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Abstract. Fully probabilistic design of decision strategies (FPD) ex-
tends Bayesian dynamic decision making. The FPD specifies the decision
aim via so-called ideal - a probability density, which assigns high prob-
ability values to the desirable behaviours and low values to undesirable
ones. The optimal decision strategy minimises the Kullback-Leibler di-
vergence of the probability density describing the closed-loop behaviour
to this ideal. In spite of the availability of explicit minimisers in the
corresponding dynamic programming, it suffers from the curse of di-
mensionality connected with complexity of the value function. Recently
proposed a lazy FPD tailors lazy learning, which builds a local model
around the current behaviour, to estimation of the closed-loop model
with the optimal strategy. This paper adds a theoretical support to the
lazy FPD and outlines its further improvement.
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1 Introduction

A decision maker (artificial or human) forms with its environment a closed
decision-making (DM) loop and aims to influence the closed-loop behaviour by a
sequence of its actions. The behaviour is characterised by a collection of observed,
selected and considered variables. The decision maker can only use incomplete
knowledge and faces random dynamic changes of the environment. DM under-
stood in this way is wide spread and covers stochastic and adaptive control, fault
detection as well as inference tasks like estimation, filtering, prediction, classifi-
cation, etc. The mentioned DM importance and width have naturally stimulated
a search for widely applicable normative DM theories. A long-term development
has singled out the Bayesian DM theory [3, 4, 9, 29] as the most promising can-
didate.

The Bayesian DM provides well-justified solutions of DM tasks but the “curse
of dimensionality” [1] limits its applicability and approximations are mostly in-
evitable. Approximate non-linear estimation and filtering [7, 8, 27, 30] and ap-
proximate dynamic programming [4, 31, 34] are thus unavoidable, permanently-
evolving, complements of the basic DM theory. Practically successful techniques
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mostly rely on local approximations around the current realisation of the be-
haviour. This applies to learning, with lazy learning being its typical represen-
tative [5, 20], to adaptive control [13, 23] and other techniques like case-based
reasoning [10]. Their success or failure strongly depends on a proper specifica-
tion of the neighbourhood of the current behaviour. The neighbourhood must
be narrow to allow a simple and rich modelling containing relevant information
learnt within the closed DM loop. To our best knowledge, no established method-
ology comparable in the width to the underlying DM theory exists. Mostly they
either support a subset of DM problems or use a trial and error method.

Fully probabilistic design (FPD) of DM strategies is an extension of the Bayesian
DM [12, 16, 17]1 describes the closed-loop behaviour by a joint probability den-
sity (pd) of the involved variables, exactly as the Bayesian DM does. It, however,
expresses the DM aims via a decision-maker-adopted ideal pd quantifying desir-
ability of behaviours. The strategy design then reduces to a minimisation of the
Kullback-Leibler divergence (KLD, [19]) of the involved pds over the optional
strategies. The FPD promises simpler approximations of the unfeasible strategy
design as it provides an explicit minimiser in dynamic programming. The rare
attempts, e.g. [14], only partially exploited the potential offered by this feature.
They are still too much of ad hoc nature and cumbersome. A substantial progress
towards an approximate FPD has been recently made, [22]. The proposed lazy
FPD uses the current ideal pd for weighting the past data records when learning
a local model of the optimally closed loop. This treatment overcomes weaknesses
of the lazy learning, which: a) serves well to prediction but rarely to dynamic
DM; b) is sensitive to a measure quantifying the proximity of behaviours, and c)
relies on availability of data records close enough to the current one. The present
paper adds a theoretical insight into the technique and improves the lazy FPD
using Sanov-type analysis [28]. Section 2 recalls the lazy FPD and Section 3
formulates the addressed problems. Section 4 solves them. Section 5 contains
illustrative example and Section 6 offers concluding remarks.

Throughout, x is a set of x-values; all sets are subsets of finite-dimensional
spaces; S, O, . . . are mappings; x ∈ x denotes a possible realisation of a random
variable X; x ∈ x is a specific realisation of X; probability density (pd) is Radon-
Nikodým derivative with respect to a measure d•; pds having different identifiers
in arguments are taken as different; τ, t ∈ t ≡ {1, . . . , T} label discrete time;
xnm = (xt)

n
t=m and xn = xn0 describe finite sequences.

2 Lazy FPD

The lazy FPD selects a decision strategy, which makes a probabilistic description
of the closed decision loop close to a pre-specified closed-loop ideal. Instead
of the traditional learning of an environment model followed by the strategy
optimisation, the lazy FPD uses the currently observed data to estimate, which
of simple parametric models provides the closed-loop model near the given ideal.

1 Re-invented in [33], studied in control [11] and used in brain research [32].
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The designed strategy is then a marginal of the found closed-loop model. The
next text formalises this.

The inspected DM problem deals with sequences of possible realisations xT of
random environment responses xτ ∈ xτ , t ∈ t. The realised sequence of responses
xT reacts on the realisation aT of actions generated by a randomised strategy,
Sτ : aτ−1, xτ−1 → aτ , τ ∈ t. The action, aτ , and the environment response, xτ ,
forms the data, dτ , observable at time τ ∈ t. Pds ST ≡ (St(at|at−1, xt−1))Tτ=1 =
(Sτ (aτ |dτ−1))Tτ=1 describe the strategy. The individual pds in the sequence ST

are decision rules forming the strategy.
Let us consider the current time t ∈ t delimits the past (when data sequence

dt−1 was observed) and the future, which includes the current inspected DM
stage. The current time splits behaviour and all involved pds in their past and
future parts. The data considered in the closed DM loop are samples from a
closed-loop-describing pd CT =

∏T
τ=1 Cτ (dτ |dτ−1). In the inspected stage, the

past and the future closed-loop models are distinguished. The future ideal closed-
loop model, given by the joint pd

ITt = It
(
dTt |d

t−1
)

=

T∏
τ=t

It(dτ |dt−1, dτ−1
t ), t ∈ t, (1)

quantifies the DM aim. Its factors It(dτ |dτ−1) for τ ≥ t may differ from the
past ideal factors Iτ for τ < t. Notice that the behaviour evolution within the
planning periods starts at the realised dt−1. The future closed-loop model CTt =
Ct
(
dTt |d

t−1
)

describes the DM loop formed by the environment and the future

strategy STt . The strategy making CTt close to the future ideal pd ITt = It(d
T
t |d

t−1)
(1) is searched for. The lazy FPD uses: i) the observed data realisations dt−1; ii)
the given ideal pd (1); iii) a class of parametric models

Mt

(
dTt |d

t−1, θ
)

=

T∏
τ=t

Mt(dτ |dt−1, dτ−1
t , θ), θ ∈ θ, (2)

serving for extrapolation of the past realised closed-loop behaviour dt−1. Note
that the parametric closed-loop models (2) can be simple as the future closed-
loop model Ct(d

T
t |d

t−1) has to be (approximately) valid only for the behaviours
prolonging the past dt−1.
Design concept of the lazy FPD : The lazy FPD uses the data realisation for
assigning such a posterior pd P(θ|dt−1) to respective parameters θ ∈ θ in (2) so

that the model Ct(d
T
t |d

t−1) =
∏T
τ=t Ct(dτ |dτ−1) describes the closed loop with

the desired strategy. Its future-describing factors are predictors

Ct(dτ |dt−1, dτ−1
t ) ≡

∫
θ

Mt(dτ |dt−1, dτ−1
t , θ)P(θ|dt−1) dθ (3)

constructed from the parametric model (2) and the posterior pd P(θ|dt−1). The
pd St

(
at|dt−1

)
=
∫
x

Ct
(
dt|dt−1

)
dxt gained from the predictor (3) is the current
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estimate of the properly tuned decision rule. The action at is sampled from it
and the response xt is observed.

The randomised strategy arising from the lazy FPD cares about the explo-
ration conditioning any successful learning. For a well-peaked P

(
θ|dt−1

)
, the

predictors (3) can be approximated by plug in a point estimate of θ into the
models Mt

(
dτ |dτ−1, θ

)
(2).

Neither the local model of the environment working in the closed loop nor
the future strategy optimal with respect to the future ideal are known. Thus, the
parameters θ ∈ θ pointing to the models (2), which guarantee the closeness of
the future closed-loop model (3) to the given future ideal pd (1), are unknown.
As such, they should be learned in the Bayesian way. The already observed data
realisations dt−1, however, do not origin from the closed loop tuned with respect
to the ideal pd ITt (1). The lazy FPD faces this serious obstacle by learning the
unknown parameter θ ∈ θ via the weighted Bayes rule. It maps a prior pd P(θ)
on the posterior pd, ∀θ ∈ θ, as follows

P
(
θ|dt−1

)
∝ P(θ)

t−1∏
τ=1

M
Wt(d

τ )
t (dτ |d

τ−1, θ) (4)

Wt

(
dτ
)
∝ It(dτ |d

τ−1) and ∝ denotes proportionality.

After using at taken from St(at|dt−1) =
∫
xt

∫
θ

Mt(dt|dt−1)P(θ|dt−1) dθ dxt the

response xt is observed and the learning step (4) is repeated for time t+ 1.

3 Questions Connected with the Lazy FPD

The weights Wt(d
τ ) chosen in (4) are intuitively plausible. The weight is the

higher the more the realised subsequence dτ fits the ideal factor It(dτ |dτ−1)
to which closed-loop models (2) with highly probable parameter values should
approach. Promising experimental results, partially reported in [22], support this
intuition.

The intuition leaves aside the natural questions: i) Is the use of the weights
Wt in (4) the proper and, ideally, only one? ii) How to normalise the weights
(4) to get the adequately peaked posterior pd P(θ|dt−1)? iii) What happens if
the processed data realisations indeed come from the properly tuned closed loop
describable by the parametric model (2), i.e. what is the asymptotic behaviour
under time-invariant circumstances?

The formal inspection of the weighted Bayes rule (4) with a novel choice of
the weights presented in the next section forms the paper core and answers the
questions above.

4 Answers to the Formulated Questions

The following normalisation of the weights (4) is inspected

Wt(d
τ ) =

It(dτ |dτ−1)

Cτ (dτ |dτ−1)
, (5)
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where Cτ (dτ |dτ−1) is the pd describing the realisations of the closed-loop be-
haviour for τ ≤ t − 1. It can be obtained via the standard Bayesian learning
using either a specific parametric model or the model (2). The latter option
needs a sort of forgetting [18] coping with the approximate nature of the simple
models (2), [15]. For a time-invariant ideal pd, it can alternatively be approxi-
mated by the predictors (3) obtained when the planning started at times τ < t.

The normalisation (5) has resulted from the Sanov-type analysis [28] of the
posterior pd. It is extended here so that it is applicable to the posterior pd
obtained in the closed DM loop with the weighted Bayes rule (4). Its idea is
often masked by the focus on difficult but technical problems. The common
essence is, however, simple. The posterior pd is re-written as

P(θ|dt−1) ∝ exp[−(t− 1)× sample mean of a data function depending on θ]

and a law of large number, ergodic arguments or martingale theory [21] are used
to show that this sample mean converges to a function bounded from below.
Then, it is easy to see that the posterior pd P(θ|dt−1) may concentrate only on
θ ∈ θ minimising this function.

The next proposition formalises this way assuming that the time moment
t ∈ t is fixed and the past data dt−1 are described by the pd

∏t−1
τ=1 Cτ (dτ |dτ−1).

Proposition 1 (On the Weighted Bayesian Learning) Let

ln
( It(dτ |dτ−1)

Mt(dτ |dτ−1, θ)

)
, τ < t, (6)

be essentially bounded for all θ ∈ θ. Then, the weighted Bayes rule (4) using the
weights (5) provides for t → ∞ the same posterior pd as that obtained by the
standard Bayes rule applied to data sampled from the closed-loop described by
the ideal pd It(dτ |dτ−1).

Proof For any θ ∈ θ, the posterior pd obtained from (4) can be given the form

P(θ|dt−1) ∝ P(θ) exp
[
− (t− 1)

the sample mean Ωt−1(d
t−1,θ)︷ ︸︸ ︷

1

t− 1

t−1∑
τ=1

Wt(d
τ ) ln

( It(dτ |d
τ−1)

Mt(dτ |d
τ−1, θ)

)
︸ ︷︷ ︸

Lτ

(
dτ ,θ
)

]
, (7)

exploiting the fact that the proportionality ∝ in (7) defines the same posterior
pd even when the right-hand side is multiplied by any positive θ-independent
factor. The following innovations Nτ are zero-mean, uncorrelated and essentially
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bounded due to the assumed bounded-ness of (6), [24],

Nτ (dτ , d
τ−1, θ) ≡ Eτ

[
Lτ |dτ−1

]
− Lτ

(
dτ , d

τ−1, θ
)

with

Eτ
[
Lτ |dτ−1

]
≡
∫
dτ

Lτ
(
dτ , d

τ−1, θ
)
Cτ (dτ |dτ−1) ddτ

=

∫
dτ

It(dτ |dτ−1) ln
( It(dτ |dτ−1)

Mt(dτ |dτ−1, θ)

)
ddτ︸ ︷︷ ︸

Hτ (dτ−1,θ)

≥ 0, due to the Jensen inequality, [26].

The decomposition exists due to the essential bounded-ness of Hτ (dτ−1, θ) and
splits Ωt−1(dt−1, θ) into the mean of non-negative terms Hτ (dτ−1, θ) and sample
average of innovations Nτ (dτ , θ), τ ≤ t − 1, which almost surely converges for
t → ∞ to their zero expectation [21]. Thus, the support of the posterior pd
concentrates (quickly due to the factor −(t− 1)) on minimisers θP ∈ θ of 1/(t−
1)
∑t−1
τ=1 Hτ (dτ−1, θ): the weighted learning singles out the parametric models as

if the data dt−1 was sampled from the ideally tuned closed loop described by the
pd
∏t−1
τ=1 It(dτ |dτ−1) and processed by the usual Bayes rule [2].

Corollary 1 (Asymptotic Optimality of the Lazy FPD) Let the function
(6) be essentially bounded. Then, the predictor of the closed-loop behaviour (3),
obtained via the weighted Bayes rule (4) with the weights (5), asymptotically
almost surely fulfils the inequality, ∀θ ∈ θ:∫

dt

It(dt|dt−1) ln
( It(dt|dt−1)

Ct(dt|dt−1)

)
ddt ≤

∫
dt

It(dt|dt−1) ln
( It(dt|dt−1)

Mt(dt|dt−1, θ)

)
ddt.

(8)

Proof : According to Proposition 1, the support θP ⊂ θ of P(θ|dt−1) asymptoti-
cally concentrates on minimisers θP ∈ θ of∫

dt

It(dt|dt−1) ln
( It(dt|dt−1)

Mt(dt|dt−1, θ)

)
ddt.

Thus, for any θP ∈ θP and any θ ∈ θ∫
dt

It(dt|dt−1) ln
( It(dt|dt−1)

Mt(dt|dt−1, θP)

)
ddt ≤

∫
dt

It(dt|dt−1) ln
( It(dt|dt−1)

Mt(dt|dt−1, θ)

)
ddt.

Multiplying this inequality by the posterior pd P(θP|dt−1) > 0, integrating over
its support θP, using the Jensen inequality and taking into account that by
definition P(θP|dt−1) assigns unit probability to θP give the claim (8).

Even when the function (6) is essentially bounded, the values of Wτ (dτ ) can
be too large. Thus, it is reasonable to limit them from above by W ∈ (1,∞).
Corollary 1 implies that it is always possible to select such W that the limitation
is almost surely inactive. Then, the asymptotic results hold even when using it.
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5 Illustrative Example

The example illustrates that the proposed weighting indeed improves properties
of the lazy FPD. A Markov chain with two states x ∈ x ≡ {1, 2} and four
actions a ∈ a ≡ {1, 2, 3, 4} is considered. The ideal pd expressing preferability
of the state value 1 was selected. The simulated system in given in Table 1. The
proposed weighting (5), bounded from above by the value W = 3, was compared
with the standard solution (called un-normalised), which takes the weight W
in (4) equal to the ideal pd It(xτ , aτ |xτ−1). The designed strategy is given in
Table 2.

Fig. 1 provides samples of simulated closed-loop behaviour when both weight-
ing variants were applied to the same realisation of the underlying random gen-
erator. Fig. 2 provides the corresponding time course of weights. The strategy
with the proposed weighting (5) reaches the desirable state xτ = 1 in 91% cases
while 65% of units occurred when using un-normalised ideal pd as the weight.

The limited simulation experience: i) supports the theoretical arguments;
ii) shows that the proposed weighting tends to provide (often significant) im-
provement; iii) indicates that the proposed weighting substantially speeds up
the learning of the optimal decision rule while the presented significant differ-
ence in quality diminishes in long run; iv) confirms that the used approximation
of the past closed-loop model influences visibly the result quality; v) reveals that
very high values of the weight Wτ may occur due to the “practical” violation
of assumed essential boundedness; vi) shows that the learning of the closed-loop
model with a data-dependent forgetting behaves well.

6 Concluding Remarks

The weights are used properly and no other correct way seems to exist. The
proposed normalisation of the weights is conceptually unique – the unambiguous
approximate choice of the numerator in (5) stays open. The asymptotics, when
the time-invariance makes its inspection meaningful, is the correct one: when the
ideal situation It(dτ |d

τ−1) = Cτ (dτ |d
τ−1) occurs, the weight Wt = 1 is reached.

Assumption (6) on the logarithmic ratio excludes parametric models that
assign zero probability to data realisations, which are accepted as possible by
the selected ideal pd. It can be weakened to the requirement on boundedness of
the second moments. Algorithmically, it is connected with the upper bound W
on weights Wt. Sensitivity to specific values of W seems to be low.

If almost no past data can be interpreted as coming from the optimally tuned
closed loop, then Wτ << 1, τ ≤ t − 1, and the posterior pd becomes flat. This
makes the one-step-ahead predictor of the closed-loop behaviour (3) flat, too.
This situation enhances the explorative nature of actions generated from it, as
desirable.

The choice (5) resembles the trick well-known in Monte Carlo evaluations
when a feasible “proposal” pd is used [6]. The past closed-loop model plays
its role. The analogy is, however, mechanical and seems to bring no tangible
consequences.
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Table 1. The simulated system.

F(xt|at, xt−1) at = 1 at = 2 at = 3 at = 4

F(xt = 1|at, xt−1 = 1) 0.9975 0.0196 0.0196 0.9901
F(xt = 2|at, xt−1 = 1) 0.0025 0.9804 0.9804 0.0099
F(xt = 1|at, xt−1 = 2) 0.0196 0.9901 0.9967 0.0196
F(xt = 2|at, xt−1 = 2) 0.9804 0.0099 0.0033 0.9804

Table 2. The decision rule found.

S(at|xt−1) xt−1 = 1 xt−1 = 2

S(at = 1|xt−1) 0.4607 0.1148
S(at = 2|xt−1) 0.0292 0.3241
S(at = 3|xt−1) 0.0293 0.4463
S(at = 3|xt−1) 0.4808 0.1148
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Fig. 1. Simulated behaviour: normalised weight (left), un-normalised weight (right).
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Open problems: i) A decision, which of mentioned approximations of Cτ (dτ |dτ−1)
is better is to be made or an alternative option found. ii) Closed-loop stability is
the major unsolved issue – the approximation of the ideal dynamics It(dt|dt−1) by
the closed-loop model Ct(dt|dt−1) does not guarantee it; iii)The result guarantees
that the one-step-ahead predictor of the closed-loop behaviour approximates the
one-step-ahead ideal pd. In truly dynamic cases, the receding horizon strategy
[25] can be immediately designed: it suffices to handle blocks od decisions. Other,
more efficient ways of coping with DM dynamics have to be developed.
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16. Kárný, M., Guy, T.V.: Fully probabilistic control design. Systems & Control Let-
ters 55(4), 259–265 (2006)



10 Miroslav Kárný et al.
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