13:53:24 07:13:16 12:08:05

Frequency analysis

1.max 3.97 4.04 3.88 4.06 4.03 3.37

1.rsb[%] 10.74 4.52 1.75 2.97 2.41 8.58

1/f1[s] 75.52 259.69 77.35 44.39 244.26 400.14

2.max 5.91 8.13 5.92 8.86 6.03 7.92

2.rsb[%] 6.82 2.94 1.00 1.32 1.11 3.74

1/f2[s] 50.75 129.22 50.69 20.32 163.28 170.41

agree with those found in the preflare phases by Fárník, Karlický, and Švestka (2003) and
Sych et al. (2009).

The advantage of our method is its uncommon robustness. It is possible to apply the
method directly to the raw data sets; no preprocessing is required. It is much more robust
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Figure 10 The result of the frequency analysis: Fourier amplitude spectrum (dashed blue) and its cubic
spline with local maxima (solid red). Ondřejov observation O_030319 (top) and Kanzelhöhe observation
K_110910 (bottom).
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than methods using the light curve, for instance, and even more robust than the brightness
average of the observed area.

For a comparison we applied the method to the data sequence of a quiet area without any
apparent structural changes. The moments in time in these locations do not change notice-
ably; the absolute values of m3 varied around 0 and those of m4 around 3, with standard
deviation in both cases of about 0.02.

For an automatic turning point search in the moment function m3 = f (t) we suggested
filtering by a special convolution filter that combines the Gaussian for noise reduction and
the second derivative. The local maxima of the second derivative indicate certain breaks in
the observed time-sequence. Likewise, the period of these local maxima is interesting. A
more detailed study of this variable could be a topic of future work.

We found that the moments are very sensitive to changes in the image brightness in the
preflare phase. For this reason we propose to use this method not only for the analysis of the
preflare phases of previously observed solar flares, but also for the analysis of these phases
in real time. This method can be used to analyze flare observations in other spectral bands
as well.

Acknowledgements In memory of Zdeněk Švestka and the twentieth anniversary of our joint paper in
Solar Physics 146, 1993. Stana Šimberová and Marian Karlický, March 2013.

The authors thank the anonymous referee for comments that improved the article. This research
was supported by the Czech Science Foundation GAČR 102/08/1593, GAČR P209/12/0103 and GAČR
P103/11/1552. Thanks to Astrid Veronig and Wolfgang Hirtenfellner-Polanec (Universität Graz and Observa-
tory Kanzelhöhe), and František Zloch (Observatory Ondřejov) for their help with accessing image databases
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Appendix A: Significant Curve Points

The significant points on a smooth curve can be searched for by using its derivatives. The
zero-crossings are assumed to be found directly either as a solution of an equation, or nu-
merically. An extremum (minimum or maximum) can be found as the zero-crossing of its
first derivative. Similarly, we can use the second derivative to search for inflection points.
If there is a zero-crossing of the third derivative, we can describe it as a turning point, or
change of trend, where an increase changes to a steeper (gentler) increase, or a decrease to
a steeper (gentler) decrease. An overview of the significant points is provided in Table 4. If
the derivative in the first column equals zero, the curve in the first row has the significant
point.

Table 4 Identification of functional significant points.

f (x) f ′(x) f ′′(x) f ′′′(x)

f (x) = 0 Zero-crossing

f ′(x) = 0 Extreme Zero-crossing

f ′′(x) = 0 Inflection point Extreme Zero-crossing

f ′′′(x) = 0 Turning point Inflection point Extreme Zero-crossing
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Appendix B: Discrete Fourier Transformation

The Fourier transformation [FT] is defined in the discrete case

F(u) =
n−1∑

k=0

f (xk)e
−2π iuk/n, u = 0,1, . . . , n − 1. (10)

k is the ordinal number of the sample, u is the harmonic, u = 1 is the fundamental harmonic,
u = 2,3, . . . are second, third, etc. harmonics.

The signal can be recovered by inverse FT

f (xk) = 1

n

n−1∑

u=0

F(u)e2π iuk/n, k = 0,1, . . . , n − 1. (11)

The normalizing factor 1
n

can be either in the direct transformation (Equation (10)), in
the inverse one (Equation (11)), or 1√

n
can be in both. In the first case, F(0) is the sum

of all values of the signal, in the second case, F(0) becomes the mean value of the signal.
Typically, this is the global maximum of the amplitude spectrum.
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