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Bayesian learning provides a firm theoretical basis of the design and exploitation of
algorithms in data-streams processing (preprocessing, change detection, hypothesis test-
ing, clustering, etc.). Primarily, it relies on a recursive parameter estimation of a firmly
bounded complexity. As a rule, it has to approximate the exact posterior probability density
(pd), which comprises unreduced information about the estimated parameter. In the recur-
sive treatment of the data stream, the latest approximate pd is usually updated using the
treated parametric model and the newest data and then approximated. The fact that
approximation errors may accumulate over time course is mostly neglected in the estima-
tor design and, at most, checked ex post. The paper inspects the estimator design with
respect to the error accumulation and concludes that a sort of forgetting (pd flattening)
is an indispensable part of a reliable approximate recursive estimation. The conclusion
results from a Bayesian problem formulation complemented by the minimum Kullback–
Leibler divergence principle. Claims of the paper are supported by a straightforward anal-
ysis, by elaboration of the proposed estimator to widely applicable parametric models and
illustrated numerically.

� 2014 Elsevier Inc. All rights reserved.
1. Introduction

Data-streams processing [2,19] faces many challenges connected with data preprocessing, change detection, hypothesis
testing, clustering, prediction, etc. These classical statistical topics [12] are instances of dynamic decision making under
uncertainty and incomplete knowledge well-covered by Bayesian paradigm [7]. Its routine use is inhibited by the fact that
the available formal solutions neglect the inherent need for the recursive (sequential) treatment. The paper counteracts this
neglect with respect to parameter estimation, which forms the core of solutions of the mentioned problems.

The recursive estimation is rarely feasible without an information loss. Mostly, each data updating of estimates only
approximates the lossless estimation [9]. Without a care, approximation errors may accumulate to the extent damaging
the estimation quality. Stochastic approximations [5] dominate the analysis inspecting whether a specific estimator suffers
from this problem or not. The design of estimators avoiding the accumulation is less developed and mostly relies on stochas-
tic stability theory [28] limited by a non-trivial choice of an appropriate Lyapunov function.

Both the analysis and design predominantly focus on a point estimation. However, the recursive estimation serving to
dynamic decision making is to provide a fuller information about the estimated parameter. The Bayesian estimation provides
its most complete expression, namely, the posterior probability density of the unknown parameter (pd, Radon–Nikodým
derivative with respect to a dominating measure, denoted d�, [33]). This explains the focus of the paper on the Bayesian
estimation.
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The inspection of the approximation-errors influence has been neglected within the Bayesian framework. Papers [20–24]
represent a significant exception. They characterise the Bayesian approximate recursive estimation without an approxima-
tion-errors accumulation. They show that the accumulation is completely avoided if and only if a finite collection of fixed
linear functionals acting on logarithm of the posterior pds are used as a (non-sufficient) statistic. The values of this statistic
can be recursively updated by data and serve as information-bearing constraints for the design of the approximate posterior
pds. This favourable class of statistics is, however, too narrow and excludes too many cases of practical interest. Thus, it is
desirable to inspect an approximate recursive Bayesian estimation allowing non-zero errors caused by the recursive treat-
ment while counteracting their accumulation. The paper proposes such an estimator. The proposed solution respects that the
recursively stored information about the exact posterior pd (quantifying fully the available information) is inevitably partial.
Then, the minimum Kullback–Leibler divergence (KLD, [27]) principle [17,35] is to be used for its completion. Under general
conditions, the completion adds forgetting to a common ‘‘naive’’ approximate recursive estimation, which takes the approx-
imate posterior pd as an exact prior pd for the data updating.

The paper primarily aims to attract the research attention to the problem practically faced by any approximate recursive
learning. This determines the relatively abstract presentation way. The excellent anonymous reviewers have served as an
encouraging sample of readers who confirmed the presentation efficiency. The suppression of multitude features and tech-
nical details of an overall data-streams handling has allowed them to grasp well the essence of the addressed problem and of
its solution. The focus on the problem core also determines the level of proofs’ details. The paper is not fully self-containing
in this respect and relies on availability of the complementary information in referred papers. Technically, Section 2 formu-
lates the addressed problem. Section 3 provides its solution and indicates that the accumulation of approximation errors is
counteracted. It also guides how to choose the decisive data-dependent forgetting factor. Section 4 specialises the solution to
an important class of parametric models and the corresponding feasible approximate posterior pds. An example illustrating
general results is in Section 5. Section 6 contains closing remarks.

2. Addressed problem

A parametric model mt ¼ mtðHÞ describes a (modelled) output yt 2 yH1 stimulated by an (external) input ut 2 uH at
discrete-time moments labelled by t 2 tH ¼ f1;2; . . .g. Data records dt ¼ ðyt ;utÞ are processed sequentially. The parametric
model mt is a pd of the output yt conditioned on the prior information, on the current input ut , on the past data records
dt�1; . . . ;d1, and on an unknown parameter H 2 HH. The parameter is also unknown to the input generator. It means that ut

and H are independent when conditioned on dt�1; . . . ;d1, i.e. natural conditions of control [32] are met.
Full information about the parameter H at time t � 1 is expressed by the exact posterior pd ft�1 ¼ ft�1ðHÞ ¼

fðHjut; dt�1; . . . ; d1Þ ¼ fðHjdt�1; . . . ; d1Þ (quantifying fully the available information). The Bayes rule Bt updates this pd by
the data record dt . The exact posterior pd evolves as follows
1 xH

scalar-v
2 The

conditio
argume

Please
j.ins.2
ft ¼ Bt ½ft�1� () ftðHÞ ¼
mtðHÞft�1ðHÞ

gtðytÞ
/ mtðHÞft�1ðHÞ; 8 H 2 HH; ð1Þ

gtðytÞ ¼
Z

HH

mtðHÞft�1ðHÞdH; ð2Þ
where / denotes equality up to normalisation. The predictive pd gtðyÞ is determined by (2) with the fixed condition
ut ; dt�1; . . . ; d1 and an arbitrary output y 2 yH. The parametric model in (1) is treated as likelihood, i.e. as a function of H
for a fixed inserted data dt ; dt�1; . . . ; d1. The recursion (1) is initiated by a designer-supplied prior pd f0 ¼ f0ðHÞ describing
the available prior information. The updating (1) requires knowledge of the pd ft�1 and information that allows the evalu-
ation of the likelihood mtðHÞ; 8 H 2 HH. A j-dimensional statistic wt (called regression vector, j <1), which can be up-
dated recursively, is assumed to comprise such an information.

The inspected problem arises when the exact posterior pd ft ¼ ftðHÞ is too complex and has to be replaced by an approx-
imate pd pt ¼ ptðHÞ. The pd pt is a projection of ft on a designer-selected set of feasible pds pH. In [8], it was shown that the pd
Opt 2 pH approximating optimally the exact posterior pd ft is to minimise the KLD Dðft jjpÞ [27].2
Opt 2 arg min
p2pH

DðftjjpÞ ¼ arg min
p2pH

Z
HH

ftðHÞ ln
ftðHÞ
pðHÞ

� �
dH: ð3Þ
Since a direct use of (3) with the exact pd ft evolving according to (1) is prevented by the problem definition, the recursive
evaluation without an additional error should evolve the optimal pd Opt (3), i.e. to update recursively the optimal approxima-
tion Opt�1 of the exact posterior pd ft�1
Opt�1;mt
� �

! Opt : ð4Þ
denotes a set of xs. It is either a non-empty subset of a finite-dimensional real space or a subset of pds acting on the set of unknown parameters. The
alued output is considered without a loss of generality as the multivariate case can always be treated entry-wise [16].
KLD, defined in (3) by the integral expression after equality, is conditioned on the data dt ; . . . ; d1. The adopted simplified notation does not mark the
n explicitly. The KLD has many properties of distance between pds in its argument like non-negativity, equality to zero for almost surely equal

nts, etc. It is, however, asymmetric and does not meet triangle inequality.
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The papers [20–24] mentioned in Introduction have shown that such a construction is possible if and only if the set pH is
delimited by values of a finite collection of linear, time and data invariant, functionals F kðlnðftÞÞ fulfilling F kð1Þ ¼ 0; k ¼
1; . . . ;K <1. The exclusion of errors attributed to the recursive treatment excludes commonly used statistics, for instance,
(i) the mean and covariance values in unscented approximation [15]; (ii) the likelihood values on a variable, say Monte Carlo
generated, grid [11]; (iii) statistics determining finite Gaussian mixtures with a fixed number of components [3]; (iv) statis-
tics yielded by variational Bayes [37]; etc. In other words, the non-commutativity of the Bayes rule (1) and the projection (3)
to such classes of pH makes the optimal recursive approximation (4) impossible. Thus, only a non-optimal approximate pd
pt 2 pH can be evolved instead of Opt . The ideal recursion (4) is to be replaced by the map recursively updating the pd pt�1

non-optimally approximating the exact posterior pd ft�1
Please
j.ins.2
pt�1;mtð Þ ! pt : ð5Þ
Such a feasible recursion is mostly constructed in the next naive way, t 2 tH,
Evaluate ~ft ¼ Bt½pt�1�
Find ~pt 2 arg min

p2pH

Dð~ftjjpÞ

Set pt ¼ ~pt :

ð6Þ
Often, other proximity measures than the KLD are employed but the use of an approximate pt�1 in the role of the exact pd ft�1

is the common flaw.
In summary, a question arises how to construct the map (5) respecting pt�1 – ft�1 or, in other words, how to modify the

recursive approximate estimator (6) so that the approximation-errors accumulation is counteracted.
The next auxiliary proposition shows that a difference in prior pds has a tendency to diminish during the data updating.

Proposition 1 (Contractive Nature of the Bayes Rule). Let 8 t 2 tH; ft be the exact posterior pds corresponding to the exact prior
pd f0 and pt be the posterior pds initiated by another prior pd p0 such that D0 ¼ Dðf0jjp0Þ <1.

Then, the KLD values Dt ¼ Dðft jjptÞ form super-martingale with respect to r-algebras generated the processed data
utþ1; dt ; . . . ; d1. Consequently, Dt converges almost surely to a finite value D1 2 ½0;D0� for t !1.
Proof. Defining the predictive pds gtðyÞ ¼
R

HH mtðHÞft�1ðHÞdH and htðyÞ ¼
R

HH mtðHÞpt�1ðHÞdH, the key super-martingale
inequality is verified via the following evaluations of the conditional expectation
E½Dt jut ;dt�1; . . . ; d1� ¼
Z

yH

gtðyÞ
Z

HH

ftðHÞ ln
ftðHÞ
ptðHÞ

� �
dH

� �
dy

¼
Z

yH

Z
HH

mtðHÞft�1ðHÞ ln
ft�1ðHÞ
pt�1ðHÞ

� �
dHdy�

Z
yH

gtðyÞ ln
gtðyÞ
htðyÞ

� �
dy ¼ Dt�1 � Dðgt jjhtÞ 6 Dt�1:
They use the Bayes rule (1), Fubini theorem [33], the equality
R

yH mtðHÞdy ¼ 1, and non-negativity of the KLD [27]. The final
claim is the property of any bounded super-martingale [30]. h

A finite number of differences in evaluating of intermediate posterior pds have also tendency diminish. However, the
approximations applied during potentially infinitely repeated data updating may completely spoil the super-martingale
property. Then, the accumulated effect can cause the divergence of the KLD Dt for t !1, i.e. the compared pds can become
asymptotically singular. The possibility of this behaviour formalises the faced problem.

3. Solution

The solution relies on a construction of a sequence of pds’ sets containing the exact posterior pds.

3.1. Circumscribing set

At time t � 1, the approximate pd pt�1 represents the available information about the exact posterior pd ft�1. It differs both
from the optimally approximating pd Opt�1 and from the unknown exact posterior pd ft�1. The already cited result [8] implies
that a pd pt�1 2 pH is an acceptable approximation of the pd ft�1 if there is a finite, ideally small, bt�1 P 0 such that
Dðft�1jjpt�1Þ 6 bt�1 <1. Convexity of the functional DðfjjpÞ with respect to the pd f implies convexity of the following set
fH

t�1 ¼ fH

pt�1bt�1
of pds on HH
fH

t�1 ¼ fH

pt�1bt�1
¼ ff : Dðfjjpt�1Þ 6 bt�1 <1g ð7Þ
within which the exact pd ft�1 stays. The expanded notation fH

pt�1bt�1
of fH

t�1 stresses its dependence on the given ‘‘centre’’ pt�1

and ‘‘radius’’ bt�1.
The following simple proposition shows that the Bayes rule maps the ‘‘ball’’ fH

t�1 on a ball-like set.
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Proposition 2 (The Bayes Rule Preserves Convexity). Let a set fH of pds on HH be convex such that for any of its elements f ¼ fðHÞ
and the considered likelihood m ¼ mðHÞ it holds

R
HH mðHÞfðHÞdH > 0. Then, the image B½fH� of fH by the Bayes rule B (1) is convex.
Proof. Let fk 2 fH, k ¼ 1;2. The convexity of fH means that for any a 2 ½0;1� the pd fa ¼ af1 þ ð1� aÞf2 2 fH. Its Bayes image is
Please
j.ins.2
B½fa� ¼
mðaf1 þ ð1� aÞf2Þ

a
R

HH mðHÞf1ðHÞdHþ ð1� aÞ
R

HH mðHÞf2ðHÞdH

¼
a
R

HH mðHÞf1ðHÞdH
a
R

HH mðHÞf1ðHÞdHþ ð1� aÞ
R

HH mðHÞf2ðHÞdH|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
�

Bðf1Þ þ
ð1� aÞ

R
HH mðHÞf2ðHÞdH

a
R

HH mðHÞf1ðHÞdHþ ð1� aÞ
R

HH mðHÞf2ðHÞdH|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
1��

Bðf2Þ

¼ �B½f1� þ ð1� �ÞB½f2�;
where the coefficient � belongs to the interval [0,1] and the mapping �$ a is bijection. h

The updated exact pd ft ¼ Bt ½ft�1� as well as the pd ~ft ¼ Bt ½pt�1� belong to the convex set Bt ½fH

t�1� ¼ f~f : ~f ¼ Bt ½f�; f 2
fH

t�1 ¼ fH

pt�1bt�1
g, which is, however, quite complex in the considered generic case. Thus, it is necessary to circumscribe

Bt ½fH

t�1� by the set fH

t ¼ fH

ptbt
¼ ff : DðfjjptÞ 6 bt <1g, i.e. by the set of the form (7) for the increased time index.

Proposition 3 (Existence of fH

ptbt
). Let the values of the predictive pds gtðyÞ ¼

R
HH mtðHÞft�1ðHÞdH; htðyÞ ¼

R
HH mtðHÞpt�1ðHÞdH

be positive and finite for y ¼ yt. Let the likelihood mt as well as the ratio
~ft

pt
¼ Btðpt�1Þ

a new chosen centre in pH
be essentially bounded with respect to the measure dH. Then a finite bt exists such that fH

t ¼ fH

ptbt
circumscribes Bt ½fH

t�1�.
Proof. The Bayes rule (1), the definition of the KLD (4), the definition of ~ft ¼ Btðpt�1Þ (6), the normalisation of ftðHÞ and
simple manipulations imply
DðftjjptÞ ¼
Z

HH

mtðHÞft�1ðHÞ
gtðytÞ

ln
mtðHÞft�1ðHÞ
gtðytÞptðHÞ

� �
dH

¼ 1
gtðytÞ

Z
HH

mtðHÞft�1ðHÞ ln
ft�1ðHÞ
pt�1ðHÞ

� �
dHþ

Z
HH

mtðHÞft�1ðHÞ
gtðytÞ

ln
~ftðHÞ
ptðHÞ

 !
dHþ ln

htðytÞ
gtðytÞ

� �
:

After the second equality, the first integral (multiplied by the finite factor 1=gtðytÞ) is bounded as it integrates the product of

the essentially bounded mtðHÞ and of the integrable function ft�1ðHÞ ln ft�1ðHÞ
pt�1ðHÞ

	 

. The second summand is bounded by the fi-

nite value ln essupHH

~ftðHÞ
ptðHÞ

	 

. The third summand is bounded for positive and finite values of the involved predictive pds. h

The adopted assumptions are probably stronger than necessary but they are verifiable as the realisation of the treated
data record implies positivity of gtðytÞ and other conditions can be inspected analytically.

3.2. Algorithmic construction of the circumscribing set

The construction of the circumscribing set fH

t ¼ fH

ptbt
coincides with the recursive choice of the centre pt and the radius bt .

The Bayes image ~ft ¼ Bt½pt�1� of the centre pt�1 is an obvious candidate for the updated centre. It is generally out of the set pH

of pds of feasible forms so that it cannot be practically used. In accordance with [8], the optimal projection of the pd
~ft ¼ Bt ½pt�1� on the set pH of feasible pds offers as a new centre
~pt 2 arg min
p2pH

Dð~ft jjpÞ: ð8Þ
Then, it seemingly remains to select the radius bt so that Bt½fH

pt�1bt�1
� � fH

~ptbt
. A permanent prolongation of this procedure is

impossible as the centre would be updated in the naive way (6) and the error accumulation could cause an unbounded increase
of the radiuses bt of the constructed circumscribing sets for t !1. Thus, a centre pt , which exploits the available information
about the exact pd ft in a better way, is to be searched for.

A (generally iterative) search for a better centre simplifies substantially if the set of feasible pds pH is closed with respect
to taking geometric mean of its elements, if it is log-convex set. Further on, the log-convexity of pH is assumed without a sub-
stantial loss of applicability.

The axiomatically justified minimum KLD principle [35] recommends to replace the unknown, partially specified, exact
pd ft by a pd fc with the smallest KLD on a pd representing the information before processing the information contained in
cite this article in press as: M. Kárný, Approximate Bayesian recursive estimation, Inform. Sci. (2014), http://dx.doi.org/10.1016/
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the pd ~pt 2 pH (8). The non-updated pd pt�1 is the available descriptor of such a (vague) information. The pd fc is searched in
the trial circumscribing set fH

~ptc ¼ ff : Dðfjj~ptÞ 6 cg parameterised by c 2 ½0;1Þ. The new centre pc is then found as the projec-

tion of fc on the set of feasible pds pH. Then, the trial radius c is chosen so that the radius bt guaranteeing circumscription
BtðfH

t�1Þ � fH

pcbt
is the smallest one. Formally,
Please
j.ins.2
fc 2 arg min
ff:Dðfjj~ptÞ6cg

Dðfjjpt�1Þ ð9Þ

pc 2 arg min
p2pH

DðfcjjpÞ ð10Þ

ðbt; ctÞ 2 arg min
ðb;cÞsuch thatffH

pcb�BtðfH

t�1Þg
b ð11Þ

pt ¼ pct
:

Proposition 4 (The Optimal Centre). Let the set pH of approximate pds be log-convex. Then, the fc solving (9) is in pH. For a given
trial radius c, the solution of (9) and (10) pc ¼ fc has the form of stabilised forgetting [26] determined by a forgetting factor
kc 2 ½0;1�
pc ¼ pkc ¼
~p

kc
t p

1�kc
t�1R

HH ~p
kc
t p

1�kc
t�1 dH

¼ ~p
kc
t p

1�kc
t�1

LðkcÞ
ð12Þ

kc ¼ 0 if Dðpt�1jj~ptÞ < c
kc solves Dðpcjj~ptÞ ¼ c otherwise:
Proof. The Kuhn–Tucker optimality conditions [14] and the KLD property DðfjjgÞ ¼ 0() f ¼ g dH-almost surely provide the
solution of the task (9). Its form and log-convexity of the set pH imply that fc 2 pH and the nearest pc 2 pH (10) coincides with
it. h

The radiuses ðbt ; ctÞ guaranteeing that fH

pct
bt

circumscribes the set BtðfH

t�1Þ, i.e. the solution of (11), depend on the chosen
trial centre ~pt (8), see (12). The found pd pct

offers itself as a better centre. Under the adopted log-convexity of the set of fea-
sible pds pH, the replacement of the centre ~pt by pct

preserves the form (12) of pct
and no improvement of bt can be gained.

Thus, an iterative search is avoided.
To find the best radiuses ðbt ; ctÞ (11) either analytically or numerically is hard and the mapping of ct on the forgetting

factor kct
is also complex. Instead, kt 2 ½0;1� approximately minimising the expectation of the KLD dðft; kÞ ¼ Dðft jjpkÞ, see

(12), is searched for. The following proposition prepares the search and shows that the forgetting has indeed the potential
to counteract the approximation-errors accumulation.

Proposition 5 (Forgotten Probability Density Approximates Better). To any pd f such that Dðfjj~ptÞ <1;Dðfjjpt�1Þ <1, there is
kt ¼ ktðfÞ 2 ½0;1� such that Dðfjjpkt

Þ 6 Dðfjj~ptÞ.
Proof. The definitions of the KLD and the pd pk (12) give for any k 2 ½0;1�
dðf; kÞ ¼ DðfjjpkÞ ¼ kDðfjj~ptÞ þ ð1� kÞDðfjjpt�1Þ þ lnðLðkÞÞ:
The definition (12) of the pd pk also implies that pk¼1 ¼ ~pt and pk¼0 ¼ pt�1. Denoting
Rt ¼
pk¼1

pk¼0
¼ ~pt

pt�1
; ð13Þ
derivatives of the function dðf; kÞ get the forms
@dðf; kÞ
@k

¼ Dðfjj~ptÞ � Dðfjjpt�1Þ þ
Z

HH

pkðHÞ ln RtðHÞð ÞdH ð14Þ

@2dðf; kÞ
@k2 ¼

Z
HH

pkðHÞln
2

RtðHÞð ÞdH�
Z

HH

pkðHÞ ln RtðHÞð ÞdH
� �2

:

The second derivative is the positive variance of ln RtðHÞð Þ with respect to the pd pkðHÞ. Thus, dðf; kÞ is a convex function of
k 2 ½0;1� and reaches its minimum within this closed interval. h
Remarks.

� The necessary condition @dðf;kÞ
@k ¼ 0 for selecting the forgetting factor kt ¼ ktðfÞ minimising dðf; kÞ ¼ DðfjjpkÞ has the appeal-

ing form, cf. (13) and (14),
cite this article in press as: M. Kárný, Approximate Bayesian recursive estimation, Inform. Sci. (2014), http://dx.doi.org/10.1016/
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Please
j.ins.2
Z
HH

fðHÞ lnðRtðHÞÞdH ¼
Z

HH

pkt
ðHÞ lnðRtðHÞÞdH; ð15Þ
if the extreme is in (0,1). Otherwise, kt 2 f0;1g if no kt solving (15) exists.
� The inequality claimed by Proposition 5 cannot be improved. It is trivially met for kt ¼ 1 corresponding to the ‘‘naive’’

approximate learning step. The illustrative example, Section 5, indicates that it often – but not always – happens. Asymp-
totically, when the approximate posterior concentrates around the optimal projection of the almost surely converging
exact posterior pd, the optimality of kt ¼ 1 is even desirable.

The exact posterior pd ft is unknown so that the optimal kt ¼ ktðftÞminimising dðft ; kÞ cannot be constructed. Proposition
1 shows that the pd ~ft ¼ Btðpt�1Þ is expected to be nearer to the unknown exact pd ft than the approximate pd pt�1 to the
exact pd ft�1. Also, Proposition 3 guarantees that Dðfjj~ptÞ <1;Dðfjjpt�1Þ <1 for f 2 f~ft ; ftg. As the left-hand side of (15) de-
pends linearly on the considered pd f, it can be expected that the use f ¼ ~ft instead of f ¼ ft will lead to ktð~ftÞ, which makes
Dðft jjpktð~ft ÞÞ ¼ dðft ; ktð~ftÞÞ < dðft ; k ¼ 1Þ ¼ Dðft jj~ptÞ. Thus, it is reasonable to use kt ¼ ktð~ftÞ instead of the inaccessible ktðftÞ. This
is the only heuristic step in designing the final recursive estimation applicable 8t 2 tH.

Algorithm 1. Approximate Recursive Bayesian Estimation

~

ci
01
Evaluate ft ¼ Bt ½pt�1� / mtpt�1

Find ~pt 2 argmin
p2pH

Dð~ft jjpÞ

Define pk / ~pk
t p

1�k
t�1 ; for k 2 ½0;1�; and Rt ¼

~pt

pt�1

Find kt 2 ½0;1�solv ing

ð16Þ
Z Z

HH

~ftðHÞ lnðRtðHÞÞdH ¼
HH

pkt
ðHÞ lnðRtðHÞÞdH ð�Þ
if no solution of ð�Þ exists set kt ¼
0 if

R
HH

~ftðHÞ lnðRtðHÞÞdH � 0
1 otherwise

(

Forget pt ¼ pkt
:

Remarks.

� Algorithm 1 rectifies the estimator (6) by complementing it by a stabilised forgetting applied to the naive approximate pd
~pt , while using the pd pt�1 as the needed alternative.
� Algorithm 1 reduces to the naive estimator (6) for kt ¼ 1. It happens whenever no projection is needed after data updat-

ing, whenever ~ft ¼ ~pt 2 pH. Thus, it does not spoil the feasible optimal recursion. This smooth transition to the exact recur-
sive estimation is an intuitively desirable property.
� Similar ‘‘flattening’’ techniques counteracting errors’ accumulation are already used, for instance, within applications of

Monte Carlo methods for a recursive parameter estimation [31]. The proposed treatment formally supports the need for a
technique of this type and recommends its form (12) without adding a new ‘‘tuning knob’’.

4. Dynamic regression model with an arbitrary noise

The widely applicable class of dynamic regression parametric models with an external inputs (briefly regression models)
with an arbitrary noise is considered here. It: (i) is useful per se; (ii) illustrates the respective steps of the general estimation
algorithm; (iii) indicates a mild increase of the computational complexity needed for the proposed counteracting of the error
accumulation. Algorithm 1 is tailored to this common parametric model, which arises from the following functional expan-
sion of the conditional expectation
yt ¼ E½yt jut ;dt�1; . . . ; d1;H� þ
ffiffiffi
r
p

et ¼ h0wt þ
ffiffiffi
r
p

et;
0 is transposition: ð17Þ
Such an expansion is often possible at least locally. The noise
ffiffiffi
r
p

et as the difference between the output and its conditional
expectation has the conditional expectation equal to zero. As such, it is uncorrelated over time and uncorrelated with data in
the condition. The j-dimensional regression vector wt ;j <1, is supposed to be recursively updatable. This makes the recur-
sive updating of the data vector Ut consisting of the output yt and of the regression vector wt possible. The unknown param-
eter H ¼ ðh; rÞ includes the regression coefficients h and a scaling parameter r > 0 used in a pd 1ffiffi

r
p g e; rð Þ defining the distribution

of the scaled noise e. With it, the parametric regression model gets the form
te this article in press as: M. Kárný, Approximate Bayesian recursive estimation, Inform. Sci. (2014), http://dx.doi.org/10.1016/
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mtðHÞ ¼
1ffiffiffi
r
p g

½1;�h0�ffiffiffi
r
p Ut; r

� �
¼ 1ffiffiffi

r
p g g0Ut; rð Þ; g0 ¼ g0ðh; rÞ ¼ ½1;�h0�ffiffiffi

r
p : ð18Þ
When delimiting known properties of the noise, its distribution g is obtained by the minimum KLD principle. For instance,
assuming that r is a finite noise variance and reducing the minimum KLD principle to maximum entropy principle, the allo-

cated noise distribution is Gaussian. In the Gaussian case with the pd gðe; rÞ ¼ ð2pÞ�0:5 exp � e2

2

h i
, the regression model has

the Gauss-inverse-Wishart (GiW, [32]) as the conjugated prior
ptðHÞ ¼ pLt ;mt
ðh; rÞ ¼ r�0:5ðmtþjþ2Þ exp½�0:5g0L0tLtg�

JðLt ; mtÞ
; H ¼ ðh; rÞ; ð19Þ
where Lt is lower triangular matrix with positive diagonal (symbolically, Lt > 0; it is Choleski square root of the extended
information matrix), scalar mt > 0 and j is the length of the regression vector wt , which equals to the number of regression
coefficients.

For the Gaussian regression model, this pd preserves its form during estimation and its use converts the data updating of
the posterior pds into the algebraic updating
L0tLt ¼ L0t�1Lt�1 þUtU
0
t; mt ¼ mt�1 þ 1: ð20Þ
The recursion starts from the chosen prior values L0 > 0 and m0 > 0.
The GiW pds have a chance to approximate well the exact posterior pds even for non-Gaussian regression models. This

follows from the fact that the exact posterior pds quickly concentrate on a narrow support in HH ¼ ðhH; rHÞ. It happens under
general conditions [6] allowing the extension of the classical large-deviation theorem [34] to externally stimulated dynamic
systems.

4.1. Specialisation of Algorithm 1

The specialisation of Algorithm 1 exploits the following elementary properties of the GiW pd, proved for instance in [16].
They are expressed in terms of the following splitting of the extended information matrix Vt ¼ L0tLt
Vt ¼
Vt;y V 0t;yw

Vt;yw Vt;w

" #
¼

L2
y þ L0ywLyw L0ywLw

L0wLyw L0wLw

" #
> 0: ð21Þ
There, Vt;y; Lt;y are scalars. The time index, separated by semicolon, is dropped whenever its occurrence brings no
information.

Proposition 6 (Some Properties of GiW Probability Density). Let us consider GiW pds pLt�1 ;mt�1
; peLt ;~mt

with JðLt�1; mt�1Þ <1 and
JðeLt ; ~mtÞ <1. Then, the pd pk / ~pk

t p
1�k
t�1 , given by k 2 ½0;1�, is the pd pLk;mk

with
L0kLk ¼ k eL0t ; ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k�1 � 1

p
L0t�1

h i eL0t; ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k�1 � 1

p
L0t�1

h i0
; mk ¼ k~mt þ ð1� kÞmt�1: ð22Þ
For a GiW pd given by statistic values Lt > 0; mt > 0 the normalisation factor JðLt ; mtÞ in (19) is finite. Consequently, JðLk; mkÞ <1
for Lt�1 > 0; mt�1 > 0. The set pH of GiW pds (19), serving as approximate feasible posterior pds, is log-convex set and the construc-
tion from Section 3.2 is directly applicable.

It holds
JðL; mÞ ¼ p0:5jCð0:5mÞð0:5KÞ�0:5mjCj0:5; E½hjL; m� ¼ ĥ; E½r�1jL; m� ¼ 1
r̂
¼ m

K

E½lnðrÞjL; m� ¼ lnð0:5KÞ �Wð0:5mÞ; E½gg0jL; m� ¼ 1
r̂

1 ĥ0

ĥ ĥĥ0 þ r̂C

" #
:

There psi function WðxÞ ¼ @CðxÞ
@x ;CðxÞ ¼

R1
0 zx�1 expð�zÞdz <1 for x > 0, [1], and entities known from least squares estimation

method are used
C ¼ V�1
w ¼ L�1

w L�1
w

	 
0
; K ¼ Vy � V 0ywV�1

w Vyw ¼ L2
y ; ĥ ¼ L�1

w Lyw: ð23Þ

Recalling that the GiW pds (19) form the assumed set pH of feasible approximate pds, the specialisation of Algorithm 1

starts with the application of the Bayes rule to the pd pt�1 ¼ pLt�1 ;mt�1
and likelihood of the form (18)
~ftðh; rÞ / gðg0Ut ; rÞpLt�1 ;mt�1þ1ðh; rÞ: ð24Þ
The association of the factor 1ffiffi
r
p with the prior pd pLt�1 ;mt�1

makes the considered likelihood essentially bounded in generic case.
The KLD definition, the form of the approximating GiW pd and (24) imply that the approximate pd ~pt ¼ peLt ;~mt

minimising
the KLD Dð~ft jjpÞ is determined by the statistic values eLt ; ~mt
cite this article in press as: M. Kárný, Approximate Bayesian recursive estimation, Inform. Sci. (2014), http://dx.doi.org/10.1016/
014.01.048

http://dx.doi.org/10.1016/j.ins.2014.01.048
http://dx.doi.org/10.1016/j.ins.2014.01.048
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eLt ; ~mt 2 argmin
L;m

f�2ln jLwj þ2lnðCð0:5mÞÞ� m lnð0:5L2
yÞþ ðmþjþ2Þat þ tr½Bt;yðL2

y þ L0ywLywÞþ2B0t;ywL0wLyw� þ tr½Bt;wL0wLw�g

at ¼
Z
ðhH ;rHÞ

lnðrÞ
gðg0Ut ;rÞpLt�1 ;mt�1þ1ðh;rÞR

ðhH ;rHÞ gðg0Ut;rÞpLt�1 ;mt�1þ1ðh;rÞdhdr
dhdr

Bt ¼
Z
ðhH ;rHÞ

gg0
gðg0Ut; rÞpLt�1 ;mt�1þ1ðh; rÞR

ðhH ;rHÞ
R
ðhH ;rHÞ gðg0Ut ; rÞpLt�1 ;mt�1þ1ðh; rÞdhdr

dhdr ¼
Bt;y B0t;yw

Bt;yw Bt;w

" #
¼

Ut;y 0
Ut;yw U0t;w

" #
Ut;y U0t;yw

0 Ut;w

" #
: ð25Þ
The scalar at and the positive definite matrix Bt can be found efficiently by Monte Carlo sampling from the GiW pd
pLt�1 ;mt�1þ1ðh; rÞ. The upper-triangular Choleski factors Ut of Bt splits similarly as Vt (21).

Proposition 7 (The Best Projection on a GiW Probability Density). The GiW minimiser peLt ;~mt
ðh; rÞ of Dð~ft jjpL;mÞ for ~ftðh; rÞ, see (24),

is given by
eV�1
t;w ¼ eCt ¼ Bt;w () eLt;w ¼ U�1

t;w

	 
0
eV t;yw ¼ �B�1

t;y
eV t;wBt;yw () eLt;yw ¼ �U�1

t;y U�1
t;w

	 
0
Ut;yw () ~̂ht ¼ �U�1

t;y Ut;yw

eV t;y ¼
~mt

Bt;y
þ eV 0t;yw

eV�1
t;w
eV t;yw () ~Kt ¼

~mt

Bt;y
¼ 1

~̂rt

() eLt;y ¼
ffiffiffiffiffi
~mt

p
Ut;y

ln 0:5~mtð Þ �Wð0:5~mtÞ ¼ at þ lnðBt;yÞ; Bt;y ¼ U2
t;y; ð26Þ
where W function and the least-squares entities (23), for eV t ¼ eL0teLt, are used.
Proof. The proof exploits the necessary conditions for extreme, the matrix identities @ lnðjCjÞ
@C ¼ C�1, @trðCDÞ

@C ¼ D0 and simple
manipulations. h

The Eq. (26) for the positive scalar s ¼ 0:5~mt is the only one to be solved iteratively. The following proposition shows that
the solution exists. It indicates that no problems should be encountered in a numerical solution.

Proposition 8 (The Solution of (26)). The solution of (26) exists.
Proof. The right-hand side of the inspected equation has the form at þ lnðBt;yÞ ¼ �E½lnðr�1Þ� þ lnðE½r�1�ÞP 0, cf. (25). The
non-negativity of this expression follows from Jensen inequality [33] applied either to the exact expectation or its Monte
Carlo approximation. The same inequality also allows the bounding of the left-hand side
lnðsÞ �WðsÞ ¼ lnðsÞ �
@ ln

R1
0 zs�1 expð�zÞdz

� �
@s

¼ lnðsÞ �
Z 1

0
lnðzÞ zs�1 expð�zÞR1

0 zs�1 expð�zÞdz
dz P lnðsÞ � ln

Cðsþ 1Þ
CðsÞ

� �
¼ 0;
where the equality Cðsþ 1Þ ¼ sCðsÞ, [1], is used.
Moreover, �WðsÞ ¼ 1

sþ fðsÞ, for s! 0þ, where fðsÞ is a bounded function [1]. Thus, the left-hand side
lnðsÞ �WðsÞ ¼ 1

s ðs lnðsÞ þ 1Þ þ fðsÞ increases to infinity for s! 0þ. This together with the continuous dependence of this
function on s implies the claim. h

Having the projection p~Lt ;~mt
, it remains to find the forgetting factor kt meeting (�) in (16).

Proposition 9 (Forgetting factor). Let us consider the approximate GiW pd (19) and denote
Dm ¼ mt�1 � ~mt; DV ¼ Vt�1 � eV t: ð27Þ
Then, the forgetting factor kt 2 ½0;1� minimising dð~ft ; kÞ ¼ Dð~ftjjpLk ;mk
Þ is

(i) either a unique solution of the equation
Dmat þ tr U0tUtDV
� �

ð28Þ
" # !

¼ Dm½lnð0:5KkÞ �Wð0:5mkÞ� þ tr

1
r̂k

1 ĥ0k
ĥk ĥkĥ0k þ r̂kCk

DV
cite this article in press as: M. Kárný, Approximate Bayesian recursive estimation, Inform. Sci. (2014), http://dx.doi.org/10.1016/
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¼ Dm½lnð0:5L2
ykÞ �Wð0:5mkÞ� þ tr L�1

k L�1
k

	 
0
DV

	 

; ð29Þ
where at;Bt ¼ U0tUt are defined in (25). The used least squares entities correspond to the extended information matrix Vk ¼ L0kLk,
see (22) also defining mk,

(ii) or equals 0 for (cf. (23))
Dmat þ tr U0tUtDV
� �

þ 2 ln
JðLt�1; mt�1Þ

JðeLt ; ~mtÞ

 !
6 0 ð30Þ
(iii) otherwise equals 1.
Proof. The statement is specialisation of the general results and the equation (�) in (16). In the considered case,
2 lnðRtðh; rÞÞ ¼ Dm lnðrÞ þ tr gg0DVð Þ þ 2 ln
JðLt�1; mt�1Þ

JðeLt; ~mtÞ

 !
|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

x

ð31Þ
The left-hand side (lht) of the inspected equation (�) gets the form
lht ¼ Dmat þ tr U0tUtDV
� �

þx
The right-hand side (rht) gets the analytical form
rht ¼ DmEk½lnðrÞ� þ tr Ek gg0½ �DVð Þ þx;
where Ek is expectation with respect to the inspected pLk ;mk
. The explicit formulae for the needed moments are in Proposition

6 and then it remains to set lht ¼ rht . If the solution does not exist then k ¼ 0 is minimiser if Dð~ftjjpt�1Þ 6 Dð~ft jj~ptÞ, which
translates into the condition (30). h

This concludes specialisation of Algorithm 1 for the regression model (18) and the GiW class of approximate pds (19).

Algorithm 2. Approximate Recursive Bayesian Estimator for (18 and 19)

Initial phase

� Specify the regression model by specifying the modelled output y 2 yH, structure of the regression vector w and the
pd g of the noise.
� Set t ¼ 0 and specify the values of the prior statistic Lt; mt .
� Select parameters controlling evaluations, i.e. the number of Monte Carlo samples of H ¼ ðh; rÞ and a precision used

in solving equations for mt and kt .
Recursive phase, running for t 2 tH,
1. Increase time counter.
2. Evaluate at ;Ut in (25) for the processed data vector U0t ¼ ½yt;w

0
t�.

3. Evaluate the statistic values eLt ; ~mt according to (26).
4. Determine the forgetting factor kt as specified in Proposition 9.
5. Set L0tLt ¼ kt

eL0teLt þ ð1� ktÞL0t�1Lt�1; mt ¼ kt~mt þ ð1� ktÞmt�1.

In a generic case, Step 2 of Recursive phase is performed by Monte Carlo with samples from GiW pd pLt�1 ;mt�1þ1 (19). The
iterative solution in Steps 3, 4 can employ any simple standard method. Step 4 brings the only computational overheads with
respect to the naive recursive estimation.

Note that updating of Choleski square roots Lt;Ut can be efficiently performed by using standard rotation-based algo-
rithms, see for instance [16].

5. Illustrative example

The presented example illustrates behaviour of the proposed estimator and indicates that the naive estimator (6), even
when complemented by a fixed forgetting, exhibits the divergence the paper is fighting with.

The simple regression model with Cauchy noise was estimated
mtðHÞ ¼ p
ffiffiffi
r
p

1þ ðyt � h0wtÞ
2

r

 !" #�1

; H ¼ ð½h1; h2�0; rÞ; wt ¼ ½ut ; yt�1�
0
; ð32Þ
cite this article in press as: M. Kárný, Approximate Bayesian recursive estimation, Inform. Sci. (2014), http://dx.doi.org/10.1016/
014.01.048

http://dx.doi.org/10.1016/j.ins.2014.01.048
http://dx.doi.org/10.1016/j.ins.2014.01.048
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where h1; h2 are real scalars, r > 0 and scalar real inputs ut ; t 2 tH, are realisations of a sequence of independent normal ran-
dom variables with zero mean and unit variance. The simulated system is described by the same pd with Hs ¼ ðh0s; rsÞ ¼
ð½0:8;0:9�;1Þ.

The specialisation of the theory as described in Section 4 was applied with the following options:

� The prior GiW distribution (19) given by unit L0 and m0 was used.
� The generalised moments at ;Bt (25) were evaluated by straightforward Monte Carlo methods using 600 samples from the

GiW pd pLt�1 ;mt�1þ1. The unnecessarily high number of samples was chosen in order to see clearly the influence of approx-
imation-errors accumulation.
� The equation for ~mt (26) was solved by a simple secant method and the equation for kt , Algorithm 2, was solved by brute

force on a regular grid of forgetting factors with the step 0.005. The used factorised version of the estimator, Algorithm 2,
indeed suppressed otherwise occurring numerical troubles.
� The simulation length of 2000 data pairs was sufficient to reach stationary phase of the estimation.
� The stabilised forgetting (12) with the constant kc ¼ 0:95 was used for comparison.

The simulated data are in Fig. 1 (left), typical behaviour of the proposed forgetting factor kt is in Fig. 1 (right). Fig. 2 (left)
shows time course of relative errors
Fig. 1.
forgetti

Fig. 2.
green l
referred

Please
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ðE½hjLt ; mt � � hsÞ=hs ðmeant entry-wise and applicable as hs – 0Þ ð33Þ
0 500 1000 1500 2000
−200

−100

0

100

200

300

400

500

600

700
SIMULATED DATA  CAUCHY

TIME

D
AT

A

0 500 1000 1500 2000
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
PARAMETRIC MODEL CAUCHY

TIME

FO
R

G
ET

TI
N

G
 F

AC
TO

R

Left: Simulated data, i.e. the modelled output (blue, large values) and the external input (green, small values). Right: Time course of the used
ng factor kt . (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)

0 500 1000 1500 2000
−0.2

0

0.2

0.4

0.6

0.8

1

1.2
PARAMETRIC MODEL CAUCHY

TIME

R
EL

AT
IV

E 
ES

TI
M

AT
IO

N
 E

R
R

O
R

S

0 500 1000 1500 2000
0

0.2

0.4

0.6

0.8

1

1.2

1.4
PARAMETRIC MODEL CAUCHY

TIME

R
EL

AT
IV

E 
ES

TI
M

AT
IO

N
 E

R
R

O
R

S

Left: Relative estimation errors (33) for the proposed estimator. Right: Relative estimation errors when the forgetting factor is k ¼ 0:95. The blue and
ines concern the first and second parameter entry, respectively. (For interpretation of the references to colour in this figure legend, the reader is

to the web version of this article.)
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for the proposed estimator and Fig. 2 (right) shows the same quantities for the naive estimator combined with a fixed
forgetting.

A range of experiments differing in noise distributions, their realisations and prior pd was performed. Their outcomes
looked quite similar. They confirmed that the presented results are typical and weakly dependent on the specific options
made. The high occurrence of the extreme forgetting factors in {0,1} is characteristic to the very heavy-tailed Cauchy para-
metric model. The models with lighter tails are less demanding and infrequently require k ¼ 0: they rarely drop the updating
and projection pair.

6. Concluding remarks

Adaptive control [4] has been the author’s original research domain. There, the recursive treatment and adaptation to
changes dominate and a lot have been done in this area. Comparing to general cases, the processed data streams are there
definitely simpler. The adaptive control, however, demonstrated that the common problems ranging from data preprocess-
ing, detection of abrupt changing, adaptation to slow changes [25,26], dynamic clustering [16], etc. are systematically solv-
able within a single axiomatised framework [18]. The current paper fills a significant gap of the referred theory by designing
a recursive Bayesian estimator, which counteracts the accumulation of approximation errors caused by the recursive
treatment.

The proposed estimator is useful on its own. More importantly, it touches of the common problem of widely used recur-
sive techniques like sequential Monte Carlo parameter estimation, variational Bayes, unscented-transformation based esti-
mation, etc. The problem is especially urgent in the considered parameter estimation, where the errors are not damped by a
stable state evolution. Respecting these observations in the future research promises a non-trivial improvements of estab-
lished estimators and filters. This hypothesis is supported by recent attempts of this type, e.g. [29].

A finer structuring of the circumscribing set is a promising direction of the future research. Ideas connected with direc-
tional [25] and partial [10] forgetting are surely applicable.

Treatment of general data streams requires a systematic effort and corresponding expertise to get general algorithmic
solutions available now only in the simpler adaptive-control context. This paper intends to stimulate a wider research inter-
est in this respect. Recent papers like [13], dealing with drifts in data streams, confirm the need for it. The same observation
applies to handling of crowd-wisdom-based classifiers [36], which obviously have to gradually switch from the batch to
adaptive data-stream processing.
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Processing, Birkhäuser, 1997, pp. 181–193.
[7] J.O. Berger, Statistical Decision Theory and Bayesian Analysis, Springer, New York, 1985.
[8] J.M. Bernardo, Expected information as expected utility, Ann. Stat. 7 (3) (1979) 686–690.
[9] F. Daum, Nonlinear filters: beyond the Kalman filter, IEEE Aero. Electron. Syst. Mag. 20 (8) (2005) 57–69.
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