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ABSTRACT
The paper studies the problem of decentralized distributed
estimation of the state-space models from the Bayesian view-
point. The adopted diffusion strategy, consisting of collective
adaptation to new data and combination of posterior esti-
mates, is derived in general model-independent form. Its
particular application to the celebrated Kalman filter demon-
strates the ease of use, especially when the measurement
model is rewritten into the exponential family form and a
conjugate prior describes the estimated state.

Index Terms— Distributed estimation, state-space mod-
els, Bayesian estimation, diffusion networks.

1. INTRODUCTION

In the last decade, the rapid development of wireless sensor
networks has induced a considerable research effort in the
field of the fully distributed (decentralized) estimation. In
the state-space domain, dominated by the celebrated Kalman
filter, the initial works date back to 1978 when Speyer pro-
posed the distributed Kalman filter for a totally connected
network [1]. In order to alleviate the restrictive topologi-
cal requirements, Olfati-Saber proposed three types of con-
sensus Kalman filters with the so-called microfilter architec-
ture [2]. A similar approach is adopted in the Alricksson’s
weighted-averaging of the distributed KF [3]. Both Olfati-
Saber’s and Alriksson’s algorithms combine only the state
estimators, leaving the covariances intact, which may prin-
cipally lead to flawed estimators. This was noticed, e.g., by
Carli at al. [4], Schizas’ et al. [5] and Ribeiro et al. [6], who
involve the fusion of covariance matrices in their consensus
algorithms.

The drawback of the consensus algorithms consists in the
necessity of intermediate averaging iterations between two
subsequent data updates. The diffusion Kalman filter by Cat-
tivelli and Sayed [7] avoids them, saving the communication
resources. While [7] explains how local state estimates can be
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fused by using local covariance matrices, it nevertheless sug-
gests a simplified covariance-independent combination step
to reduce the communication burden between nodes. Hu, Xie
and Zhang [10] examine the covariance-based fusion method
at an increased communication cost.

The present contribution adopts the diffusion approach,
develops it for the general state-space models with Markov-
type transitions and specializes to the case of the Kalman
filter. Generally, the diffusion algorithms consist of two
steps: the adaptation and combination, when the network
nodes exchange measurements and estimates, respectively.
Unlike most of the state-of-art approaches, the method pro-
posed in this paper formulates both steps using the Bayesian
paradigm, independent of a particular model type. If the
observation model adheres to the exponential family of dis-
tributions, and the knowledge of the state is characterized by
a conjugate prior distribution, then the diffusion estimator
follows analytically. This is demonstrated on the particular
case of the Kalman filter. If the model and the prior are not a
conjugate pair and approximate methods (e.g. particle filters)
are required, the method is applicable as well. Due to the
intricacy of these methods, we leave the nonconjugate cases
beyond the scope of the paper.

2. BAYESIAN ESTIMATION OF DISCRETE-TIME
STATE-SPACE MODELS

Let us focus on the problem of dynamic estimation of the la-
tent state xt of the discrete-time state space models with ob-
servable output yt given by

xt = f(xt−1, ut, wt) (1)
yt = g(xt, vt) (2)

where f and g are known functions, ut denotes a known in-
put, vt and wt are zero-centered mutually independent noise
variables.

Example (Linear state-space model). An example of the lin-
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ear state-space model is

xt = Atxt−1 +Btut + wt

yt = Htxt + vt (3)

where At, Bt and Ht are matrices of appropriate dimen-
sions and both vt and wt are independent and identically
distributed. Many important models may be written in this
form, e.g. the stochastic volatility models, the autoregressive
moving average (ARMA) models and others.

The Bayesian approach to estimation of the state-space
models reformulates (1) and (2) to the forms of conditional
probability distributions with probability density functions
(pdfs)

xt|xt−1, ut ∼ π(xt|xt−1, ut) (4)
yt|xt ∼ p(yt|xt), (5)

respectively. Denote the past values Yt = {y1, . . . , yt}, Ut =
{u1, . . . , ut} and the prior pdf of xt−1 as π(xt−1|Yt−1, Ut−1).
The Bayesian sequential estimation runs in two steps:

(i) Prediction – using the prior pdf π(xt−1|Yt−1, Ut−1),
the conditional distribution (4) and the Chapman-
Kolmogorov equation we obtain

π(xt|Ut, Yt−1)

=

∫
π(xt|xt−1, ut)π(xt−1|Yt−1, Ut−1)dxt−1. (6)

(ii) Update – also called correction, as it corrects the pre-
dicted (here again prior) estimator using the obtained
observation of yt by virtue of the Bayes’ theorem

π(xt|Ut, Yt) =
π(xt|Ut, Yt−1)p(yt|xt)∫
π(xt|Ut, Yt−1)p(yt|xt)dxt

. (7)

The update step inherits the intrinsic computational is-
sues associated with the Bayes’ theorem: unless the involved
pdfs have rather special forms, the posterior pdf is not an-
alytically tractable and needs to be approximated, e.g. us-
ing Markov chain Monte Carlo or sequential Monte Carlo
methods. The tractability is preserved if the prior distribution
π(xt|Ut, Yt−1) is conjugate to the exponential family model
p(yt|xt), see Appendix, Definitions 1 and 2. Assuming T (yt)
to be the sufficient statistics of p(yt|xt) and ξt−1 and νt−1
to be the hyperparameters of the prior π(xt|Ut, Yt−1), the
Bayesian update (7) reduces to two summations,

ξt = ξt−1 + T (yt)

νt = νt−1 + 1. (8)

Later in Section 4, we focus on the celebrated Kalman filter,
enjoying this analytical type of update.

3. DIFFUSION ESTIMATION

Assume a network represented by an undirected graph of
N nodes (vertices). Fixing some node i, its adjacent neigh-
bors j ∈ {1, . . . , N} form a neighborhood Ni of cardinality
|Ni|. The node i is a member of Ni, too. In the diffusion
network, the node i exchanges measurements and estimates
with j ∈ Ni and incorporates them into its own statistical
knowledge. The measurements exchange and incorporation
is called the adaptation step; the exchange and fusion of esti-
mates is called the combination step [7]. It is possible to em-
ploy either one or both of them. In the Bayesian framework,
both steps are defined on probability distributions, yielding
methods consistent from the probability theory viewpoint [9].

3.1. Adaptation

During the adaptation step the node i acquires the observa-
tions yj,t from its neighbors j ∈ Ni. Each of them is in-
dependently assigned a weight cij ∈ [0, 1], expressing the
degree of the ith node’s belief in jth node’s information. In
other words, it is a (subjective) probability that jth node’s in-
formation is true. The observations yj,t are incorporated into
the distribution πi(xt|Ũi,t, Ỹi,t−1) using the Bayes’ theorem
(7) in the form

πi(xt|Ũi,t, Ỹi,t) ∝ πi(xt|Ũi,t, Ỹi,t−1)
∏
j∈Ni

p(yj,t|xt)cij ,

(9)
where tilde denotes the variables affected by the shared infor-
mation. Interestingly, there are two equivalent interpretations
of (9). First, the product of likelihoods can be viewed as as a
fusion of models (possibly different due to noise heterogene-
ity across the network) prescribed by Proposition 1. Second,
it is a sequence of |Ni| weighted Bayesian updates.

Under conjugacy, the diffusion update counterpart of (8)
reads

ξi,t = ξi,t−1 +
∑
j∈Ni

cijT (yj,t),

νi,t = νi,t−1 +
∑
j∈Ni

cij .

3.2. Combination

The combination step proceeds with the posterior pdfs result-
ing from the adaptation step (9). The ith node now merges
πj(xt|Ũj,t, Ỹj,t) of all j ∈ Ni exploiting the Kullback-
Leibler optimal fusion prescribed by the following proposi-
tion (proved in [9]).

Proposition 1. Given pdfs πj with weights aij , j ∈ Ni, their
approximating pdf π∗i optimal in the Kullback-Leibler sense
minimizing the loss ∑

j∈Ni

aij D
(
π∗i
∣∣∣∣πj) (10)



is given by the weighted geometric mean

π∗i (xt|Ũi,t, Ỹi,t) ∝
∏
j∈Ni

πj(xt|Ũj,t, Ỹj,t)aij , (11)

where aij ∈ [0, 1] summing to unity are the weights (proba-
bilities) of neighbors’ estimates from i’s perspective.

In this respect, the result is a shrinkage estimator. If the
posterior pdf is conjugate and hence possesses hyperparame-
ters ξi,t and νi,t, then the combination step yields

ξ∗i,t =
∑
j∈Ni

aijξj,t

ν∗i,t =
∑
j∈Ni

aijνj,t. (12)

This is in accordance with the diffusion estimation of the
exponential family models by Dedecius and Sečkárová [9].
Moreover, the Bayesian-update interpretation applies here as
well: the i’s posterior pdf pi(xt|Ũi,t, Ỹi,t) can be viewed as
the prior knowledge, enriched by the knowledge of Ni \ {i}.

3.3. Determination of cij and aij

The adaptation weights cij can be interpreted as the proba-
bilities that the measurements from j ∈ Ni obey the model
p(yj,t|xt) given πi(xt|Ũi,t, Ỹi,t−1). From the Bayesian view-
point this can be modelled by as a beta-distributed variable
cij ∼ Beta(rij,t, sij,t) updated by the information whether
yj,t is contained in a high-credibility (e.g. 0.99999) region
Yij,t of the predictive pdf

p(yj,t|Ũi,t, Ỹi,t−1) =

∫
p(yj,t|xt)πi(xt|Ũi,t, Ỹi,t−1)dxt.

The Bayesian update of the distribution of cij then reads

rij,t = rij,t−1 + 1[yj,t ∈ Yij,t]
sij,t = sij,t−1 + (1− 1[yj,t ∈ Yij,t])

where 1 is the indicator function and the estimate

ĉij,t =
rij,t

rij,t + sij,t
.

This approach coincides with the 0-1 Bayesian test that yj,t
follows the model.

Adaptation with highly reliable data (due to optimized
ĉij,t) suppresses the sensitivity to the choice of aij . It is pos-
sible to proceed, e.g., with strategies proposed in [10] or [11].
Note that while aij sum to unity, cij do not need to.

4. APPLICATION TO THE KALMAN FILTER

In this section, we first review the basic Kalman filter from
the Bayesian perspective, exploiting the exponential family
forms of involved distributions. The diffusion algorithm then
easily follows using the theory given above.

4.1. Kalman Filter

Consider the linear state-space model (3) given in Section 2
with mutually independent normal noises vt and wt, written
in terms of normal distributions.

xt|xt−1, ut ∼ N (Atxt−1 +Btut, Qt) (13)
yt|xt ∼ N (Htxt, Rt), (14)

where we assume compatible dimensions. Furthermore as-
sume starting the filtration from the initial x0 ∼ N (x+0 , P

+
0 ).

Below, we denote by the superscript ‘−’ the variables after
the prediction step and by ‘+’ after the update step.

4.1.1. Prediction

The prediction equation (6) can be divided into two stages:
first, the integrand is formed, which is a product of the nor-
mal conditional pdf of the distribution (13) and the normal
pdf from the previous time step (or the initial pdf of x0 if
t = 1). This results in a joint multivariate normal pdf of both
xt and xt−1, the latter being subsequently integrated out. By
virtue of Lemma 2 (Appendix), the marginalization (integra-
tion) yields just the terms relevant to xt. Hence the two stages
can be identically viewed as a simple normality preserving
linear transformation of the variable xt−1 giving by Lemma 1
(Appendix) a normal pdf with the parameters

x−t = Atx
+
t−1 +Btut

P−t = AtP
+
t−1At +Qt.

Obviously, this is what the “traditional” Kalman filter predic-
tion does.

4.1.2. Update

Most Bayesian derivations of the update step involve tedious
algebraic manipulations or tricks avoiding them. Below, an
alternative algebraically easier approach (later straightfor-
wardly generalized to diffusion) is given. It consists in re-
formulation of the problem to the update of conjugate prior’s
hyperparameters by sufficient statistics.1

Recall that yt|xt ∼ N (Htxt, Rt). That is, the pdf
p(yt|xt) has the form

p(yt|xt) ∝ exp

{
−1

2
(yt −Htxt)

ᵀR−1t (yt −Htxt)

}
= exp

{
− 1

2
Tr

([
−1
xt

] [
−1
xt

]ᵀ [
yᵀt
Hᵀ
t

]
R−1t

[
yᵀt
Hᵀ
t

]ᵀ
︸ ︷︷ ︸

T (yt)

)}
,

(15)

1The author is not aware of any publication adopting this form (but as-
sumes it exists).



the latter variant being the exponential family representation.
The distribution π(xt|Ut, Yt−1) obtained after the prediction
step is also the normal distribution. Its conjugate form ac-
cording to Definition 2 (see Appendix) reads

p(xt|Ut, Yt−1) ∝ exp

{
−1

2
(xt − x−t )ᵀ(P−t )−1(xt − x−t )

}
= exp

{
− 1

2
Tr

([
−1
xt

][
−1
xt

]ᵀ [
(x−t )ᵀ
I

]
(P −t )−1

[
(x−t )ᵀ
I

]ᵀ
︸ ︷︷ ︸

ξt

)}
,

where I is a unit matrix of the appropriate shape.
The Bayesian update (7) then reduces to the update of the

hyperparameters according to Equation (8),

ξt = ξt−1 + T (yt)

=

[
(x−t )ᵀ(P −t )−1x−t+ yᵀt R

−1
t yt, (x−t )ᵀ(P −t )−1+ yᵀt R

−1
t Ht

(P −t )−1(x−t )ᵀ+Hᵀ
t R
−1
t yt, (P −t )−1+Hᵀ

t R
−1
t Ht

]
(16)

The scalar νt counting the update steps is not of interest for
the purpose of this paper. Now, the “classical” Kalman filter
update equations are recovered with the least-squares estima-
tor, exploiting the blocks of the matrix ξt:

P+
t = (ξt;[2,2])

−1 (17)

=
[
(P −t )−1+Hᵀ

t R
−1
t Ht

]−1
(18)

= (I −KtHt)P
−
t (19)

x+t = (ξt;[2,2])
−1ξt;[2,1] (20)

= P+
t

[
(P −t )−1(x−t )ᵀ+Hᵀ

t R
−1
t yt

]
= x−t + P+

t H
ᵀ
t R
−1
t (yt −Htx

−
t ) (21)

where (19) follows from the Sherman–Morrison-Woodburry
lemma (Appendix, Lemma 3) and

Kt = P −t H
ᵀ
t (Rt +HtP

−
t H

ᵀ
t )

is the Kalman gain.
The Bayesian derivation of the extended Kalman filter

with additive noise variables is obtained by essentially the
same reasoning using a linearization of the state and measure-
ment functions.

4.2. Diffusion Kalman Filter

The application of the diffusion estimation theory developed
in Section 3 to the Kalman filter written in the above-given
form is very straightforward. The adapt step – Equation (9)
– incorporates the sufficient statistics T (yj,t) – Equation (15)
– of nodes j ∈ Ni into the ith node’s prior pdf with hyper-
parameter ξi,t−1 – Equation (16) via the update (12). This

simply means to evaluate

ξi,t = ξi,t−1 +
∑
j∈Ni

cijT (yj,t)

= ξi,t−1 +
∑
j∈Ni

cij

[
yj,t
Hj,t

]
R−1j,t

[
yj,t
Hj,t

]ᵀ
resulting in the diffusion alternatives of (18) and (21),

P+
i,t =

(P−i,t)
−1 +

∑
j∈Ni

cijH
ᵀ
j,tR

−1
j,tHj,t

−1

x+i,t = x−i,t + P+
i,t

∑
j∈Ni

cijH
ᵀ
j,tR

−1
j,t

(
yj,t −Hj,tx

−
i,t

) .
If the combine step is used, rather than evaluating the

above equations for P+
i,t and x+i,t it is better to stick with the

matrix ξi,t (or elements involved in point estimators (17) and
(20)) and merge according to (12),

ξ∗i,t =
∑
j∈Ni

aijξj,t,

with evaluation of these estimators using (17) and (20) after-
wards. This is somewhat similar to the covariance intersection
approach adopted by Hu, Xie and Zhang [10].

5. NUMERICAL EXAMPLE

The numerical example demonstrates the effects of the diffu-
sion Kalman filtering applied to a 2D tracking problem us-
ing a network of 15 nodes, one of them being faulty. The
T = 100 simulated measurements were generated with an
input-free linear state space model with constant matrices

A =


1 0 dt 0
0 1 0 dt
0 0 1 0
0 0 0 1

 , Q = q ·


dt3

3 0 dt2

2 0

0 dt3

3 0 dt2

2
dt2

2 0 dt 0

0 dt2

2 0 dt


H =

[
1 0 0 0
0 1 0 0

]
R = r2 ·

[
1 0
0 1

]
where dt = 0.1, q = 5.0, r = 0.1n with n = 1, . . . , 15
being the node’s number. Additionally, the node 15 suffers
drop-outs: at each t, it measures with probability 0.4 value
yt = [0, 0]ᵀ. Figure 1 shows the obtained trajectory, along
with the observations of nodes 1 and 15 with the least and
highest observation noise variance, respectively. The Kalman
filters are initialized with diagonal covariance matrices P+

i,0

with values 1000 and zero vectors x+i,0, i = 1, . . . , 15. The
prior for cij is Beta(10, 1), the 0.99999-confidence regions
were computed per individual xt elements and their marginal
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Fig. 1. True trajectory and noisy observations of nodes 1 and
15 with the least and highest observation noise, respectively.

pdfs. aij = |Ni|−1 for simplicity. The topology of the net-
work depicts Figure 2.

Four scenarios are inspected: (A) – adaptation only, (C)
– combination only, ATC – adapt-then-combine and finally
no-cooperation mode. The original diffusion Kalman filter
(diffKF) of Cattivelli and Sayed [7] is used for comparison;
the appealing filter of Hu, Xie and Zhang’s [10] is avoided for
its higher flexibility, deserving much deeper analyses – it is a
part of the future work.

The differences among these scenarios clearly depicts
Figure 3, showing the boxplots of the mean squared devi-
ations (MSD) of the estimates of x1, . . . , x4 of all network
nodes, defined (per node) as

MSD(xl) =
1

T

T∑
t=1

(x̂l,t − xl,t)2, l ∈ {1, 2, 3, 4},

where x̂l,t denotes the final estimate of xl at time t. Accord-
ing to the strategy, it results from the update step (adaptation-
only and no-cooperation) or from the combination step (ATC
and diffKF).

All cooperation strategies lead to a significant improve-
ment of the tracking ability, the ATC strategy dominates even
the diffKF. This is obvious from the mean MSDs showing
the performance of the estimation of all four parameters. The
reason lies in the ability of the proposed method to reflect the
drop-outs (node 15) and the more effective combination strat-
egy. The results could be even more improved by employing
variance-based weights cij , discriminating the nodes with a
higher observation noise variance.

6. DISCUSSION

It is naturally interesting to compare the obtained Bayesian
version of the diffusion Kalman filter with the one proposed
by Cattivelli and Sayed [7]. If cij = 1 for all neighboring
nodes, then the adaptation step of the developed Bayesian
diffusion Kalman filter and the diffusion Kalman filter [7] co-
incide. However, the ability to reflect the degree of belief
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Fig. 2. Network topology.
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Fig. 3. Boxplots of MSDs of estimates of x1, . . . , x4
of all considered scenarios: (1) diffKF [7], (2) ATC, (3)
combination-only, (4) adaptation-only, (5) no cooperation.
The red lines indicate the medians, the edges of each box are
the lower and the upper quartiles. The outliers were filtered
out.

in network nodes makes the proposed solution more robust
to unreliable nodes. The proposed combination step consis-
tently combines both state estimates and their covariances.
The communication requirements of the adapt step are the
same as in Cattivelli and Sayed’s version [7], the increased
communication requirements are equivalent to Hu, Xie and
Zhang’s filter [10].

7. FURTHER WORK

The generality of the presented diffusion framework allows
its application to more elaborate methods of unscented, par-
ticle and Rao-Blackwellized particle filtration. These topics,
together with the further possibilities of dynamic determina-
tion of aij and cij allowing communication savings remain
for further research. So do thorough analyses of the method.
Some initial results on communication reductions are given in
[12].



Strategy x1 x2 x3 x4

Bayesian ATC 0.0326 0.0107 1.1438 0.5836
Bayesian A 0.2336 0.0525 1.7870 1.2067
Bayesian C 0.2223 0.0296 2.1371 0.8290

No coop. 7.6446 0.6323 7.1186 5.0680
diffKF [7] 0.5016 0.0390 2.2800 0.6970

Table 1. Final MSD of estimates of x1, . . . , x4 averaged over
all nodes.

8. APPENDIX

Definition 1 (Exponential family distributions). The proba-
bility distribution of a random variable X and parameter θ
is said to be an exponential family distribution with a natural
parameter η = η(θ) and a sufficient statistic T = T (X) if its
pdf can be written in the form

p(X|θ) = exp (ηᵀT −A(η)− b(X))

where A(η) is the cumulant function, assuring unity of the
integral of p(X) and b(X) is the link function independent of
θ.

Definition 2 (Conjugate prior). Assume the exponential fam-
ily distribution with the pdf p(X|θ) of the form given by Def.
1. The distribution of θ is said to be conjugate to it, if it can
be written in the form

π(θ) = exp (ηᵀξ − νA(η)− c(η))

where again η andA are the same as in the exponential family
and ξ and ν are hyperparameters (statistics) of appropriate
dimensions (the latter is nonnegative real scalar).

Lemma 1 (Linear transformation of random variables).
Given a random variable X ∼ N (µ,Σ), and a and b of
appropriate shapes. Then, the random variable Y = aX + b
has the distribution N (aµ+ b, aΣaᵀ).

Lemma 2 (Multivariate normal marginals). Assume random
variables X,Y with a multivariate normal distribution[

X
Y

]
∼ N

([
µX
µY

]
,

[
ΣX ΣXY
Σᵀ
XY ΣY

])
.

with a pdf pXY (X,Y ). The marginal distribution of X ob-
tained as

pX(X) =

∫
pXY (X,Y ) dY

is a (multivariate) normal distribution

X ∼ N (µX ,ΣX) .

Lemma 3 (Sherman–Morrison-Woodburry). Assume matri-
ces A,B and C of appropriate dimensions. Then

(A+BᵀCB)−1 = A−1Bᵀ(C−1 +BA−1Bᵀ)−1BA−1
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mation in exponential family models,” IEEE Signal Pro-
cess. Lett., vol. 20, no. 11, pp. 1114–1117, Nov. 2013.

[10] J. Hu, L. Xie, and C. Zhang, “Diffusion Kalman filtering
based on covariance intersection,” IEEE Trans. Signal
Process., vol. 60, no. 2, pp. 891–902, Feb. 2012.

[11] F.S. Cattivelli and A.H. Sayed, “Diffusion LMS Strate-
gies for Distributed Estimation,” IEEE Trans. Signal
Process., vol. 58, no. 3, pp. 1035–1048, Mar. 2010.

[12] K. Dedecius, “Collaborative Kalman filtration:
Bayesian perspective,” in Proceedings of the 11th In-
ternational Conference on Informatics in Control, Au-
tomation and Robotics, 2014.


