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Abstract. We present a new approach to image analysis in temporal
sequence of images (data cube). Our method is based on high-order sta-
tistical moments (skewness and kurtosis) giving interesting information
about a dynamic event in the temporal sequence. The moments enable
precise determination of the ”turning points” in the temporal sequence of
images. The moment’s curves are analyzed by continuous complex Mor-
let wavelet that leads to the description of quasi-periodic processes in the
investigated event as a time sequence of local spectra. These local spec-
tra are compared with Fourier spectrum. We experimentally illustrate
the performance on the real data from astronomical observations.

Keywords: Statistical moments, Frequency analysis, Fourier and wavelet
transformations, Dynamic processes.

1 Introduction

Random variables can be characterized for application purposes by considera-
tion of quantities called ”moments”. Since simple and widely known statistical
moments about the origin - EX (mean value μ, the first order moment) via the
central moments of second order E(X −EX)2 (variance σ2) and its square root
S =

√
E(X − EX)2 (standard deviation σ), we ascend to the third and higher

orders. In pattern recognition these moments are used as the regional descriptors
for structural shape of regions, boundary determination, texture analysis, etc.
The practical use of moments in statistics is e.g. in [1].

The third order moment m3 is called the ”skewness” of the distribution of
random variable X . It is defined: m3 = E(X − EX)3/S3. The skewness is a
measure of reflection symmetry, i.e. if the distribution of X is symmetric, then
m3 = 0. If the distribution is steeped in left (right) of μ, it is denoted skewed
to the right (left), respectively. The fourth moment called ”kurtosis” is defined
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similarly: m4 = E(X − EX)4/S4. It expresses the peakedness, in other words
it is a measure of how ”heavy” the tails of distribution are. The distribution
is said to be leptokurtic (narrower than Gaussian), platykurtic (broader than
Gaussian), or mesokurtic (as Gaussian). The Gaussian distribution has m4 = 3,
therefore the value m̂4 = m4 − 3 is sometimes used.

Each plane of data cube in the temporal sequence of images consists of pixels
of different brightnesses. It can be statistically described by their distribution as
well as by the high-order statistical moments. These moments have applications
in signal and image processing. A detailed study of the statistical moments
in pattern recognition is in [2]. In astronomical applications they are used for
example in the investigation of statistical system behavior, mass-density field
distribution, statistical studies of the interstellar medium [3], [4]. Pattern analysis
of cosmic structure formation is in [5], statistical modeling of lines in atomic
spectra [6], detection of non-Gaussianity deviations [7], etc. The generalized
spectral-kurtosis estimator and its statistics is in [8] and [9]. Another type of
statistical moments applied in the UV spectral range was described in [10].

Our contribution deals with an analysis of the dynamical temporal sequences
obtained by the ground-based astronomical observations in optical range. By our
methodology we reliably identify the ”turning point” where the dynamic event
starts. Determination of this point leads to the specification of temporal intervals
for further analysis. In these selected sections the periodicity of signals has been
searched and results by Fourier and wavelet analysis have been compared. The
next section introduces the typical behavior of moments during an observed
temporal sequence where a dynamical event appears. The following sections
present results of frequency analysis and conclusions.

2 Dynamical Event Diagnostic by Statistical Moments

An example of the observed temporal sequence is in Fig. 1. It is monospectral
observation of the Sun surface - solar chromosphere (λ = 656.3 nm).

Fig. 1. Patterns of the data cube planes: the light parts in the image represent an
active region with arising flare. From left to the right: the beginning of the sequence,
the second pattern is from the ”trigger area” and gradually up to the fully developed
flare.

The dimensionless third and fourth moments are computed from the image
histogram. In this sense the skewness of one image is estimated as the third
moment normalized to scaling by the standard deviation
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s =
1

σ3

1

N

N−1∑

i=0

(xi − μ)3 (1)

and similarly the normalized fourth moment - kurtosis

k =
1

σ4

1

N

N−1∑

i=0

(xi − μ)4, (2)

where xi is the ith realization of the random variable X . In our case xi is the
brightness of the ith pixel of a region of interest, where N is the total number
of pixels in the area. The simplified flowchart of this part of processing follows:

1. Observational sequence (data cube) of active-region images covering the time
of a dynamical event ( e.g. solar flares).

2. Computation of the high-order moments [si, ki] of each image in the whole
data sequence to obtain their temporal evolution.

3. Determination of the starting point of the flare (time or corresponding plane
number) and selection of the time interval for consecutive frequency analysis.

The typical evolution of m3 and m4 during the flare development is in Fig. 2. It
is very interesting to see a fast increase of moments, the temporal curves of m3

bears resemblance to the m4 and both unambiguously enable determination of
the starting point. As a matter of interest the temporal curve of μ (called the light
curve) of the same sequence does not provide any relevant information about
the position of ”trigger area”, see Fig. 2b. The dynamic phenomenon causes
both lighter and darker regions with respect to the quiet state, the densities are
averaged and the light curve cannot intercept any change of trend.

(a) (b)

Fig. 2. Temporal characteristic of (a) skewness and (b) kurtosis during solar flare
development. Temporal evolution of mean µ has been drawn for comparison (b, dotted).
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3 Frequency Analysis

For an automatic searching of significant points (times) in the temporal mo-
ment’s curves we decided for filtering by the Laplacian, the significant points
= maxima of the Laplacian. Since the observation is often distorted by high-
frequency noise, a combination of appropriate filters would be suitable. The
Gaussian and Laplacian can be combined into one filter, proposed in 2D by [11].
The 1D version is

gli =

(
i2

σ2
g

− 1

)
1

σ3
g

√
2π

e
− i2

2σ2
g , i = −ng,−ng + 1, . . . ng. (3)

Application of convolution filter (3) enables an automatic identification of
changes in the noisy moment curve. The absolute maximum of the Marr-filtered
curve then determines the precise position of the main ”fault” assigned as the
flare starting time (ST). Likewise the subsidiary maxima also give useful infor-
mation, especially the period of maxima. See Fig. 3a.
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Fig. 3. (a) Significant and start (ST) point searching in the moment curve (black)
and Marr filter convolution, (red dotted, mask size 59), (b) The Morlet wavelet in its
effective support [-4,4].

For the frequency analysis the moment’s curve can be basically divided into
two parts: pre-flare time interval, i.e. the time interval before the flare start time
ST (located in the trigger area and determined by an analysis of the moment
evolution), and the time interval after this start time.

To get an information about the pre-flare time interval we need to analyze
the frequencies of a quasi-periodic sequence. The analysis is usually done by
comparison with some pattern wave that is used as the kernel function of the
integral transformation. We can use either a global wave passing through the
whole sequence, typically the sinusoidal signal exp(−2πix) of Fourier transfor-
mation, or some local wave, typically wavelet. There are several wavelet families,
some continuous wavelet is suitable for this type of frequency analysis. In our
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experiments we used the real part of Morlet wavelet cos(σx) exp(−x2/2) with
the most usual parameter σ = 5 that yields good compromise between time and
frequency resolution, see Fig. 3b and e.g. [12].

The real data experiments consist of seven various events from the two differ-
ent ground-based telescopes. We introduce two cases illustrative for each type of
data, see Fig. 4a (the sampling period is 5 s) and Fig. 5a (the sampling period
is 6 s). The left part of the second signal was interpolated from the sampling
period 60 s to 6 s. The results of the frequency analysis by Morlet wavelets are
in Figs. 4b and 5b. They show absolute value of its real part: in a row, there is
the significance of a specific frequency; in a column, there is the local spectrum.

The period of the oscillation is related to the length of the sequence. If there
are 210 samples in the first sequence, then the part from -0.5 to 0.5 of the
wavelet with length 1 from Fig. 3b was mapped onto the whole sequence in the
first row of Fig. 4b. If we are interested in the response of the whole wavelet
from Fig. 3b with the length 8, we have to look at the row 210/8 ≈ 26 of Fig. 4b
and 225/8 ≈ 28 of Fig. 5b.

The Fourier spectra are in Figs. 4c and 5c. To be comparable as most as
possible, we use the real parts of the spectra and the same frequencies as in the
case of the wavelets. The most significant maxima (i.e. those with the highest
absolute value) are summarized in Tab. 1. Both times and periods are expressed
in sample numbers, i.e. if the first sequence has 5 s per sample, then 140 samples
represent 140 × 5 = 700 s. The Fourier transformation yields frequencies pre-
vailing in the whole sequence, while the wavelet transformation yields an idea
about the significant frequencies in the individual samples.

Table 1. Wavelet and Fourier analysis – sample numbers, periods (in the samples) and
sizes of the most significant maxima

Sequence from Fig. 4a Sequence from Fig. 5a
Wavelets Fourier Wavelets Fourier

Sample Period Size Period Size Sample Period Size Period Size
140 210 1.76 169 12.56 119 225 7.62 186 79.6

1 210 1.28 94 7.88 116 124 7.55 130 58.1
174 117 1.05 121 7.01 193 124 7.51 101 44.2
101 117 0.77 58 6.76 38 127 7.11 82 40.2
202 37 0.73 50 5.16 202 78 5.06 60 27.9
178 38 0.61 45 4.44 26 75 4.13 69 27.6
58 61 0.59 37 4.07 158 73 3.67 53 20.8
22 60 0.57 76 3.92 70 72 3.08 43 19.86

The comparison of the lowest frequencies is difficult, because the difference
of the wave form over whole sequence is too significant. So, the wavelet periods
210 and 225 samples does not correspond to the Fourier maxima 169 and 186
samples. The precise wave form is less important in the higher frequencies, we
can see the oscillations with period 117 samples detected by wavelets have good
counterpart in the 121 samples of the Fourier spectrum in the case of the first
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Fig. 4. The analyzed data, (a) the sequence with the sampling period 5 s, (b) the
wavelet analysis and (c) Fourier amplitude spectrum

sequence. Similarly 37-38 correspond to 37 samples and 60-61 correspond to 58
samples. In the case of the second sequence, 124-127 samples correspond to 130
samples and 72-78 correspond to 69-82 samples. In both Fourier spectra, there
are local maxima without direct counterpart in the wavelet analysis (94, 76, 50
and 45 samples in the first case and 101 and 60 samples in the second case, 53
and 43 samples have weak counterparts). They are not significant in any local
time, while their sum over the whole sequence is significant.
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Fig. 5. The analyzed data, (a) the sequence with the sampling period 6 s, (b) the
wavelet analysis and (c) Fourier amplitude spectrum

4 Conclusion

The moment curves express evolution of a dynamic process in a new way. Our
experiments proved the moments of high orders are sensitive to changes in the
image brightness during the initial phase. Determination of the starting point
is of great importance for astrophysical interpretation as well as the oscilla-
tion analysis in the pre-flare times. It can give more information about the
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mechanism of flare formation, magnetic field configurations, cosmic weather pre-
diction, etc. Particularly, the comparison of the found frequencies from the oscil-
lation analysis (both wavelet and Fourier) with the model of arising flare leads
to its improvement.

The advantage of suggested method is its unusual robustness, it is possible to
apply the method to the raw data files, neither preprocessing nor calibration is
needed. For the future we intend to design special algorithms to be included into
the astronomical observation pipeline. We are collecting data for other exper-
iments in the future: temporal sequences for the meteoritic swarms searching,
automatic determination of flashes of gamma lighting and applications in remote
sensing.
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