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Sequential Estimation of Mixtures
in Diffusion Networks
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Abstract—The letter studies the problem of sequential estima-
tion of mixtures in diffusion networks whose nodes communicate
only with their adjacent neighbors. The adopted quasi-Bayesian
approach yields a probabilistically consistent and computationally
non-intensive and fastmethod, applicable to awide class ofmixture
models with unknown component parameters and weights. More-
over, if conjugate priors are used for inferring the component pa-
rameters, the solution attains a closed analytic form.

Index Terms—Diffusion, distributed parameter estimation,
sensor networks, sequential mixture estimation.

I. INTRODUCTION

T HE problem of distributed estimation of unknown pa-
rameters has attracted considerable attention recently,

particularly due to continued interest in wireless sensor net-
works (WSNs). Many of these networks have ad-hoc topologies
with easy deployment and removal of nodes endowed with
sensing, data processing and communication capabilities. The
applications of WSNs range from localisation, field monitoring
and target tracking to distributed noise cancellation [1].
This letter focuses on the estimation of mixture models over

networks. Most of the approaches to this problem are based on
expectation-maximization (EM) algorithms. The decentralized
solution of Gu [2] consists of a distributed EM algorithm where
each node first calculates local summary statistics in the E-step
as usual. This is followed by a consensus step to arrive at global
statistics and by a subsequent standard M-step. A similar ap-
proach with averaging was proposed by Safarinejadian [3]. The
potentially prohibitive communication overhead of the standard
multi-iterative consensus step can be alleviated by diffusion,
where the nodes exchange local information only once [4].
The referred algorithms were limited to the Gaussian mixture

models (GMM). Towfic et al. pointed this out and proposed
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a diffusion adaptation algorithm for general mixture models,
where the M-step is solved by an adaptive diffusion process
rather than a closed form optimization [6]. Most recently,
Pereira et al. [7] proposed another diffusion-type estimator,
where the propagation of information across the network was
embedded in the iterative update of the parameters, where
a faster term for information diffusion was combined with
a slower term for information averaging. With a sufficient
number of iterations, their solution attains equal mean square
error as that of the centralized EM algorithm. However, it is
again GMM-oriented.
All these estimation algorithms assume offline cases, where

all the measurements are already available and can serve for iter-
ative optimization of the underlying mixture parameters. How-
ever, this may be an obstacle in many online sequential cases
with the need for instantaneous estimates from sequentially ar-
riving measurements (where the computationally demanding
Monte Carlomethods dominate).With the exception of Towfic’s
method [6], another restriction is that all the methods are for
Gaussian mixture models.
The novelty of this letter consists in removing both restric-

tions. We propose a diffusion-oriented method exploiting the
sequential quasi-Bayesian mixture estimation of Smith and
Makov [8], [9], further developed, among others, by Titter-
ington et al. [10] and Kárný et al. [11] (whose variant with
dependent variable is considered in Section II). The Bayesian
paradigm allows a probabilistically consistent and abstract
(model independent) formulation of the method, making it
applicable to a wide class of mixture models. Furthermore, we
show that if the mixture components belong to the exponential
family of distributions and the parameters have conjugate
priors, then the method is fully analytically tractable.

II. SEQUENTIAL QUASI-BAYES MIXTURE ESTIMATION

Let us consider a finite mixture model for the observed real
possibly multivariate random variable in the form

(1)

where the components are conditional probability
density functions (pdfs) of given (if present) an observed
random possibly multivariate real variable , e.g., the re-
gressor, and an unknown vector of mutually independent model
parameters . We assume that the number of
components is known. The unknown nonnegative compo-
nent weights form a Dirichlet-distributed random vector

taking values in the unit real -simplex.
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At each time the measurement is generated
by a single active component , selected with
probability , that is,

(2)

where the Dirac delta if and 0 otherwise is the
component membership indicator. In other words, the random
vector obeys the multinomial distribution

with 1 trial and probabilities given by . Notice that
(1) can be recovered by the marginalization, i.e., summation
over .
The recursive Bayesian estimation of mutually independent

unknown components parameters and mix-
ture weights relies on the joint prior pdf

(3)

where ; the same applies to and
. The Dirichlet pdf of the component weights with hyper-

parameters reads

(4)

and the joint pdf of component parameters is

(5)
due to the conditional independence of the .
The Bayesian estimation consists in incorporation of new

data and into the prior (3),

(6)

(7)

(8)

which leads to two separate updates due to the problem for-
mulation. First, the multinomial vector
updates the conjugate Dirichlet distribution hyperparameters

. Second, the pair updates the prior distribution of
the active component . The first update is analytical, whereas
the second one is only under certain conditions (Section II-A).
The ignorance which of the components is the

active one ( ) makes the update purely conceptual. Smith and
Makov [8], [9] propose a quasi-Bayesian estimation, replacing
all the by their expected values

(9)

where the predictive likelihoods of read

(10)

In essence, (10) tests how the th component fits the actual ;
this measure is weighted by the prior component probabilities
in (9) and normalized. The resulting estimates are then
used in place of in (7) and (8). That is, for ,
the parameters of the posterior of are

(11)

and the posterior pdf of the respective component parameters
is given by the weighted Bayesian update

(12)

A. Exponential Family Components

Analytical tractability of (12) is guaranteed if the mixture
components are exponential family distributions
and the conjugate prior distributions for are used. That is,
the components could be written in the form

where is the inner product, is the sufficient
statistic, is the natural parameter, is the
normalizing log-partition function and is the link
function. The conjugate prior, often belonging to the exponen-
tial family too, can be written in the conjugate form

where the hyperparameters and has the
same shape as . The posterior pdf (12) of the th com-
ponent in (8) is fully determined by the hyperparameters

III. DISTRIBUTED QUASI-BAYES ESTIMATION

The novel method for decentralized distributed estimation
of general mixtures adopts the diffusion strategy for internodal
communication [12]–[15]. Formally, the network consists of
spatially distributed nodes, each of them modelling an iden-
tical process of interest using the same functional form of the
mixture model (1). At every discrete time instant , the nodes

take measurements and . Each node can
exchange certain information (defined below) with its adjacent
neighbors, forming a neighborhood of cardinality . The
node belongs to , too.
We adopt the adapt-then-combine (ATC) diffusion strategy,

consisting of an adaptation phase, incorporating neighbor-
hood’s measurements, and a combination phase, merging the
neighborhood’s estimates. Its superiority to several other major
strategies was demonstrated by Cattivelli and Sayed [14] and
Tu and Sayed [5].
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The following Bayesian formulation of the distributed mix-
ture estimation is theoretically independent of the component
model and thus interesting per se. For the purpose of this letter
we make the following two assumptions: (i) the mixture com-
ponents are ordered in the same way in all the network nodes,
i.e., the orderings of elements of and is identical across the
network; (ii) the combination phase assumes that all the nodes
have adequate statistical knowledge of all the inferred parame-
ters. The first assumption, keeping the notation uncluttered, can
be abandoned by node-specific indexing of and . Its appli-
cation can be achieved by starting from the same initial prior
at all the nodes. The second assumption preserves the number
of components after the combine step; a short discussion of its
purpose and relaxation (a part of the ongoing research) is in the
next section.

A. Adaptation Phase

In the adaptation phase, a node gathers the neighborhood’s
measurements and ( ), either raw or in the form
of sufficient statistics, and infers the parameters of interest from
them and its own prior statistical knowledge. The information
provided by the network nodes may have different reliability
due to the observation noise or nodes/links failures, which is
reflected by the weights that assigns to .
The resulting diffusion counterpart of the Bayesian update (6)
at node then reads

(13)

(14)

(15)

where represents all prior knowledge of the node .

measures the probability of the th node’s measure-
ments belonging to the th component with respect to the th
node’s knowledge of ,

(16)

and the predictive likelihood

(17)

Under normal operating conditions with reliable nodes (
for all ), the diffusion adaptation phase is a sequence of

consecutive ordinary quasi-Bayesian updates.
The resulting Dirichlet posterior hyperparameters after the

adaptation phase read

(18)

If the mixture components come from an exponential family
of distributions and the parameters have conjugate priors, the
parameters of the posterior read

(19)

(20)

B. Combination Phase

During the combination phase the nodes exchange and merge
estimates, which in the Bayesian context are the posterior pdfs
(13). Denote by the weights of the posteriors from
the nodes and assume, that

(21)

These weights may be interpreted as probabilities that the in-
formation from the respective nodes is true. Besides, the nodes/
links reliabilities, may also reflect the statistical properties
of the posterior pdfs of the nodes, e.g., their variances and kur-
toses. This may be of interest in ad-hoc networks, where new
“unlearned” nodes enter the neighborhood.
We adopt the Kullback-Leibler optimal fusion [16] of the

posterior pdfs to a single pdf with the
criterion

(22)

which results in the geometric mean of the involved pdfs

(23)

The choice of the Kullback-Leibler divergence is not arbitrary:
it is a consistent information-theoretic relative entropy measure,
the only one simultaneously belonging to the most important di-
vergence classes [17]. The result (23) holds true for the whole
class of the Bregman divergences and has appealing computa-
tional properties for the exponential family distributions [18]
(which will become evident shortly).
Careful investigation of (23) reveals its principal similarity

with Equations (3) with factors (4) and (5),

(24)

(25)

Sensu stricto, the Kullback-Leibler optimal fusion of the poste-
rior pdfs at node yields a parameterisation of a mixture with

components, significantly overlapping if all the neigh-
boring nodes have adequate statistical knowledge of the param-
eters. The assumption of the components’ identical ordering al-
lows to easily merge the posterior pdfs via (23) and obtain the
hyperparameters of the distribution of in the form

(26)
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and under conjugacy, the hyperparameters of the distribution of
as

(27)

(28)

We conjecture that abandoning the requirement of the constant
number of components resulting from (23), and inclusion of
a method for merging of nearly matching components could
(i) significantly improve the tracking capabilities and (ii) elimi-
nate the need of the weights . This is a part of future research.

C. Brief Discussion of Estimator Properties

The limited length of the letter prevents us from thorough
analysis of our estimator. In general, assuming appropriate
weights, the adaptation phase is equivalent to the ordinary
quasi-Bayesian estimation (Section II) from a wider data set.
The convergence of the basic method is established for known
components [8] and for known weights [9]. The combination
phase yields a convex combination of the posterior hyperpa-
rameters and hence results in a shrinkage estimator, ideally
equal to the centroid of the set of posteriors with respect to the
chosen divergence (similarly to clustering [18]).

Algorithm 1 Diffusion Quasi-Bayes Estimation

The nodes are initialized with the prior pdfs
. The weights and are set. For and

each node do:

Adaptation:

1) Gather measurements .

2) Calculate the component membership indicator ,
Equation (16), using the predictive likelihood (17).

3) Update the prior of using , Eq. (18).

4) Update the prior of using and , Eq. (15),
or under conjugacy directly (19) and (20).

Combination:

1) Gather posterior pdfs , , and

calculate using (25) for and (24) for , under conjugacy
directly (27) and (28).

IV. SIMULATION RESULTS

We assume a randomly generated diffusion network of 25
nodes whose objective is to estimate the coefficients of a mix-
ture of two linear models given by

where is a scalar measurement taken by a node ,
is a row regression vector generated from where
is a identity matrix, and
are two column vectors of regression coefficients,

and , respec-

Fig. 1. Evolution of the network log (RMSE) in time.

tively. The data generation mostly exploits , and the switch
to occurs for short periods only. These are depicted by gray
bands in Fig. 1. The task is the online estimation of and
, while is not of direct interest due to the problem setting,

thought it still plays an important role in the estimation process.
For simplicity, the weights and when

. Of course, their setting reflecting the noise properties
is likely to improve the estimation.
Besides the no-cooperation quasi-Bayesian estimation, the

proposed method is compared with the recent random exchange
diffusion particle filter (ReDif-PF), proposed by Bruno and
Dias [19] with the multimodality-preserving technique of Ver-
maak et al. [20] employed. The ReDif-PF posterior distribution
is represented by a Gaussian mixture model (GMM), signifi-
cantly reducing the network communication requirements and
preventing the particle depletion problem [21]. In the simula-
tion, the posterior is approximated by one normal density per
component.
All methods start from the same initial normal priors/pro-

posals with means being rounded values of and and
with diagonal variances with elements 0.05. The time
evolution of the root mean square error

averaged over the network is depicted
in Fig. 1. The results of ReDif-PF are obtained with 1000
samples per component and averaged over 100 runs.
The results clearly show that the quasi-Bayesian estima-

tion with cooperation outperforms the other two algorithms.
We make a few other comments. After a short learning, the
quasi-Bayesian methods react relatively sensitively to periods
where the respective components are active. ReDif-PF suf-
fers from an inappropriate initial proposal for , whereas
the quasi-Bayesian methods do not. The communication re-
quirements of both cooperative methods are the same for the
adaptation phase. The exchange of posteriors is -times
more costly in the quasi-Bayesian method, since ReDif-PF
communicates them with a single randomly chosen neighbor,
which adopts them as the new proposal. This strategy of
the ReDif-PF may lead to performance degradation. The
computation requirements of quasi-Bayes are significantly
lower because there are no iterations and no particles to be
communicated.
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