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Steerability is a useful and important property of “kernel” functions. It enables certain compli-
cated operations involving orientation manipulation on images to be executed with high e±-

ciency. Thus, we focus our attention on the steerability of Hermite polynomials and their versions

modulated by theGaussian functionwith di®erent powers, de¯ned as the Hermite kernel. Certain

special cases of such kernel, Hermite polynomials, Hermite functions and Gaussian derivatives
are discussed in detail. Correspondingly, these cases demonstrate that the Hermite kernel is a

powerful and e®ective tool for image processing. Furthermore, the steerability of the Hermite

kernel is proved with the help of a property of Hermite polynomials revealing the rule concerning
the product of two Hermite polynomials after coordination rotation. Consequently, any order of

the Hermite kernel inherits steerability. Moreover, a couple sets of an explicit interpolation

function and basis function can be directly obtained. We provide some examples to verify

steerability of the Hermite kernel. Experimental results show the e®ectiveness of steerability and
its potential applications in the ¯elds of image processing and computer vision.

Keywords : Hermite polynomials; Hermite kernel; steerability; adaptive ¯ltering.

1. Introduction

Since the steerable ¯lters were ¯rst proposed by Freeman and Adelson in 1991, they

became widely utilized for image processing.9,14,22,23,28,30 Steerable ¯lters are char-

acterized as a class of ¯lters in which a ¯lter of arbitrary orientation is synthesized as

a linear combination of a set of \basis ¯lters". A mathematical explanation of

steerable ¯lter is presented in Eq. (1)

f �ðr; �Þ ¼
XM
j¼1

kjð�Þgjðr; �Þ; ð1Þ
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where kjð�Þ and gjðr; �Þ serve as interpolation functions and basis functions, re-

spectively. Steerable ¯lters allow e®ective and simple practical implementations of

deformable ¯lters.

Historically, the idea of steerable ¯lters can be found in the work of Danielsson

and Knutsson without explicitly mentioning its conception.4,10 It was Freeman and

Adelson who coined the concept of \steerability". They introduced steerable ¯lters

based on Gaussian derivatives and concluded that a product of a polynomial and a

rotationally symmetric window function results in a steerable function.9 Together

with steerability in orientation, Simoncelli et al. also investigated steerability in

translation and scale. The terminology \shiftability" is proposed for steerability in

di®erent parameters resulting in various deformations. Simoncelli and his colleagues

also addressed joint shiftability, covering steerability in both orientation and posi-

tion, as well as in both scale and position simultaneously.22 A class of steerable wedge

¯lters were designed by Simoncelli and Farid. Ambiguity on the orientation map was

e±ciently eliminated by using steerable wedge ¯lters.24 The Lie-group theory is used

to develop steerable ¯lters as well. Typically, steerable ¯lters were designed by

Fourier decompositions, e®ectively generalized by Michaelis and Sommer with the

Lie-group theory.13 Teo and Hel-Or based handling of problems related to compu-

tational aspects of steerable functions on the Lie-group theory.29 Comparatively, Beil

proposed a method to derive a minimum number of basis functions based on Car-

tesian tensor calculus. Rotation invariants were expressed by tensor calculus. These

invariant components thus enable construction of a steerable function.3 More re-

cently, the design of multi-steerable ¯lters was formulated by Muhlich et al. They

demonstrated that the multi-steerable ¯lters can be constructed by a correct com-

bination of single steerable ¯lters. The polynomial techniques for generating multi-

steerable ¯lters and some applications such as junction analysis were also given.14

Approximation of a given deformed function by basis functions is investigated in

relationship with steerable ¯lters. Perona de¯ned the quality of approximation and

proposed a technique useful for ¯nding the best basis functions to approximate the

given function within a prede¯ned error or to exactly represent the function.16,17 Yu

et al. proposed approximate steerability which decomposes the signal locally in the

spatial domain with Gaussian masks as basis ¯lters. Their method yields both higher

orientation resolution and lower complexity.33

On the other hand, Hermite polynomials and their weighted versions are powerful

tools and thus are widely used in image processing and computer vision. Here, we call

Hermite polynomials and their weighted versions the \Hermite kernel" for conve-

nience. Theoretically, the kernel function is rigorously de¯ned in relation to the inner

product and Hilbert space. Some kernel functions such as the linear kernel, polyno-

mial kernel and Gaussian kernel are frequently used in practice. For an instance,

support vector machines are one of the most well-known algorithms based on the

kernel functions.27 The Hermite kernel is a kind of \pseudo" kernel function according

to the de¯nition. However, we can still ¯nd wide applications of the Hermite kernel.
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Certain terminologies such as \Hermite transform",12 \Shapelets transform",20,11

\Hermite moments",26 and \Gaussian�Hermite moments"25,31,32 are all based on the

Hermite kernel. In this paper we o®er a solution of the steerability of the Hermite

kernel. We are capable of decomposing a rotated kernel function of any order by the

speci¯c interpolation functions and basis functions, no matter what the kernel

represents: a Hermite polynomial, a Hermite function, a Gaussian derivative or any

other Hermite polynomial based function. Freeman and Adelson formulated a

method to compute interpolation functions of the pth partial derivative of the

Gaussian function Gp;0. Comparatively, our method o®ers computation of interpo-

lation functions for any Hermite kernel. It is not necessary for one index (either p or q)

to equal 0, nor does the kernel have to be con¯ned to Gaussian derivatives. Actually,

the kernel can be either Hermite polynomials, Hermite functions, or even the Hermite

polynomial-related versions in the 2D space.

The paper is organized as follows: we present the construction of a steerable

function and the de¯nition of the Hermite kernel in Sec. 2. Further, we discuss special

cases of the Hermite kernel, which correspond to Hermite polynomials, Hermite

functions and Gaussian derivatives, respectively. The derivations of the interpolation

and basis functions are formulated in Sec. 3. Subsequently in Sec. 4, we provide

applications of such steerability in image processing. Section 5 concludes the paper.

2. Hermite Kernel and Its Steerability

Generally, the topic of steerability consists of three aspects. The ¯rst one is con-

structing the functions which are steerable. The second focuses on the required

number of basis functions su±cient to synthesize the rotated function. The last and

most important aspect focuses on the de¯nition of interpolation function and basis

function used to decompose the rotated function.

2.1. Hermite kernel

In this section we construct the so-called Hermite kernel and discuss its steerability.

Firstly, a brief introduction of Hermite polynomials is necessary. The Hermite

polynomial HpðxÞ is an orthogonal polynomials de¯ned over the domain ð�1;1Þ

HpðxÞ ¼ ð�1Þp expðx2Þ dp

dxp
expð�x2Þ: ð2Þ

It can be written in the form of series often used in practice

HpðxÞ ¼
X½p=2�
k¼0

ð�1Þkp!
k!ðp� 2kÞ! ð2xÞ

p�2k: ð3Þ

Figure 1 shows the Hermite polynomials up to the ¯fth-order. Since Hermite poly-

nomials increase signi¯cantly with the increasing order, we normalized their values

by the squares of corresponding orders for graphing purposes. Hermite polynomials
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are orthogonal with the Gaussian function being their weight function. Orthogo-

nality is formulated as follows:Z 1

�1
HpðxÞHqðxÞ expð�x2Þdx ¼ 0 p 6¼ q

2pp!
ffiffiffi
�

p
p ¼ q:

�
ð4Þ

Freeman and Adelson proposed a method to construct a steerable ¯lter from any

arbitrary polynomial.9 They reduced the method to a theorem cited below:

Theorem 1. Let fðx; yÞ ¼ W ðrÞPNðx; yÞ where W ðrÞ is an arbitrary modulating

function, and PNðx; yÞ is an Nth order polynomial in x and y, whose coe±cients may

depend on r. Linear combinations of 2N þ 1 basis functions are su±cient to synthesize

fðx; yÞ ¼ W ðrÞPNðx; yÞ rotated to any angle. If PNðx; yÞ contains only even [odd ] order
terms (terms xpyq for pþ q even [odd ]), then N þ 1 basis functions are su±cient.

In Theorem 1, W ðrÞ is a radial function with r ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ y2

p
. Theorem 1 ensures

the existence of steerability of the polynomial-based kernel. Accordingly, it remains

quite trivial to construct steerable ¯lters from di®erent kinds of polynomials. The

implementation is simple, only requiring an arbitrary symmetric modulating func-

tion W ðrÞ. The selection of W ðrÞ is free and will not a®ect the steerability of the

constructed kernel. We prefer to choose a Gaussian function as the window function,

because it is smooth and separable thus enabling e±cient implementation in practice.

Moreover, we choose the Gaussian function since it is a weight function of Hermite

polynomials. The steerable and orthogonal properties might be obtained from the

−2 −1.5 −1 −0.5 0 0.5 1 1.5 2
−6

−4

−2

0

2

4

6

x

H
p
(x

)/
p

2
H

0
(x)

H
1
(x)

H
2
(x)/4

H
3
(x)/9

H
4
(x)/16

H
5
(x)/25

Fig. 1. Hermite polynomials of order 0 up to 5.
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constructed kernel simultaneously with Gaussian modulation. Consequently, we

de¯ne the 1D Hermite kernel as follows

~H
n
p ðx;�Þ ¼ Hp

x

�

� �
exp � nx2

2�2

� �
n 2 R: ð5Þ

It is obvious that the 1D Hermite kernel is actually a Hermite polynomial modulated

by a Gaussian envelope of di®erent power. In Eq. (5) n is a real number. Steerability

is meaningless for the 1D Hermite kernel. In order to discuss steerability, we should

extend the kernel to 2D space. The Hermite kernel in 2D space is de¯ned with the

separability of both Hermite polynomials and Gaussian functions

Bn
p;qðx; y;�Þ ¼ ~H

n
p ðx;�Þ ~H n

q ðy;�Þ

¼ Hp

x

�

� �
Hq

y

�

� �
exp � nx2 þ ny2

2�2

� �
: ð6Þ

Equation (6) yields an explicit expression of the Hermite kernel which is steerable.

For convenience, we use the term \Hermite kernel" when speaking about the \2D

Hermite kernel" in the remainder of this paper. The term Hpðx�ÞHqðy�Þ in Eq. (6)

corresponds to PNðx; yÞ and expð� nx 2þny 2

2� 2 Þ is the counterpart of W ðrÞ as mentioned

in Theorem 1. The number of basis functions to steer Eq. (6) is obvious according to

Theorem 1. The number M should equal pþ q þ 1, since the product of Hermite

polynomials contains only either even or odd orders of the term xpyq.

2.2. Special cases of the Hermite kernel

There are four parameters p, q, � and n which control the ¯nal form of the Hermite

kernel. The e®ect of the ¯rst three parameters p, q and � on the kernel can be easily

understood. They determine the di®erent order of the Hermite polynomial in the

kernel as well as the di®erent scale with which the kernel expands. However, the

e®ect of the parameter n on the kernel cannot be easily understood directly. In this

subsection, we show some special cases of the kernel whose n is corresponding to 0, 1

and 2, respectively.

2.2.1. Scaled Hermite polynomials

When n ¼ 0, Eq. (6) de¯nes a scaled Hermite polynomial

B0
p;qðx; y;�Þ ¼ Hp

x

�

� �
Hq

y

�

� �
: ð7Þ

So far, the Hermite kernel in this case has been used by Shen to de¯ne Hermite

moments.26 Because the amplitude of HpðxÞ explodes for larger x, especially when

the order is higher, we show the Hermite kernel only for orders from ð0; 0Þ up to ð5; 5Þ
in Fig. 2. It should be noted that we draw the kernels with x

� being limited to the
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interval ½�2:1; 2:1�, since the Hermite polynomial H5ðxÞ has its greatest root around
2:0202. Therefore, selecting this interval ensures that all roots of selected polynomials

(here they are Hermite polynomials of orders from 0 to 5) will be included. At the

same time it will produce minor distortion when drawing these kernels.

2.2.2. Hermite functions

The Hermite kernel corresponds to a non-coe±cient 2D Hermite function with n ¼ 1.

Its expression is detailed by

B1
p;qðx; y;�Þ ¼ Hp

x

�

� �
Hq

y

�

� �
exp � x2 þ y2

2�2

� �
: ð8Þ

One property of the Hermite functions is that they are eigenfunctions of the Fourier

transform. This means that the Fourier transform of a Hermite function is still a

Hermite function multiplied by a scaling factor. For example

z HpðxÞ exp � x2

2

� �� �
¼ ð�iÞpHpð!Þ exp � !2

2

� �
; ð9Þ

where z represents the Fourier transform and i ¼ ffiffiffiffiffiffiffi�1
p

. The Hermite kernel in this

case also inherits this property due to the separability of the Fourier transform in

2D space. Actually, some orthogonal moments and transforms are based on such

kernel. The terminologies \Gaussian�Hermite moments"25,31,32 and \Shapelets

transform"11,20 use bases similar to this kernel. The only di®erence is those bases

Fig. 2. The Hermite kernel ðn ¼ 0; � ¼ 1:0Þ is shown in square windows whose sizes are 91� 91 pixels.

These kernels are generated by 2D scaled Hermite polynomials. Each square is drawn by mapping the
values of the corresponding kernel to the interval of gray level ½0; 255�. From bottom to top and from left to

right, it shows the Hermite kernel of order ð0; 0Þ to ð5; 5Þ, respectively. The kernels located in di®erent

diagonal directions are basis functions for the Hermite kernel of di®erent orders. For example, the kernels

crossed by the white line serve as basis functions for the kernel of order 5.
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have normalized coe±cients, the Hermite kernel, however, has no coe±cient in its

de¯nition. Figure 3 shows the Hermite kernel of orders from 0 to 9.

2.2.3. Gaussian derivatives

When we set n ¼ 2, the Hermite kernel is de¯ned as:

B2
p;qðx; y;�Þ ¼ Hp

x

�

� �
Hq

y

�

� �
exp � x2 þ y2

�2

� �
: ð10Þ

In this case the Hermite kernel is substantially a non-coe±cient ¯lter function of the

Hermite transform. Martens pointed out that the ¯lter function of the Hermite

transform is substantially identical to the corresponding Gaussian derivative.12 The

relation between the Gaussian derivative and the Hermite kernel is obvious from the

following equation:

@ pGðx;�Þ
@xp

¼ � 1ffiffiffi
2

p
�

� �
p ffiffiffiffiffiffi

2�
p

�Hp

xffiffiffi
2

p
�

� �
G

xffiffiffi
2

p ;�

� �� �
2

; ð11Þ

where Gðx;�Þ is a Gaussian function and � is its standard deviation. The rightmost

term of Eq. (11) is actually a 1D Hermite kernel if the coe±cient is ignored. Hence,

Fig. 3. The Hermite kernel ðn ¼ 1; � ¼ 10:0Þ is shown in square windows whose sizes are 91� 91 pixels.

From bottom to top and from left to right, each square shows the Hermite kernel of order 0 to 9. The image

shown in each square is generated by mapping the values of the corresponding kernel to the interval of gray
level ½0; 255�. The kernels located in di®erent diagonal directions are basis functions for the Hermite kernel

of di®erent orders. The white line marks the basis functions for the kernel of order 5.
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the Hermite kernel in this case also corresponds to non-coe±cient Gaussian deriva-

tives in 2D space. Figure 4 displays the kernel of di®erent orders. The generic shape

of each kernel resembles greatly to that of the kernel when n ¼ 1. However, with the

order increasing, the e®ect of the additional Gaussian function on the kernel becomes

apparent. The contour of the high-order kernel is weakened greatly by the second

Gaussian function.

3. Interpolation Functions and Basis Functions

3.1. Prior knowledge

Before we search for the interpolation functions and basis functions of the Hermite

kernel, we must review a theorem derived by Yang et al. related to Hermite poly-

nomials in the case of rotated coordinates.32 This theorem can be taken advantage of

demonstrating steerability of the Hermite kernel.

Theorem 2. Let p, q be two non-negative integers. If the coordinates are rotatedbx ¼ x cos �� y sin �by ¼ x sin �þ y cos �;

�
ð12Þ

Fig. 4. Hermite kernel ðn ¼ 2; � ¼ 10:0Þ is shown in square windows whose sizes are 91� 91 pixels. From

bottom to top and from left to right, each square shows Hermite kernel of order 0 to 9. The image shown in

each square is generated by mapping the values of the corresponding kernel to the interval of gray level
½0; 255�. The kernels located in di®erent diagonal directions are basis functions for the Hermite kernel of

di®erent orders. The white line marks the basis functions for the kernel of order 5.

B. Yang, J. Flusser & T. Suk

1354006-8



then the product of the Hermite polynomial can be expressed as:

Hpðx̂ÞHqðŷÞ ¼
Xpþq

r¼0

kðr; p; q; �ÞHpþq�rðxÞHrðyÞ; ð13Þ

where kðr; p; q; �Þ is a coe±cient determined by p, q, �. It can be calculated from

kðr; p; q; �Þ ¼

Xr
m¼0

ð�1Þm p
m

� �
q

r�m

� �
cospþr�2m � sinq�rþ2m �

if 0 � r � minðp; qÞXp
m¼0

ð�1Þm p
m

� �
q

r�m

� �
cospþr�2m � sinq�rþ2m �

if p < r � qXq
m¼0

ð�1Þr�m p
r�m

� �
q
m

� �
cosp�rþ2m � sinqþr�2m �

if q < r � pXpþq�r

m¼0

ð�1Þp�m p
p�m

� �
q

r� pþm

� �
cosr�pþ2m � sin2pþq�r�2m �

if maxðp; qÞ < r � pþ q:

8>>>>>>>>>>>>>>>>>>>>>>><>>>>>>>>>>>>>>>>>>>>>>>:
ð14Þ

Theorem 2 describes an interesting rule of Hermite polynomials when coordinate

rotation occurs. Inspired by this theorem, we have the possibility to derive the

interpolation and basis function set for the Hermite kernel.

3.2. Derivation of interpolation functions and basis functions

We ¯rst de¯ne the coordinates which are used throughout the entire paper. The

coordinates are de¯ned in such fashion, that the x direction is pointing to the right

and the y direction is pointing up. Rotation of an image by the angle � is counter-

clockwise. Essentially, image rotation only changes the position of the image, it never

changes its content. Therefore, given any angle �, the rotated version of Eq. (6)

follows the relationship

�Bn
p;qðx̂; ŷ;�Þ ¼ Bn

p;qðx; y;�Þ: ð15Þ
A more explicit expression can be obtained with the help of Eq. (12)

�Bn
p;qðx; y;�Þ ¼ Bn

p;qðx cos �þ y sin �;�x sin �þ y cos �;�Þ: ð16Þ
With the substitution of Eq. (6) into Eq. (16), it can be further expanded as follows

�Bn
p;qðx; y;�Þ ¼ Hp

x cos �þ y sin �

�

� �
Hq

�x sin �þ y cos �

�

� �
exp � nx2 þ ny2

2�2

� �
:

ð17Þ
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Using the conclusion of Theorem 2, Eq. (17) can be rewritten as:

�Bn
p;qðx; y;�Þ ¼

Xpþq

r¼0

kðr; p; q;��ÞHpþq�r

x

�

� �
Hr

y

�

� � !
exp � nx2 þ ny2

2�2

� �

¼
Xpþq

r¼0

lðr; p; q; �Þ Hpþq�r

x

�

� �
Hr

y

�

� �
exp � nx2 þ ny2

2�2

� �� �

¼
Xpþq

r¼0

lðr; p; q; �ÞBn
pþq�r;rðx; y;�Þ: ð18Þ

Equation (18) yields us one set of interpolation functions and basis functions to steer

Eq. (6). Speci¯cally, lðr; p; q; �Þ serves as an interpolation function, with the corre-

sponding explicit form

lðr; p; q; �Þ ¼ kðr; p; q;��Þ: ð19Þ
The basis functions, on the other hand, are a complete set of the Hermite kernel

�ðp; qÞ ¼ Bn
i;jðx; y;�Þ

¼ Hi

x

�

� �
Hj

y

�

� �
exp � nx2 þ ny2

2�2

� �
i; j 2 N� and iþ j ¼ pþ q:

ð20Þ
As long as p and q are known, the complete set of basis functions can be found without

di±culties. Figures 2�4 illustrate the general shapes of basis functions. When pþ q is

¯xed, the corresponding basis functions are located in the diagonals of image squares

as shown in ¯gures above. For example, the white lines crossing the image squares

cover the basis functions for the kernel of order 5. Also, the interpolation functions

can be computed from Eq. (19).

Steerability can be obviously generalized to 3D case. 3D rotation is de¯ned by

rotating � along the z axis, then �� along y axis and ¯nally � along x axisa

R ¼ Rxð�ÞRyð��ÞRzð�Þ; ð21Þ

where

Rzð�Þ ¼
cos� � sin� 0

sin� cos� 0

0 0 1

0B@
1CA; ð22Þ

Ryð��Þ ¼
cos � 0 sin �

0 1 0

� sin � 0 cos �

0B@
1CA ð23Þ

aRotation 3D, \http://en.wikipedia.org/wiki/Rotation matrix"
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and

Rxð�Þ ¼
1 0 0

0 cos � � sin �

0 sin � cos �

0@ 1A: ð24Þ

Equation (21) represents a 3D rotation achieved by three successive 2D rotation

de¯ned by Eq. (12). Using the property mentioned in Theorem 2, then for each 2D

rotation de¯ned by Eqs. (22)�(24), we can obtain the expression of the 3D Hermite

kernel of order ðp; q; rÞ in the following form:

RBn
p;q;rðx; y; z;�Þ ¼

Xqþr

s¼0

k s; q; r;��ð Þ
Xpþs

t¼0

k t; p; s; �ð Þ

�
Xpþqþr�t

u¼0

k u; pþ s� t; q þ r� s;��ð ÞBn
pþqþr�t�u;u;zðx; y; z;�Þ

¼
XLðp;q;rÞ
i¼1

coni p; q; r;��; �;��ð ÞBn
pþqþr�t�u;u;zðx; y; z;�Þ; ð25Þ

where Lðp; q; rÞ is a certain number determined by p; q; r and coni represents a

constant sequence specially related to p; q; r;��; � and ��. Likewise, the interpo-

lation functions are given as coni and the basis functions are denoted by

Bn
pþqþr�t�u;u;zðx; y; z;�Þ. A total of Lðp; q; rÞ basis functions to construct the rotated

kernel of order ðp; q; rÞ.
Following is an example for a 2D case pþ q ¼ 3. This example will show us

how the transformed function is synthesized by the basis function set. From

Figs. 5(a)�5(d), the images show the kernels B1
3;0, B

1
2;1, B

1
1;2 and B1

0;3. According to

the previous analysis, they serve as the basis functions of the Hermite kernel of order

3 ðpþ q ¼ 3Þ, which are non-coe±cient Hermite functions in 2D space. It should be

noted that the basis functions B1
3;0, B

1
2;1, B

1
1;2 and B1

0;3 in this experiment are gen-

erated with � ¼ 4:0 and shown in the windows whose sizes are 41� 41 pixels. These

four basis functions are used to produce the rotated function and are designed

for convolution with the tested image. For presentation purposes, the images in

Figs. 5(a)�5(e) are magni¯ed. Figure 5(e) shows the transformed version of B1
2;1 by

rotating �
3 and is actually synthesized from the linear combination of B1

3;0, B
1
2;1, B

1
1;2

and B1
0;3. We can compute the coe±cient lðr; 2; 1; �3Þ of the linear combination from

Eq. (19). Its values are saved in the vector K ¼ ½�0:2165;�0:6250;�0:2165; 0:3750�.
As convolution is a linear operation, we can synthesize the response of an image to

the rotated version of B1
2;1 from the response of the image to the basis functions.

Here, a gray image shows a white circle in black background in (f). The result of

convoluting (f) with (e) can be indirectly obtained by the linear combination of (g) to

(j), which are the responses of (f) to (a), (b), (c) and (d), respectively. The coe±cient

of the linear combination is the element of vector K.
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4. Applications

In this section, we introduce several applications of the Hermite kernel, especially its

steerability in image processing. Freeman and Adelson proposed several fundamental

applications of the steerable ¯lter, such as local orientation estimation, adaptive

¯ltering, contour detection and shape-from-shading analysis.9 The Hermite kernel can

certainly also serve as such a ¯lter and accomplish most of these tasks. Considering

the reported work, we provide three examples which e®ectively demonstrate the

steerability of the Hermite kernel and present its application in image processing.

Strictly speaking, we focus our attention on indirect moment computation, operator

approximation and orientation adaptive ¯ltering based on the Hermite kernel.

4.1. Indirect moment computation for rotated image

When steerability is mentioned, the ¯rst application that comes into mind are

steerable ¯lters and their impressive e±ciency related to convolution with an arbi-

trary oriented ¯lter. Indeed such application of Hermite kernel will be presented too,

however, the utilization of steerability goes far beyond simplifying convolution. It

can be used for example to compute moments or transform coe±cients related to

rotation (for a survey how moments can be used in image analysis see Ref. 7). As the

¯rst application, we present moment computation with respect to the Hermite

kernel, where the computation of Gaussian�Hermite moments (GHMs) serves as an

example. GHM is de¯ned as32:

�p;q ¼
Z 1

�1

Z 1

�1
 p;qðx; y;�Þfðx; yÞdxdy; ð26Þ

Fig. 5. Hermite kernels with ðpþ q ¼ 3Þ are shown in (a)�(d), which correspond to B1
3;0, B

1
2;1, B

1
1;2 and

B1
0;3, respectively. The rotation of (b) by �

3 is displayed in (e). It is actually implemented by

ð�0:2165B1
3;0 � 0:6250B1

2;1 � 0:2165B1
1;2 þ 0:3750B1

0;3Þ. (f ) A gray image containing a circle. The images

from (g) to (j) give the results of convoluting (f ), respectively, with (a)�(d). (k) The linear combination of
(g) to ( j) with the corresponding coe±cient denoted by vector K. (k) is actually identical to the direct

convolution between (f) and (e).
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with

 p;qðx; y;�Þ ¼ cðp; q; �ÞB1
p;qðx; y;�Þ; ð27Þ

where

cðp; q; �Þ ¼ 2pþqp!q!��2
	 
�1

2 : ð28Þ
For an image rotated by angle �, its GHM is computed correspondingly by:

��p;q ¼
Z 1

�1

Z 1

�1
 p;qðx; y;�Þf �ðx; yÞdxdy; ð29Þ

where f � represents the image after rotation. With Eqs. (26)�(28), Eqs. (16)

and (18), we can simplify Eq. (29) to

��p;q ¼ cðp; q; �Þ
Z 1

�1

Z 1

�1
fðx; yÞ��B1

p;qðx; y;�Þdxdy

¼ cðp; q; �Þ
Z 1

�1

Z 1

�1
fðx; yÞ

Xpþq

r¼0

lðr; p; q;��ÞB1
pþq�r;rðx; y;�Þdxdy

¼
Xpþq

r¼0

cðp; q; �Þlðr; p; q;��Þ
cðpþ q � r; r; �Þ �pþq�r;r

¼
Xpþq

r¼0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðpþ q � rÞ!r!

p!q!

s
lðr; p; q;��Þ�pþq�r;r: ð30Þ

When p or q is higher, the factorial operation for such number will result in numerical

over°ow. Under this condition, the following equation is advised to be used instead.

��p;q ¼
Xpþq

r¼0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiYjmaxðpþq�r;rÞ�minðp;qÞj

i¼1

minðp; qÞ þ i

minðpþ q � r; rÞ þ i

vuut lðr; p; q;��Þ�pþq�r;r: ð31Þ

When it comes to the digital image, moment computation from Eq. (26) and

Eqs. (30) and (31) is implemented by zeroth-order approximation (ZOA). Thus, for a

digital image whose size is Nx �Ny pixels, its GHM is actually computed from

�p;q ¼
XNx

i¼1

XNy

j¼1

 p;qðxi; yj;�Þfðxi; yjÞ: ð32Þ

Likewise, the same method can be used to calculate the moments of the rotated image.

According to the computation for the images before and after rotation,  p;qðxi; yj;�Þ
are implemented by sampling a square region. The basis functions are the same for the

original image and the rotated one. However, there are changes in the image rotation

because when rotating a digital image resampling and interpolation take place,

leading to changes in the image intensity function and coordinates. Inevitably, some

errors are produced in the moments of the rotated image, however Eq. (30) o®ers a
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way to avoid such errors. It indicates that when both the moments of the original

image and the rotation angles are known, the moments of the rotated image can be

computed successfully without generating the rotated image. Thus, the errors gen-

erated by resampling and interpolation are completely avoided. In the rest of this

subsection, moment computation by Eq. (30) is denoted as indirect computation and

that by Eq. (32) as direct computation. Clearly, both indirect and direct moment

computations have signi¯cance only for computation of the rotated image. Moreover,

indirect moment computation provides theoretical results in moment computation.

An experiment was designed to verify indirect moment computation and show the

in°uences of di®erent interpolation methods on moment computation. A gray image

showing a Chinese cat was selected as the original image. The image is illustrated by

Fig. 6(a) and its size is 200� 200 pixels. Its rotated versions were generated by a

program coded in Matlab. We successively selected \Nearest", \Bilinear" and

\Bicubic" interpolation methods to accomplish the discrete rotation operation. � ¼
0:25 for moment computation in this experiment. A complete set of GHMs were

computed for the rotated images, several moments are listed in Table 1. In Table 1,

\Nearest", \Bilinear" and \Bicubic" represent direct moment computation with the

rotated images generated by these interpolation methods. Obviously, when the angle

is 90� or the multiples of 90�, there are no interpolation operations involved in the

rotated images. Correspondingly, direct moment computation yields the same values

as indirect moment computation. In this case, direct moment computation is capable

of giving true values; however, for general angles such as 10�, 70�, 140�, 230� and

315�, direct moment computation produces slightly di®erent moment values

depending on the di®erent interpolation methods. In other words, the errors are

created during direct moment computation and they will de¯nitively in°uence our

work. On the contrary, indirect moment computation avoids such errors and o®ers

theoretical values of moments. This experiment shows that indirect moment com-

putation o®ers more accurate moment computation than the traditional method.

Indirect moment computation can be used in the cases when accurate moment

computation for rotated images is required. Accurate rotation of a digital image is

necessary in practice and is accomplished by Hermite expansions.15 Accurate rota-

tion will be achieved if there is no practical rotation operation involved in generation

of the rotated images. We use an example of image reconstruction to show how

indirect moment computation realizes accurate rotation. Figure 6(a) is taken as the

original image. We conduct the reconstruction with two implementations. In the ¯rst

implementation, we rotated the image by 30� ¯rst and then reconstructed the ro-

tated image using the method proposed by Yang and Dai.31 The reconstructed

images are shown in Figs. 6(b)�6(d). Comparatively, in the second implementation

we computed the moments of a rotated image using Eqs. (30) and (31) without

generating the rotated image. Subsequently, we reconstructed the images from the

computed moments. The results are illustrated in Figs. 6(e)�6(g). Figure 6 suggests

that the reconstructed images from these two implementations are almost the
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same; the di®erences are barely distinguishable by a human eye. This experiment

demonstrates that indirect moment computation is e®ective when computing

moments of rotated images. Moreover, it can be used to reconstruct images rotated

by any angle. It frees us from generating rotated images and avoids unnecessary

errors. Therefore, indirect moment computation is much more e±cient than the

traditional method used for computing moments of rotated images.

Additionally, it should be noted that indirect moment computation is still valid

when computing Hermite moments, coe±cients of the Hermite transform, and even

the Gaussian derivatives. However, some adaptive modi¯cations must be imple-

mented, since these moments, the transform and ¯lters are substantially based on the

Hermite kernel, from which steerability is inherited.

(a)

(b) (c) (d)

(e) (f ) (g)

Fig. 6. Chinese cat and its reconstructed versions. (a) The original image. (b)�(d) Show the recon-

structed rotated image from GHMs of orders ð0; 0Þ up to ð19; 19Þ, ð39; 39Þ and ð59; 59Þ, respectively.
(e)�(g) Display the reconstructed images using the implementation of indirect moment computation. The

moments are used for the same orders as in (b)�(d).
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4.2. Operator approximation

In this subsection, we construct operators designed for detecting line features based

on the Hermite kernel. Lines are important features in low level machine vision. So

far, much research has been done on detecting lines in images and satisfactory results

have been achieved. Here, we review Davies' work related to line detection from

orthogonal masks.5,6 Davies proposed two sets of operators whose sizes are 3� 3 and

7� 7 pixels, respectively. The operator L0 whose size is 7� 7 pixels has the following

explicit form:

L0 ¼

0 0 �1 �2 �1 0 0

0 0 �1 �2 �1 0 0

1 1 0 0 0 1 1

2 2 0 0 0 2 2

1 1 0 0 0 1 1

0 0 �1 �2 �1 0 0

0 0 �1 �2 �1 0 0

0BBBBBBBBBB@

1CCCCCCCCCCA
: ð33Þ

Davies' operators show good performance in detecting lines and estimating their

orientation. The core of the method is based on generating two operators which have

generic shapes as shown in Fig. 7. Given any image fðx; yÞ we can obtain the e®ective

line contrast by convoluting the image with the operators mentioned above. The

Table 1. GHMs of the rotated images calculated by indirect computation and direct computation.

GHM �3;8 �4;9 �5;4 �6;6 �7;6 �9;2 �10;8 �11;0

Indir (truth) �4:6931 0:7827 �1:2782 �2:0752 �2:2959 �2:4376 0:5978 4:1184

10� Nearest �4:7312 0:7563 �1:2124 �2:0624 �2:2746 �2:4045 0:6369 4:1124
Bilinear �4:6825 0:7820 �1:2758 �2:0698 �2:2909 �2:4300 0:5956 4:1105

Bicubic �4:6999 0:7853 �1:2793 �2:0765 �2:3005 �2:4393 0:5982 4:1221

Indir (truth) 4:0096 �0:7263 5:2284 �1:1111 2:7230 1:5008 1:4193 �4:1303
70� Nearest 4:0680 �0:7286 5:1940 �1:1039 2:6616 1:5365 1:4135 �4:1095

Bilinear 3:9986 �0:7216 5:2161 �1:1100 2:7136 1:4966 1:4139 �4:1169

Bicubic 4:0164 �0:7236 5:2313 �1:1106 2:7230 1:4981 1:4212 �4:1314

Indir (truth) �3:3539 �1:5266 �2:7294 0:5858 3:9403 �1:5822 �2:3991 �0:7505

140� Nearest �3:3379 �1:5150 �2:8227 0:6058 3:8640 �1:5698 �2:3869 �0:7457

Bilinear �3:3420 �1:5260 �2:7177 0:5844 3:9322 �1:5780 �2:3886 �0:7446
Bicubic �3:3581 �1:5243 �2:7298 0:5953 3:9410 �1:5819 �2:3942 �0:7477

Indir (truth) 4:7100 4:4772 0:6517 0:5858 3:5347 2:8467 �1:7949 0:8491

230� Nearest 4:6986 4:4188 0:6428 0:6058 3:5472 2:8084 �1:7722 0:8895
Bilinear 4:6970 4:4667 0:6520 0:5844 3:5238 2:8397 �1:7892 0:8459

Bicubic 4:7168 4:4770 0:6540 0:5953 3:5306 2:8434 �1:7919 0:8482

Indir (truth) 5:5294 1:7131 4:8924 �0:2674 �2:4260 3:3335 �1:8308 1:0150
315� Nearest 5:5891 1:6997 4:8792 �0:3280 �2:4550 3:3365 �1:7940 0:9926

Bilinear 5:5249 1:7067 4:8848 �0:2669 �2:4181 3:3250 �1:8256 1:0060

Bicubic 5:5355 1:7100 4:8977 �0:2617 �2:4274 3:3416 �1:8236 1:0124

B. Yang, J. Flusser & T. Suk

1354006-16



following equation o®ers the measurement:

ML ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðL0 � fÞ2 þ ðL45 � fÞ2

p
; ð34Þ

where the symbol \*" represents convolution. It is possible to implement these two

orthogonal operators from the Hermite kernel using its steerability. It is obvious that

the Hermite kernel B1
1;1 has a similar shape to that of L45. However, there are no

existing kernels whose shapes correspond to L0. Both Davies' operators are similar,

the only di®erence is the phase in the spatial domain. Speci¯cally, L0 is the rotated

version of L45 with the clockwise rotation by �
4. Therefore, we can use the rotated

version of B1
1;1 to implement L0. The interpolation functions are given in vector C

whose expression is C ¼ ½� cos � sin �; cos2 �� sin2 �; cos � sin ���¼� �
4
. From left to

right, each element ofC represents the corresponding interpolation function for B1
2;0,

B1
1;1 and B1

0;2, respectively. Figure 8 describes the way how the rotated version of

B1
1;1 is implemented using B1

2;0, B
1
1;1 and B1

0;2.

Since di®erent � results in di®erent approximating operators, we choose � which

provide the maximum correlation coe±cient between Davies' operator ðL0Þ and the

approximating operator. For � with values ranging from 0:50 to 2:0 with the

Fig. 8. Generation of the rotated B1
1;1 from the Hermite kernel ðpþ q ¼ 2Þ.

Fig. 7. The generic shapes of Davies' operators for line feature detection.
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increment of 0:1, we ¯nd that � ¼ 0:8 produces the maximum correlation coe±cient.

The approximating operators were tested on an image of a Prague street (Czech

Republic). As to make a comparison, we also use Davies' operators to conduct the

experiment. Figure 9 gives the results from these two sets of operators. When � ¼ 0:8

(a)

(b) (c) (d)

(e) (f ) (g)

Fig. 9. Line feature detection from orthogonal operators. (a) Shows the original image whose size is

400� 400 pixels. (b) The detection result by using Davies' operators whose sizes are 7� 7 pixels. The

binary image for enhancing line features is shown in (c). (d) and (e) show the corresponding detection

result and the binary image from the approximating operators whose sizes are 7� 7 pixels with � ¼ 0:8.
The result using approximating operators whose sizes are 9� 9 pixels with � ¼ 1:2 are displayed in (f ) and

(g). It should be noted that the threshold for generating binary images is set to 0:3 for all cases and the

range of gray level is mapped to the interval ½0; 1�.

B. Yang, J. Flusser & T. Suk

1354006-18



and the size of the approximating operator is 7� 7 pixels, the results show that both

methods are competent to detect lines, because the road lamp, the roof edges and the

main separation lines on the wall are selected successfully. Moreover, the binary

images show that Davies' operators perform slightly better than the approximating

operators, since the former contains the windows' edges and separate lines for the

°oor, which are poorly exhibited in the latter. But, when we implement a set of

operators whose sizes are 9� 9 pixels, more lines are highlighted by the approxi-

mating operators. The obvious improvement is seen in the appearance of separation

lines of two °oors and the vertical windows edges. Undoubtedly, it is possible to

implement such operators with di®erent � and di®erent operator size. Apparently,

this experiment re°ects the validity of steerability and it also shows that the Hermite

kernel can be used as a substitute for certain standard operators. Furthermore, the

approximating operators are determined by parameters. Various approximating

operators will be generated depending on the selection of di®erent parameters. In this

respect, approximating operators are more °exible than certain standard operators

in practice. We also noted that the coe±cients of operator in°uence the detection

results. Pouliquen et al. discussed optimal methods how to derive coe±cients of these

two operators.19 However, the operators implemented by the Hermite kernel are not

among the optimal coe±cients selected. The coe±cients are actually the sampling

values of the continuous Hermite kernel in 2D space. In order to better approximate

the continuous kernel, we sample the kernel every half pixel. The approximating

operators whose size is 7� 7 pixels are given in Appendix.

4.3. Orientation adaptive ¯ltering

The e®ective application of steerable ¯lters is orientation adaptive ¯ltering. In order

to execute orientation adaptive ¯ltering, it is ¯rst necessary to acquire orientation

information. So far, orientation estimation is still an important task, especially in

processing medical, seismic and microscopic images containing directional textures

or structures. Research on orientation estimation provided many important ¯ndings;

one of the most signi¯cant and widely utilized in medical image processing being

orientation estimation based on the Hessian matrix.8,21 For an image fðx; yÞ, its
Hessian matrix is de¯ned as:

H ¼

@ 2f

@x2

@ 2f

@x@y

@ 2f

@y@x

@ 2f

@y2

0BBB@
1CCCA: ð35Þ

The eigenvalues and eigenvectors of the Hessian matrix reveal information on local

structures. More speci¯cally, the eigenvector which corresponds to the eignevalue

having the least absolute value determines local orientation.18 In this subsection, we

will ¯rst conduct orientation estimation and then perform an orientation adaptive

¯ltering to enhance features in an image. Equation (35) indicates that the second
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derivatives of an image have to be calculated in order to construct the Hessian

matrix. Generally, such derivative computation is implemented by convoluting the

second Gaussian derivatives with the image, since the convolution with the Gaussian

derivative can tune the ¯lter response to the speci¯c widths of lines as well as to

reduce the e®ect of noise.21

We can implement the Hessian matrix from the Hermite kernel, as we demon-

strate that the Hermite kernel is substantially identical to Gaussian derivatives when

n ¼ 2. Note that we do not consider the coe±cient of Gaussian derivatives; in this

case the Gaussian derivatives of order ð2; 0Þ, ð1; 1Þ and ð0; 2Þ have the same coe±-

cients and the coe±cients do not in°uence the ¯ltering results. The Hessian matrix

constructed using the Hermite kernel has the following form:

HBðx; y;�H ; f Þ ¼
B2

2;0ðx; y;�HÞ � f B2
1;1ðx; y;�HÞ � f

B2
1;1ðx; y;�HÞ � f B2

0;2ðx; y;�HÞ � f

 !
: ð36Þ

Figure 10(a) displays a medical image showing clusters of mutually crossing and

overlapping blood vessels.2 The blood vessels vary in size: some are massive and

clearly visible; however, other are thin and appear dim. Hence, it is demanding to

enhance these blood vessels for diagnosis purposes. In this experiment, we ¯rst

compute the orientation map based on Eq. (36). B2
2;0, B

2
1;1 and B2

0;2 are implemented

by sampling continuous kernels in windows whose sizes are 21� 21 pixels and

�H ¼ 2:0. It should also be noted that we sample the continuous kernels every half a

pixel. Secondly, we conduct orientation adaptive ¯ltering on the image with B2
2;0

being the line enhancement ¯lter. The ¯ltering process is directed by orientation of

each pixel in the image. The ¯ltering result is shown in (b). The main vessels, located

in the bottom half of the image, are well enhanced with satisfactory quality. The thin

ones are still maintained and stand out at the same time. Performance under noisy

condition is also evaluated. This image is contaminated by Gaussian white noise and

a noisy image whose SNR ¼ �1:9288 is obtained and demonstrated in (c). As shown

in the image, some thin blood vessels and textures disappeared in the noise and some

other vessels become more obscure. The ¯ltering result of the noisy image is given in

(d). Most vessels are emphasized with clear contours. Some small vessel crossings also

stand out. We can visualize them in the bottom of (d). Two vessel crossings which

appear to be tiny wedges are underlined in both the left and right part of the lower

half of the image. However, in some parts, the noise degrades the contours of vessels;

the orientation information is greatly a®ected by noise. Those parts are poorly en-

hanced, as shown in the upper left half of (d): the massive vessel is still obscure and

its contour is shown vaguely.

In this step, we use di®erent parameters to build di®erent ¯lters and compare the

¯ltering results correspondingly. First, we evaluate the in°uence of � on the ¯ltering

result. We use a larger � to construct the ¯lter and then ¯lter (c) directionally. The

result is illustrated in (e), where we clearly see that the massive vessels are further

enhanced. Nevertheless, certain thin vessels become blurred. This experiment
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indicates that � determines the scale of the pattern. Di®erent � responds di®erently

to the patterns with di®erent scales. It also indicates that the Hermite kernel can be

potentially used in multi-scale fashion, originally introduced to the Gaussian func-

tion and the corresponding kernel.1 The e®ect of n on the ¯ltering result can be

evaluated as well, since the Hermite kernel behaves like a \low-pass" ¯lter with n

increasing. Correspondingly, (f) depicts the result of ¯ltering by B5
20. In summary,

we observe that steerability is veri¯ed once again by the experiments. The experi-

ments also demonstrate that Gaussian derivatives are subsets of the Hermite kernel,

which implies that the Hermite kernel has a signi¯cant potential for practical

applications.

5. Conclusion

In this paper, we de¯ne the Hermite kernel as Hermite polynomials modulated by the

Gaussian envelope of di®erent powers. Both Hermite functions and Gaussian

(a) (b) (c)

(d) (e) (f )

Fig. 10. Orientation adaptive ¯ltering based on the Hermite kernel. (a) A medical image whose size is

512� 512 pixels. B2
2;0, B

2
1;1 and B2

0;2 are used to build the Hessian matrix and are sampled using 21� 21

pixel windows with �H ¼ 2:0 ðW ¼ 21; � ¼ 2:0Þ; (b) Orientation adaptive ¯ltering of (a) by
B2

2;0 ðW ¼ 25; � ¼ 1:5Þ. (c) Noisy image ðSNR ¼ �1:9288Þ created by adding Gaussian white noise to (a).

(d) Orientation adaptive ¯ltering of (c) by B2
2;0 ðW ¼ 25; � ¼ 2:0Þ. (e) Orientation adaptive ¯ltering of (c)

by B2
2;0 ðW ¼ 25; � ¼ 3:0Þ. (f ) Orientation adaptive ¯ltering of (c) by B5

2;0 ðW ¼ 25; � ¼ 3:0Þ.
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derivatives correspond to the Hermite kernel with di®erent parameters. We in-

vestigate the steerability of the Hermite kernel based on a property of Hermite

polynomials. We conclude that any order of the Hermite kernel is steerable, and the

corresponding interpolation functions and basis functions can be easily obtained.

Moreover, we formulate methods how to compute the explicit interpolation func-

tions as well as the complete set of basis functions. Three examples, computation

for GHMs, operator approximation and orientation adaptive ¯ltering, are intro-

duced to testify the steerability and expand on the applications. The results show

validity of the inherent steerability together with its potential applications in image

processing.

Finally, we emphasize that steerability o®ers a speci¯c way to steer the high-order

Hermite kernel, for instance, high-order Gaussian derivatives. So far, most

researchers report applications of low-order Gaussian derivatives because they are

characterized in low frequency to which the \general features" such as edges, con-

tours, and corners, belong. With progress in related research ¯elds, we are convinced

that the high-order Gaussian derivatives and Hermite functions will be utilized in

signi¯cant applications. Steerability will serve as a useful property to explore

applications of the Hermite kernel.
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Appendix A

The Hermite kernel of order 2 is listed as follows. We sample Eq. (8) every half pixel

with � ¼ 0:8 and the window size is 7� 7 pixels ðW ¼ 7; � ¼ 0:8Þ.

B1
2;0 ¼

0:3586 0:3355 �0:0621 �0:3448 �0:0621 0:3355 0:3586

0:9522 0:8908 �0:1648 �0:9157 �0:1648 0:8908 0:9522

1:7108 1:6006 �0:2960 �1:6452 �0:2960 1:6006 1:7108

2:0798 1:9458 �0:3599 �2:0000 �0:3599 1:9458 2:0798

1:7108 1:6006 �0:2960 �1:6452 �0:2960 1:6006 1:7108

0:9522 0:8908 �0:1648 �0:9157 �0:1648 0:8908 0:9522

0:3586 0:3355 �0:0621 �0:3448 �0:0621 0:3355 0:3586

0BBBBBBBBBB@

1CCCCCCCCCCA
;

ðA:1Þ
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B1
1;1 ¼

�0:4181 �0:7401 �0:6648 0:0000 0:6648 0:7401 0:4181

�0:7401 �1:3101 �1:1769 0:0000 1:1769 1:3101 0:7401

�0:6648 �1:1769 �1:0572 0:0000 1:0572 1:1769 0:6648

0:0000 0:0000 0:0000 0:0000 0:0000 0:0000 0:0000

0:6648 1:1769 1:0572 0:0000 �1:0572 �1:1769 �0:6648

0:7401 1:3101 1:1769 0:0000 �1:1769 �1:3101 �0:7401

0:4181 0:7401 0:6648 0:0000 �0:6648 �0:7401 �0:4181

0BBBBBBBBBBBB@

1CCCCCCCCCCCCA
;

ðA:2Þ
B 1

0;2 ¼ ðB1
2;0ÞT ; ðA:3Þ

where the symbol \T " represents the transposition operation of a matrix.
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