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Abstract
Decision making (DM) is a preferences-driven choice among available actions.

Under uncertainty, Savage’s axiomatisation singles out Bayesian DM as the ade-
quate normative framework. It constructs strategies generating the optimal actions,
while assuming that the decision maker rationally tries to meet her preferences.

Descriptive DM theories have observed numerous deviations of the real DM from
normative recommendations. The explanation of decision-makers’ imperfection or
non-rationality, possibly followed by rectification, is the focal point of contemporary
DM research. This chapter falls into this stream and claims that the neglecting a part
of the behaviour of the closed DM loop is the major cause of these deviations. It
inspects DM subtasks in which this claim matters and where its consideration may
practically help. It deals with: i) the preference elicitation; ii) the “non-rationality”
caused by the difference of preferences declared and preferences followed; iii) the
choice of proximity measures in knowledge and preferences fusion; iv) ways to a
systematic design of approximate DM; and v) the control of the deliberation effort
spent on a DM task via sequential DM.

The extent of the above list indicates that the discussion offers more open ques-
tions than answers, however, their consideration is the key element of this chapter.
Their presentation is an important chapter’s ingredient.

Miroslav Kárný
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3.1 Introduction

The chapter considers decision making (DM) as a direct choice among available
actions, which is driven by the wish to meet DM preferences. The main concern of
the reported research is the repeatedly observed discrepancies between real decision
making and recommendations or predictions of normative theories. The discrepan-
cies include: i) framing effect – for instance, the chosen action depends on whether
identical DM consequences are presented as a gain or loss, [23]; ii) bounded ratio-
nality – for instance, the chosen action differs from the optimal one due to inherent
constraints on the effort spent on solving a specific DM task, [31]; iii) violation
of game-theory predictions – for instance, players often use apparently non-optimal
strategies even in very simple games, [48,64]; iv) intransitivity of preferences – they
violate logically appealing linear order, [66]; and many others.

Any theory is a meta-model of reality, while models are its inputs to applications.
Insufficiency of the theory or of these inputs may result in unpredicted or bad out-
comes. This chapter inspects DM theory from this perspective, providing a unifying
view on the roots of the above-mentioned discrepancies.

DM concerns interactions of the decision maker with her environment. An envi-
ronment1 considered during DM is a part of the real world specified by the decision
maker for each DM task. The decision maker expends her intellectual and techni-
cal resources to: i) delimit informally the addressed DM task; ii) select theoretical
and technical tools for solving the DM task; iii) formalise the DM task and use the
selected tools; iv) apply the resulting sequence of actions; v) handle (accumulate,
aggregate, forget, etc.) the knowledge contained in the closed loop formed by the
decision maker and her environment. Complexity of these activities causes some
parts of the closed-loop behaviour are unintentionally neglected during DM. This
chapter claims that such neglect is the dominating cause of the above-mentioned
discrepancies. It shows that the consideration of the neglected parts has practically
significant consequences and opens interesting research problems.

Control theory, pattern recognition, fault detection, medical and technologic di-
agnosis, machine learning, statistics, signal processing are examples of fields de-
facto addressing DM. This indicates the broadness of the inspected topic and ex-
plains the proliferation of exploited formal tools as well as of the terminology.

Sections 3.1.1 and 3.1.2 recall the normative DM theory we rely on, namely, the
fully probabilistic design (FPD) of decision strategies, [33, 41, 45]. Section 3.1.3
specifies the DM aspects discussed within this chapter. Then, Section 3.1.4 presents
the layout of the remainder of the chapter.

1 [68] calls it a small world. Alternative terms like system, plant, object are used.
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3.1.1 Fully Probabilistic Design of Decision Strategies

The Bayesian framework confers a key normative theory of DM under uncertainty,
[68]. Its internal consistency and advanced computing technology have made real-
istic the insightful prediction: “in 2020, we all will be Bayesians”, [57].

Bayesian theory recommends a DM strategy that minimises an expected loss
(or maximises an expected reward). The loss expresses preferences among possible
closed-loop behaviours. Hereafter, the term behaviour means the collection of all
actions, observed and considered but unobserved variables. The expectation is taken
over all uncertain – yet or never unobserved – parts of the behaviour.

The decision maker expresses her wishes as preferences among possible be-
haviours. The loss quantifies the preferences among behaviours and expectation
transforms them into quantified preferences among decision strategies, which map
the decision-maker’s knowledge onto actions. The strategy choice influences the
strategy-dependent probability density (pd)2 describing the closed-loop behaviour
and determining the expectation. This pd is the basic formal object of the fully
probabilistic design of DM strategies, [26, 33, 38, 40–42], that the chapter relies on.

FPD extends Bayesian DM theory by allowing the loss to depend on the strat-
egy. FPD adopts the logarithmic score of the closed-loop-describing pd to its ideal
counterpart as the universal loss, [45]. The ideal pd specified by the decision maker,
acting also on possible behaviours, expresses the DM preferences among these. The
value of the ideal pd is high for desirable behaviours and small for undesirable ones.
For the loss constructed in this way, FPD minimises the Kullback-Leibler diver-
gence (KLD, [54])3 of these pds. Note that FPD formulations contains a dense set
within the set of all Bayesian DM formulations, [45], and thus our discussion does
not neglect any Bayesian DM task.

3.1.2 Formal Description of Fully Probabilistic Design

Agreement 1 (Fonts in Notation, Behaviour, Time) The symbol xxx is the set of x
values. Capitals in sans serif denote mappings and thus CCC is the set of C instances.
C aligraphic letters are reserved for functionals.

The dominating measure with respect to which a probability density (pd) is de-
fined [65] is denoted d•. Here, it is either the Lebesgue or counting measure.

The closed-loop behaviour b ∈ bbb is formalised as a collection of random vari-
ables considered by the decision maker. They are ordered according to time, labelled
by discrete time t ∈ ttt = {1,2, . . . ,T}, at which the optional actions at ∈aaa are chosen.
The time extent is delimited by a decision horizon T ≤ ∞.

All functions having time-dependent arguments are generally time-dependent.
Exceptions are explicitly pointed out.

2 A pd is the Radon-Nikodým derivative of a probabilistic, randomness-modelling measure.
3 The KLD has many names. Relative entropy and cross entropy [70] are the most common.
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Throughout, the following partitioning of the behaviour, b, is exploited.

Agreement 2 (Time of the Action Choice Splits Behaviour) When considering
an action at ∈ aaa at time t ∈ ttt, any possible behaviour b ∈ bbb splits into

– action at ∈ aaa, which is chosen by the decision maker;
– knowledge kt−1 available for choosing at : it includes prior knowledge k0;
– ignorance containing variables considered by the decision maker but unavail-

able for choosing action at , i.e. considered but never observed internal variables
and yet unused observations oτ , τ ≥ t, and actions aτ , τ > t.

The term “internals” covers notions like hidden or latent variables, internal
states, and an unknown (multivariate) parameter Θ ∈ΘΘΘ , which is uninfluenced
by the action and knowledge. This chapter predominantly considers parameter
Θ as the only internal4.

As time evolves, the knowledge is enriched by the observations ot ∈ ooo and by the
chosen action at ∈ aaa, i.e. kkkt = kkkt−1 ∪ooo∪aaa, and the ignorance shrinks correspond-
ingly. The unknown parameter is a permanent part of the ignorance.

Closed-loop behaviours b ∈ bbb are described by a closed-loop model, which is a
pd CS(b) on bbb depending on the inspected strategy S ∈ SSS. In harmony with Agree-
ment 2, the chain rule for pds, [63], factorises the closed-loop model in a well-
interpretable way. For simplicity, the factorisation is made for ignorance containing
only unused observations, actions and the unknown parameter. The factorisation has
the form

CS(b) = ∏
t∈ttt

M(ot |at ,kt−1,Θ) ×∏
t∈ttt

P(Θ |kt−1)× ∏
t∈ttt

S(at |kt−1) (3.1)

closed-loop model evironment model parameter model strategy model

Remarks
• All factors are generally time-variant.
• The environment model relates observations to internals, here, to the unknown

parameter. The terms “parametric environment model” or, briefly, “parametric
model” are used. The parameter model is traditionally called the posterior pd.

• Within a single DM problem, the parametric environment model is assumed to
be common to all strategies S ∈ SSS. This does not restrict the presentation.

• The posterior pd evolves according to Bayes’ rule, valid under adopted natural
conditions of control [63], stating that Θ is unknown to decision maker:

P(Θ |kt) =
M(ot |at ,kt−1,Θ)P(Θ |kt−1)

M(ot |at ,kt−1)
, starting from a prior pd P(Θ |k0),

M(ot |at ,kt−1) =
∫

ΘΘΘ

M(ot |at ,kt−1,Θ)P(Θ |kt−1)dΘ . (3.2)

4 When ignorance includes non-constant internals, Bayesian learning used below becomes stochas-
tic filtering, [30]. If moreover, the decision maker’s preferences depend on an action-dependent
internal state, the stochastic control problem arises [41]. This general case is not treated here as it
complicates explanations without offering any conceptual shift.
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• The predictive pds (M(ot |at ,kt−1))t∈ttt (3.2) used in the denominator of Bayes’
rule form an (external) environment model. The parametric and environment
models coincide whenever ignorance contains no unknown parameter. This has
motivated the use of the same letter M for these different pds.

• The factorisation (3.1) and Bayes’ rule (3.2) are correct if the learnt parameter
Θ ∈ΘΘΘ and actions at are conditionally independent

S(at |kt−1,Θ) = S(at |kt−1), t ∈ ttt. (3.3)

The assumption (3.3) expresses natural conditions of control, [63], which are
met for the optimised strategies.

• The strategy model S = (S(at |kt−1))t∈ttt is composed of decision rules
S(at |kt−1), t ∈ ttt. ut

FPD assumes that the decision maker expresses her preferences between a pair
of behaviours b1,b2 ∈bbb by an ideal closed-loop model, which is a pd5 C?(b) defined
on bbb. By definition6

b1 �bbb b2 means: b1 is preferred against b2 iff C?(b1)≥ C?(b2)
b1 ≺bbb b2 means: b1 is strictly preferred against b2 iff C?(b1)> C?(b2).

(3.4)

FPD also orders strategies S1,S2 ∈SSS via the same pd C? = (C?(b))b∈bbb by comparing
closed-loop models C1 = CS1 , C2 = CS2 connected with them

S1 �SSS S2 means: S1 is preferred against S2 iff D(C1||C?)≤D(C2||C?)
S1 ≺SSS S2 means: S1 is strictly preferred against S2 iff D(C1||C?)< D(C2||C?).

(3.5)
The functional D(CS||C?) used in (3.5) is the Kullback-Leibler divergence

D(CS||C?) = ES

[
ln
(

CS

C?

)]
=
∫

bbb
ln
(

CS(b)
C?(b)

)
CS(b)db. (3.6)

Hence, the KLD is the S-dependent expectation ES[•] =
∫

bbb •CS(b)db of the S-
dependent loss, LS,

LS(b) = ln
(

CS(b)
C?(b)

)
, b ∈ bbb. (3.7)

The ordering (3.5) reflects the fact that the strategy S1 is better than S2 as it
provides the closed-loop model C1 = CS1 , which is closer to the ideal closed-loop
model C? than the closed-loop model C2 = CS2 with the strategy S2.

The most preferred strategy, So �SSS S, ∀S ∈ SSS, see (3.5), is called the optimal
strategy (in the FPD sense). In order to describe its construction, it is useful to
factorise the ideal closed-loop model C? in a manner similar to (3.1)

5 Further on, the superscript ? marks pds and actions arising from this ideal closed-loop model.
6 The quest for simple final formulas has motivated a slightly non-standard choice of the “direc-
tions” of the ordering operators �, ≥ and ≺, >.
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C?
S(b) = ∏

t∈ttt
M?(ot |at ,kt−1,Θ) ×∏

t∈ttt
P?(Θ |kt−1)× ∏

t∈ttt
S?(at |kt−1,Θ)

ideal ideal ideal ideal
closed-loop model environment model parameter model strategy model

Remark

• The names “ideal environment model, ideal strategy model and ideal knowl-
edge model” are to be understood as mnemonic analogies. For instance, the
ideal strategy model S? may depend on the unknown parameter. As such, it is
necessarily an element of the set SSS of strategies, which can be used by the deci-
sion maker. Even when S? ∈ SSS then D(CSo ||C?) < D(CS? ||C?) since the ideal
strategy is close to itself but does not make the environment model close to the
ideal environment model, in general. ut

The following results, used later on, are proved in [41, 45].

Proposition 1 (Solution of FPD; Relation to Bayesian DM) Let the parameter-
independent environment model M, its ideal counterpart M? and the ideal strat-
egy S? be given (they only operate on observations, actions and prior knowledge).
With the ordering (3.5), the optimal (�SSS-most preferred) randomised strategy So is
described by the pd normalised by γ(kt−1)

So(at |kt−1) =
S?(at |kt−1)exp[−ω(at ,kt−1)]

γ(kt−1)
(3.8)

ω(at ,kt−1) =
∫

ooo
M(ot |at ,kt−1) ln

(
M(ot |at ,kt−1)

M?(ot |at ,kt−1)

)
dot −E [ln(γ(kt))|at ,kt−1],

with E [ln(γ(kt))|at ,kt−1] =
∫

ooo M(ot |at ,kt−1) ln(γ(kt))dot .
The evaluations (3.8) run backward for t ∈ ttt and the value function − ln(γ(kt)),

[5], is zero at the decision horizon t = T .
For any strategy-independent loss L : bbb→ (−∞,∞] and the ideal pd

C?(b) ∝ exp[−L(b)/ξ ]∏
t∈ttt

M(ot |at ,kt−1), ∝ means proportionality , ξ > 0,

D(CS||C?) =
1
ξ

ES[L]+ES[ln(S)]+ strategy-independent function of ξ . (3.9)

If ξ → 0+ then FPD with this C? solves with arbitrary precision the Bayesian DM
task, given by the same behaviour set bbb, the environment model M, and the loss L.

Open Problem

Bayesian DM with non-parametric learning, [18], or particle filtering, [10], provide
environment models of practical importance but with Dirac δ -function constituents.
For such pds, the KLD is infinite and thus unsuitable for optimisation. To our best
knowledge, a complete and correct treatment of this case is unavailable.
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3.1.3 Discussed Decision-Making Aspects

The development of the considered normative DM theory began with the static DM
task, [68]. It continued over multi-step but open-loop problems, and arrived at strat-
egy design considering closed-loop behaviours with a finite or infinite decision hori-
zon, [5, 17]. It has been extended to FPD and closely related, but independently
developed and exploited DM methodologies [25, 76, 78].

The persisting discrepancies between normative and descriptive DM mentioned
above, [27, 49, 56], have motivated us to join the search for their causes.

This chapter claims that the normative theory and its use do not sufficiently re-
spect that the closed-loop behaviour matters. This wide-spread phenomenon has an
obvious common source: the decision maker delimits the behaviour with respect to
the environment to be influenced. She naturally includes in the behaviour actions
and observations, as well as the environment internals, that she considers important.
The neglected part of the behaviour concerns the decision maker. Her internals,
reflecting directly unobserved preferences, emotional states, degree of “economic”
rationality, the decision-maker’s role in DM and cognitive effort, are rarely included
into the considered behaviour, [73, 75, 80].

In order to overcome this, it is necessary to treat DM as a process proceeding
from an informal specification of the DM problem up to the final use of the strategy.
The chapter follows this course, identifies the important omissions, discusses them
and searches for solutions.

3.1.4 Layout

The extent of the considered problem prevents its complete coverage. The presented
sub-selection of existing tasks is inevitably subjective and reflects the both authors’
knowledge and the subjectively perceived importance of the existing sub-problems.

Section 3.2 focuses on the completion and conceptual quantification of prefer-
ences driving DM. This still insufficiently developed part of DM theory is vital for
converting the informally-specified DM problem into an algorithmically amenable
task. The section also recalls the pathway to FPD.

Section 3.3 points to the main sources of discrepancies between the current nor-
mative and practical DM. The discussed difference between declared and real pref-
erences originating within the supported decision maker. DM theory is blamed for
the lack of systematic support of (the inevitably approximate) learning of an envi-
ronment model and a design of an (approximately) optimal DM strategy.

Section 3.4 deals with controlling the deliberation effort expended on DM and
with the influence of the decision-maker’s role within DM on the formalisation of
the DM problem. Section 3.5 provides concluding remarks.
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Open Problem

The normative DM theory still does not serve its purpose sufficiently well. The
addressed weak points were selected subjectively. Even the list of known theoreti-
cal bottlenecks may not be complete. For instance, the presented DM theory heav-
ily relies on Kolmogorov’s probability theory while the successful use of quantum
probability in explaining cognitive processes, [64], indicates that a more general
normative DM theory warrants consideration.

3.2 Quantitative Description of Preferences

The specification of the ideal closed-loop model C? is the crucial and poorly sup-
ported step of the conversion of an informally specified DM task into the form re-
quired by the normative theory. The need to quantify complete preferences both in
behaviour and strategy spaces, cf. (3.4), (3.5), is the key difficulty. This section: i)
discusses completeness of the preferences; ii) shows how an extension of the be-
haviour leads to completeness; iii) outlines the ways in which preferences may be
learnt.

3.2.1 Fully Probabilistic Design of DM Strategies

FPD is the normative theory inspected in this chapter. The inspection is supported
by the sketch of its axiomatic basis, [45].

FPD has the ambition to serve all decision makers who may differ in their pref-
erences and available strategies. For this, FPD needs to specify a priori preferences
among all behaviours b ∈ bbb in spite of the fact that the vast majority of them will
never be realised. Subsection 3.2.2 shows how to extend the decision maker’s par-
tial preferences among behaviours into a complete ordering �bbb. The completeness
of prior ordering of all strategies S∈SSS follows from the freedom of decision makers
to select the optimal strategy So in an arbitrarily chosen subset of SSS. For this, they
need the freedom to restrict the strategy ordering �SSS to the ordering on the con-
sidered subset of compared strategies. Typically, limited deliberation or technical
resources enforce this restriction. Since the decision maker may consider the subset
containing an arbitrary strategy pair from SSS, the ordering �SSS has to be complete.
This explains why the following outline considers the complete orderings �bbb,�SSS.

The Way to FPD

• The complete preference ordering of behaviours �bbb defines a non-empty col-
lection of open intervals (b1,b2) = {b∈ bbb : b1 ≺bbb b≺bbb b2} given by behaviours
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b1, b2 ∈ bbb with a strict preference7 b1 ≺bbb b2. [13, 20] show that there is loss
L : bbb→ (−∞,∞] quantifying the ordering �bbb in the sense((

b1 �bbb b2 ∧ b2 �bbb b1
)
⇔ L(b1) = L(b2)

)
and

(
b1 ≺bbb b2⇔ L(b1)< L(b2)

)
iff from any collection of open intervals {(bα ,bβ )} covering bbb it is possible to
select at most a countable sub-collection covering bbb. Briefly, it means that the
quantification by a real-valued loss exists iff the topology of the open intervals
on bbb is not richer than the topology of open intervals on the real line.

• The inspected DM under uncertainty means that the behaviour is not uniquely
determined by the used strategy S ∈ SSS. To model this, an additional variable,
called uncertainty, u ∈ uuu 6= /0, and a strategy-dependent mapping RS : uuu→ bbb are
introduced8. To each loss L the composition ΛS = L◦RS of L and RS, defining
ΛS(u) = L(RS(u)), is assigned. These strategy-dependent “auxiliary” functions
of uncertainty ΛS ∈ΛΛΛS = {L◦RS}L∈LLL serving for further steps.

• The ordering �SSS completely orders the functions ΛS ∈ΛΛΛ = ∪S∈SSSΛΛΛS

ΛS1 �ΛΛΛ ΛS2 holds by definition iff S1 �SSS S2, S1, S2 ∈ SSS. (3.10)

Assuming the countability of the open intervals defined by �SSS, and thus by
�ΛΛΛ, the strategy ordering �SSS can be (numerically) quantified. Due to (3.10), it
can be quantified via a functional L acting on ΛΛΛ. A sufficiently smooth local
functional9 has an integral representation determined by a function U and a
probabilistic measure C(u)du. It has the form, [65],

L (Λ) =
∫

uuu
U(Λ(u),u)C(u)du and S1 �SSS S2 ⇔ L (ΛS1)≤L (ΛS2). (3.11)

The probabilistic measure is assumed for simplicity to be given by the pd C(u).
The function U(Λ(u),u), fulfilling U(0,u) = 0, scales the values Λ(u) according
to the uncertainty value10.

• The substitution of the behaviour b = RS(u) into the integral representation
(3.11) transforms the pd C(u) into the strategy-dependent closed-loop model
CS(b) (3.1). The composition U◦ΛS transforms – via the substitution b=RS(u)

7 The existence of such pairs can be assumed without loss of generality. Indeed, no non-trivial
decision task arises if all comparable pairs of behaviours in the original decision-maker-specified
partial ordering are equivalent.
8 The mapping RS is common to decision makers differing only in preferences among behaviours.
9 The functional is local if its value on Λ, artificially written as the sum Λ1+Λ2 of functions Λ1, Λ2
fulfilling Λ1Λ2 = 0, is the sum of its values on Λ1 and Λ2.
10 The measure serves to all DM tasks facing the same uncertainty. The function U models risk
awareness, neutrality or proneness. The function U, C-almost surely increasing in its first argument,
guarantees that the optimal strategy So selected from the considered subset of SSS is not dominated. It
means that it cannot happen that within this subset there is a strategy Sd such that ΛSd (u)≤ ΛSo (u)
on uuu with the sharp inequality on a subset of uuu of a positive C measure.
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– to an S-dependent performance index IS : bbb→ (−∞,∞]. Its expectation ES[•] =∫
bbb •CS(b)db is taken in (3.11).

• The optimal strategy So with respect to �SSS on the full SSS determines the ideal
closed-loop model C? as the closed-loop model with this strategy, C? = CSo .

• Many expected performance indices ES[IS] lead to the same ideal pd C?; they
are equivalent. The performance index IS = ln(CS/C?) represents all perfor-
mance indices: i) leading to the same ideal pd C?; ii) depending smoothly on
the optimised strategy entering IS via the pd CS, and iii) being independent
of the realised behaviour for CS = C?. FPD simply uses this representative of
equivalent performance indices, cf. (3.5) (3.6), (3.7).

Open Problem

The implicitly adopted handling of uncertainties u ∈ uuu together with σ -algebra of
events makes C(u)du a Kolmogorov probability measure, [65]. This restricts the
generality of FPD. There are strong indicators that “non-commutative probabil-
ity”, [15], widely used in quantum mechanics, is more adequate and can improve
modelling of the “macroscopic” DM environment. A systematic development of
this direction is open and quite challenging.

3.2.2 Completion of Preference Ordering

The existence of preferences �bbb with a non-empty strict part ≺bbb makes any DM
meaningful. Section 3.2.1 exploits its completeness. Everyday experience confirms
that a human decision maker cannot provide the complete ordering �bbb for difficult
cases calling for the use of the normative theory. Thus, there is a need for a system-
atic, automatically performed, completion.

Primarily, it has to be clear how to construct conceptually such a completion. It
suffices to consider closed-loop behaviours b∈bbb having at most a countable number
of realisations, cf. the conditions for the loss existence in Subsection 3.2.1.

To any pair of behaviours b1,b2 ∈ bbb that are un-compared by the decision maker,
there are variants of the preference ordering, denoted �bbb|θ , such that b1 �bbb|θ b2 and
b2�bbb|θ b1 for “pointers” θ , θ . The list of all distinct alternative preference orderings
has at most a countable number of different entries labelled by pointers θ ∈ θθθ j
{1, . . . ,∞}. For each fixed pointer θ ∈ θθθ , the corresponding complete ordering of
behaviours is quantified by an ideal pd C? conditioned on this pointer:

b1 �bbb|θ b2⇔ C?(b1|θ)≥ C?(b2|θ). (3.12)

Any ordering of the countable set θθθ of pointers can be quantified by a positive pd,
say C?(θ). Multiplying (3.12) by the pd C?(θ) and using the chain rule for pds, a
complete ordering �(bbb,θθθ) is obtained. It acts on behaviours with the ignorance part
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extended by the unknown constant pointer θ ∈ θθθ

(b1,θ ,)�(bbb,θθθ) (b2,θ)⇔ C?(b1,θ)≥ C?(b2,θ), C?(b,θ) = C?(b|θ)C?(θ). (3.13)

The ideal pd acts on an additional unknown parameter (pointer) θ characterising
the completion of the decision maker’s preferences with respect to the original be-
haviours b ∈ bbb. The completion formally compares only the behaviour pairs of the
form (•,θ) and (?,θ), i.e. having the same value of the pointer θ . The complete
ordering on such a set suffices for DM.

Open Problem

The countability of bbb avoids use of the axiom of choice, [58], and there is a need for
a non-trivial check as to whether the extension meets the conditions for the existence
of an ordering-quantifying loss L, [13, 20]. It is desirable and non-trivial to remove
the countability assumption.

3.2.3 Ways to Preference Elicitation

The unknown pointer θ to alternative behaviour orderings enters the ideal pd, see
Subsection 3.2.2. It can be learnt similarly to any parameter belonging to ignorance.
This transforms the difficult preference completion problem, known as preference
elicitation, [7,8,11,34], into the Bayesian-learning framework. This significantly ex-
tends the applicability of the normative DM theory. Bayesian learning of the pointer
θ , which is part of the general unknown parameter Θ ∈ΘΘΘ , is possible if its influ-
ence on observations can be established. Otherwise, the minimum Kullback-Leibler
divergence principle is available, [70]. Both possibilities are discussed below.

3.2.3.1 Bayesian Learning in Preference Elicitation

With inclusion of the pointer θ into Θ , the ideal closed-loop model C? and thus
the ideal environment model M?(ot |at ,kt−1,Θ) as well as the ideal strategy model
S?(at |kt−1,Θ) depend on the Θ . The factorisations of the closed-loop model (3.1)
and of its ideal counterpart, chain rules for conditional expectations, their linearity
and the definition of the KLD (3.6) imply the following form of the KLD to be
minimised over the admissible strategies S = (S(at |kt−1))t∈ttt

D(CS||C?) = ES

{
∑
t∈ttt

ES

[
ln
( M(ot |at ,kt−1,Θ)S(at |kt−1)

M?(ot |at ,kt−1,Θ)S?(at |kt−1,Θ)

)∣∣∣kt−1

]}
. (3.14)

As it is inherent to the Bayesian paradigm, there is no need to select a unique Θ ∈ΘΘΘ

and handle it as the correct one. All possibilities are admitted but within the outer
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expectation in (3.14) they are weighted by the posterior pd P(Θ |kt−1) evolving ac-
cording to Bayes’ rule (3.2). This applies to the pointer θ distinguishing alternative
ordering, which is a part of Θ . Thus, it is unnecessary to select a unique preference
ordering as the correct one11.

The use of Bayesian learning (3.2) assumes availability of the environment
model M(ot |at ,kt−1,Θ) relating the observations to an unknown parameter. In the
preference-elicitation context, it is relatively simple to construct the parametric en-
vironment model if the observations explicitly reflect decision-maker’s satisfaction
with the DM course. This situation is, for instance, “natural” in various service-
oriented enterprises. They systematically collect data directly reflecting satisfaction
of their customers, [24]. They care about the design of questionnaires to be filled
in by, say, patients in health care. Typically, they jointly consider relations of the
sale levels to positions of goods in super-markets, analyse positions of clicks within
lists retrieved as the answer to a customer query, etc. Then, black-box modelling,
say via neural networks, [28] or finite mixtures, [77], or their discrete-valued ver-
sions, [38], suffice to relate the abundant data to the level of satisfaction. Black-box
models rely on “universal approximation property”, [28], and can easily be created
but their learning heavily depend on data informativeness12.

A deeper-rooted modelling is needed when the observations have only an indi-
rect connection with the decision-maker’s satisfaction. Fields that study decision
makers, like behavioural economics, [73], neuro-economics, [19], or psychology of
DM, [32], have to provide grey-box models, [6], relating the observations to the sat-
isfaction and consequently to the pointer θ . The difficulty with this problem stems
from the fact that satisfaction is strongly influenced by the decision maker’s non-
quantified experience, limited ability to grasp relations between many variables, per-
sonality and even emotions. Adequate modelling needs cognitive sciences as well
as aforementioned research branches. This is quite demanding, but experience from
technological applications confirms that extremely simplified models often suffice
for excellent DM13. The key point is that they do not ignore the influence of the
internals, which are related to observations and determine the degree of satisfaction.

Open Problem

The frequently observed non-transitive preferences of real decision makers can be
interpreted as varying preferences. They can be modelled by the time-dependent

11 [22] represents non-Bayesian set-ups dealing with sets of orderings without a quest for a unique
completion.
12 A decision maker interacts with customers in order to influence them in a desirable direction,
for instance, to buy a specific product or services. However, even the form of the questionnaire
influences the customers: typically, two different ways of posing logically the same question often
provide quite different answers. This quantum-mechanics-like effect should be properly modelled.
13 The vast majority of complex technological processes, which should be modelled by high-
dimensional nonlinear stochastic partial differential equations with non-smooth boundary condi-
tions, are controlled by proportional-integral-derivative controllers corresponding to simple linear,
second order difference equations used as the environment model.
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pointer θt used for the ordering completion, see Subsection 3.2.2. Bayesian filtering
[30] can cope with this case. It needs similar but more difficult modelling of time-
evolution of this internal variable. This demanding task is worth of addressing in
important application domains.

3.2.3.2 Learning from Decision the Maker’s Actions

The acceptance of the assumption that the decision maker is rational and selects
her actions with the aim of optimising her unrevealed preferences is a specific but
rich opportunity to elicit the decision-maker’s preferences. In this case, the decision-
maker’s actions depend on the parameter to be learnt. This means that the natural
conditions of control (3.3) are violated and actions have to be treated as observa-
tions. This part outlines the related modelling on a simple example of the Ultimatum
Game.

The Ultimatum Game, described, for instance, in [19], models human, typically
economical, DM. The game structure allows interesting conclusions to be reached
by using quite simple means.

According to the game rules, the proposer offers to the responder (decision
maker) a part ot−1;1 > 0 of a fixed budget q > 0. The responder may accept or
reject the offer. The acceptance at = 1 increases the rewards ot;2 and ot;3 of the
proposer and the responder accordingly. The rejection, at = 0, leaves both rewards
unchanged.

The game was studied under the assumption that both players try to maximise
their rewards. The proposer, rational in this sense, always offers the smallest posi-
tive amount and the responder accepts any positive offer. Experiments confirm that
almost no responder accepts low offers and proposers respect this. The paper [48]
experimentally investigated the hypothesis that the decision maker balances her per-
sonal reward with a term comparing the accumulated rewards of both players and
reflecting the feeling of “self-fairness”. To outline the adopted approach, the pro-
poser is assumed to generate offers (ot−1;1)t∈ttt independently according to a fixed
pd and the self-fairness is reflected by the loss

L(ot−1,at) =−ot;2 +θtot;3 =−ot−1;2 +θtot−1;3 +at [−ot−1;1 +θt(q−ot−1;1)].
(3.15)

The fairness weight θt ≥ 0 is (subconsciously) known only to the responder, who
varies it independently between the game repetitions around a constant expected
value θ . The assumed rational responder minimises the loss (3.15) by choosing

at = χ(−ot−1;1 +θt(q−ot−1;1)≤ 0), where χ is the set indicator.

This description can be extended via the minimum KLD principle (see the next
subsection) to the complete parametric model of the responder’s strategy

S(at = 0|kt−1,θ) = exp
[
− ot−1;1

θ(q−ot−1;1)

]
. (3.16)
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The proposer can estimate the responder’s preference-determining unknown param-
eter θ by observing (at ,ot−1;1)t∈ttt and using them as data in Bayes’ rule (3.2) with
(3.16) serving as the model of the responder forming the proposer’s environment.
The estimate of the degree of responder’s self-fairness may serve the proposer for
predicting future actions of the responder.

Open Problem

The presented approach is applicable to a range of DM tasks. The example indicates
that it is indeed possible to learn the decision maker’s preferences by assuming her
rationality. The experimental results in [48] show that modelling of this type is sur-
prisingly efficient. They confirm that very simplified models suffice for describing
complex objects such as decision makers. It is not known to what extent the simpli-
fied modelling suffices. It is has to be studied experimentally under more realistic
set-ups.

3.2.3.3 Minimum Kullback-Leibler Divergence Principle

Bayesian learning (3.2) accumulates the knowledge about an unknown parameter
by inserting new observations into the condition of the posterior pd.

There is a broad class of problems in which the knowledge about the constructed
pd is specified by a list of features that it should have. Then, the minimum KLD
principle is applied. It recommends selection of the pd

Fo ∈ argmin
F∈FFF

D(F||F0)

as an extension of the partial knowledge specified by

F0 : a pd interpreted as a prior guess of the constructed pd Fo (3.17)
FFF : a set of pds with the listed features of the constructed pd.

This principle is axiomatically justified in [70] and generalised in [40] as the FPD
solution of a DM task selecting the pd partially delimited by the knowledge (3.17).
The work [9] relates this principle to conditioning, finding them equivalent in many
cases.

The minimum KLD principle provides a straightforward construction of the ideal
closed-loop pd C?, starting from a partial description of preferences, which it quan-
tifies, [34]. Subsection 3.2.3.4 provides a possible specification of the set FFF (3.17)
in the elicitation context.
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Open Problem

Bayesian learning and the minimum KLD principle appear to exhaust all univer-
sal, theoretically justified, approaches to knowledge elicitation, and, within the FDP
framework, preference elicitation. Challenging this conjecture is methodologically
desirable. For instance, strong and extensive results connected with fuzzy ways
of knowledge processing offer methodology and algorithms worth considering. It
seems to be possible whenever the membership functions amenable to probabilistic
interpretation.

3.2.3.4 Minimum KLD Principle in Preference Elicitation

We claim above that the minimum KLD principle has to be applied whenever the
processed information about preferences has forms other than observations. Here, a
specific but widely encountered regulation task is considered to illustrate how it can
be done. The treatment is a continuous-valued counterpart of the discussion in [34],
which focused on discrete-valued observations and actions.

The regulation [60] is the DM task in which the decision maker selects actions
at ∈aaa making the observations ot ∈ooo as close as possible to a given reference rt ∈ooo,
t ∈ ttt. The inspected reference elicitation should construct an ideal closed-loop pd C?,
which: i) reflects the verbally and incompletely specified regulation preferences; ii)
is ambitious but potentially attainable.

The construction of C? starts with the insight that the attaining of the reference
rt is most probable with the action14

a?t (kt−1) ∈ Argmax
at∈aaa

M(rt |at ,kt−1) (3.18)

where the environment model M and the set aaa enter the DM formalisation anyway.
The action a?t (kt−1) specifies the factor M?(ot |kt−1) = M(ot |a?t (kt−1),kt−1)

of the constructed ideal pd, which properly expresses the regulation objective
in an ambitious, and, – given fortunate circumstances – attainable way. What
remains is to select S?(at |ot ,kt−1) in order to get complete C?(ot ,at |kt−1) =
M?(ot |kt−1)S

?(at |ot ,kt−1).
A pd S?

0(at |ot ,kt−1) with its support on aaa, which is either flat or expresses
preferences for less costly actions serves well as a first guess of the constructed
S?(at |ot ,kt−1). However, the chain-rule composition M?(ot |kt−1)S

?
0(at |ot ,kt−1) is

an unsuitable candidate for C?(ot ,at |kt−1) because an adequate joint pd should pre-
fer actions around a?t (kt−1) defining M?(ot |kt−1). The restriction on the ideal deci-
sion rules in the set{

S?(at |ot ,kt−1) :
∫

aaa
atS

?(at |ot ,kt−1)dat = a?t (kt−1)
}
. (3.19)

14 The adopted notation a? stresses that this action value serves for the construction of C?.
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is the simplest soft expression of the wish to be around a?t (kt−1).
The incomplete knowledge of preferences on actions, delimited by the set (3.19)

and by the prior guess S?
0(at |ot ,kt−1), has the form (3.17). Thus, the minimum KLD

principle can be directly used for its completion. It provides the following ideal
strategy

S?(at |ot ,kt−1) ∝ S?
0(at |ot ,kt−1)exp〈ζ (kt−1),at〉 , (3.20)

with the real-valued vector ζ (kt−1), making the scalar product 〈ζ (kt−1),at〉 mean-
ingful, chosen so that equality in (3.19) is met. This implies that

C?(ot ,at |kt−1) ∝ M(at |a?t−1(kt−1),kt−1)S
?
0(at |ot ,kt−1)exp〈ζ (kt−1),at〉 (3.21)

is the ambitious realistic ideal pd searched for.

Remarks

• The environment model M is generically obtained as the predictive pd arising
from Bayesian learning (3.2). This answers why the action a?t (kt−1) (3.18) is not
directly applied instead of the above complex indirect construction: the action
a?t (kt−1) is exploitive and FPD adds the needed explorative character via the
optimal randomised strategy arising from it.

• The dynamics of DM answers the question why the ideal decision rule (3.20)
is not directly used as a part of the optimal strategy. Satisfying the local aim at
time t can lead to bad initial conditions for the subsequent steps. Consequently,
a repetitive use of one-step-ahead-looking (myopic, greedy) rules may be far
from the optimal strategy, [5] and may even make the closed loop unstable, [43].

• The simple linear-Gaussian case offers an insight into (3.21). In this case15,

M(ot |at ,kt−1) = Not (Aot−1 +Bat ,Q), S?
0(at |kt−1) = Nat (Cot−1,R), (3.22)

where Nx(µ,ρ) = |2πρ|−0.5 exp
[
−0.5(x−µ)′ρ−1(x−µ)

]
, ′ is transposition,

and where the matrices A, B, and Q > 0 (positive definite), of dimensions com-
patible with the vector observable state ot , are known, either from modelling
or, possibly recursive, learning. The matrices C, and R > 0 are chosen by the
decision maker to have the majority of the probabilistic mass in the desirable
action set aaa. It is usually delimited by technological or economical constraints.
Assuming for simplicity the reference rt = 0 and observing that the delayed
observation ot−1 coincides with the knowledge kt−1, the proposed way gives

S?(at |ot−1) = Nat (a
?
t ,R), a?t (ot−1) =−(B′Q−1B)−1B′Q−1Aot−1 (3.23)

M?(ot |ot−1) = Not (Fot−1,Q), with F = (I−B(B′Q−1B)−1B′Q−1)A.

FPD with the Gaussian environment model and the ideal pd is a randomised
version of the widespread design dealing a with linear environment (system)
and quadratic loss, [33]. This loss is

15 S?
0(at |ot ,kt−1) and a?t (kt−1) are independent of ot , i.e. S?(at |ot ,kt−1) = S?(at |kt−1), see (3.21).
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∑
t∈ttt

(ot − rt)
′Qooo(ot − rt)+(at − rt;a)

′Qaaa(at − rt;a)

with a given rt , rt;a, and Qooo, Qaaa > 0. While the choice of references rt , rt;a is well
understood and mechanised, the choice of penalisation matrices Qooo, Qaaa repre-
sents a non-trivial, repetitively solved, problem. The above preference elicita-
tion solves this problem (almost) completely. The matrix Qooo =Q−1 comes from
the learnt environment model. The matrix Qaaa = R−1 is (almost) determined by
the set aaa, which has to be probabilistically “covered” by Nat (Cot−1,R). This
makes the result implicitly dependent on the matrix C.
The proposed solution extends the line presented in [2, 44, 61]. ut

Open Problem

The term “almost” used in connection with the linear Gaussian case reflects the
more general fact that the resulting, preference expressing, ideal pd depends on the
prior, poorly guided, choice of S?

0(at |ot ,kt−1). Decision maker is to be supported
even in this respect.

3.3 On Imperfect Use of Imperfect Normative Theory

The imperfect use and inherent imperfections of the adopted normative theory
strongly influence the quality of the resulting DM. This section focuses on these
sources of deviations revealed by descriptive DM theories.

3.3.1 Rationality Behind Non-Rational Decision Making

The discussed preference elicitation is an example of where the behaviour delimited
by the decision maker needs to be extended. This is not a unique case. Considering a
richer behaviour often offers an explanation of why real actions deviate from recom-
mendations of the normative theory. Neglecting an important part of the closed-loop
behaviour (e.g. emotional state of the decision maker) during the normative-theory-
based strategy optimisation is a significant source of apparent irrationality.

The following formalisation of the above statement assumes for simplicity no
internals (see Agreement 2) and thus Proposition 1 describes the optimal strategy.

In the discussion, the observation ot splits into the formally non-empty non-
optimised part nt and the non-empty optimised part pt . Then, the function
ω(at ,kt−1), determining the optimal strategy (3.8), can be given the form
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ω(at ,kt−1) =
∫
(nnn,ppp)

M(nt , pt |at ,kt−1) ln
(

M(nt |pt ,at ,kt−1)

M?(nt |pt ,at ,kt−1)

)
d(nt , pt) (3.24)

+
∫

ppp
M(pt |at ,kt−1) ln

(
M(pt |at ,kt−1)

M?(pt |at ,kt−1)

)
dpt −E [ln(γ(kt))|at ,kt−1],

which exploits the fact that M(pt |at ,kt−1)/M?(pt |at ,kt−1) does not depend on nt .
Proposition 1 implies that the value function− ln(γ(kt))= 0 at the horizon t = T ,.

The expression (3.24) implies that the function ω(at ,kt−1) does not depend on the
factor M(nt |pt ,at ,kt−1) of the environment model M(nt , pt |at ,kt−1) iff this factor is
equal to its ideal counterpart M?(nt |pt ,at ,kt−1). The function γ(kt−1) is then unin-
fluenced by it, too, as follows from (3.8) and (3.24). This implies that the factors of
the ideal environment model describing the non-optimised part of the behaviour nt
should be “left to their fate”, [38],

M?(nt |pt ,at ,kt−1) = M(nt |pt ,at ,kt−1), t ∈ ttt. (3.25)

This makes the optimal strategy So independent of the nt -related environment model
factors. At the same time, the variables nτ , τ ≤ t−1 form a part of the knowledge
kt−1 and thus their realisations influence the action at , t ∈ ttt.

In real DM, the decision maker, possibly subconsciously and informally, opti-
mises the behaviour she considers and thus she does not leave nt to its fate. In this
case, she designs a strategy, which differs from the theoretical one, and appears to
be a non-rational person.

Open Problem

This discussed discrepancy between the normatively and practically optimised be-
haviours is widespread. Countermeasures require one to: i) admit that something has
to be added into the closed-loop behaviour; and ii) model the influence of this addi-
tion on the DM task. The discussed modelling of the Ultimatum Game, Subsection
3.2.3.2, and of the deliberation effort, Subsection 3.4.1, suggest that improvements
can be achieved by revising the behaviour specification. The extent to which the uni-
fying view is useful for practice is unclear and specific cases have to be elaborated.

3.3.2 Approximate Learning

Applications of Bayesian learning face the curse of dimensionality, [3]. The evolv-
ing posterior pd P(Θ |kt) (3.2) is a function on a generically high-dimensional space
ΘΘΘ . Its complexity grows with the amount of processed data, which calls for ap-
proximate techniques. This makes an approximation an integral part of learning. Its
quality influences the quality of the learning results. The theory of stochastic ap-
proximations, [55], is a dominating tool for analysing this influence. It mainly cares
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about point parameter estimates and provides qualitative guidelines for the design
of approximate estimators. The normative theory, however, provides no systematic
methodology for how to design approximate learning. This incompleteness of the
theory leaves the decision maker unsupported. The key problems that are confronted
are

• How the approximate pds should be chosen?
• What proximity measure should be used?
• How to combine the approximation with recursive learning when the knowledge

is being enriched continually?

The subsequent text outlines a possible way towards making the normative theory
more complete with respect to approximate learning by resolving these problems.
The presentation concerns a specific but widely applicable case when the observa-
tions enter the parametric environment model M(ot |at ,kt−1,Θ) = M(ot |at ,φt−1,Θ)
via a finite-dimensional state vector φt−1, which can be recursively updated,
ot ,at ,φt−1→ φt . In the presentation, the observation ot , action at and the state vector
φt−1 are collected into the data vector xt = (ot ,at ,φt−1) ∈ xxx.

Choice of Approximate Pds

Using the Dirac δ function, Bayes’ rule (3.2) applied to the considered class of
parametric models can be given the form

P(Θ |kt+1) ∝ P(Θ |k0)
t

∏
τ=1

M(oτ |aτ ,φτ−1,Θ)

= P(Θ |k0)exp

[
t
1
t

t

∑
τ=1

ln
(
M(oτ |aτ ,φτ−1,Θ)

)]

= P(Θ |k0)exp

[
t
1
t

t

∑
τ=1

∫
(ooo,aaa,φφφ)

δ ((o,a,φ)− (oτ ,aτ ,φτ−1)) ln
(
M(o|a,φ ,Θ)

)
d(o,a,φ)

]

= P(Θ |k0)exp
[

t
∫

xxx
F(x|kt+1) ln(M(o|a,φ ,Θ))dx

]
, where (3.26)

F(x|kt+1) =
1
t

t

∑
τ=1

δ (x− xτ) is the empirical pd of the data vectors xt = (ot ,at ,φt−1).

The pd P(Θ |k0) quantifies prior knowledge k0 and the empirical pd F(x|kt+1)
cumulates knowledge brought by the observed data up to and including t.
If the parametric model belongs to the exponential family, i.e. of the form
A(Θ)exp〈B(x),K(Θ)〉 determined by an x-independent function A(Θ) ≥ 0 and by
a scalar product 〈B(x),K(Θ)〉 of vector functions B(x), K(Θ), then the data-based
knowledge compresses into a finite-dimensional sufficient statistic. It is the sam-
ple average of B(x) and the degrees of freedom counting the number of processed
samples. This is essentially the only universally feasible case [1, 50].
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The need for approximate learning arises when the parametric model
M(ot |at ,φt−1,Θ) does not belong to the exponential family. Let us consider this
case.

The parametric environment model arises from physical modelling using first
principles, e.g. [6,30]. Mostly, these do not determine the model completely but the
minimum KLD principle, [70], Subsection 3.2.3.3, is available for their completion,
[46]. This costly compression of invaluable domain knowledge should be preserved
when approximating the posterior pd (3.26). Thus, the empirical pd F(x|kt−1) is to
be approximated by a pd F(x|νt−1,Vt−1) determined by degrees of freedom νt−1 > 0
and a non-sufficient statistic Vt−1 ∈VVV of a fixed finite dimension. The pd P(Θ |kt−1)
is then approximated as follows

P(Θ |kt−1)≈ P(Θ |k0)exp
[

νt−1

∫
xxx

F(x|νt−1,Vt−1) ln(M(o|a,φ ,Θ))dx
]
. (3.27)

This approximation is applicable to any parametric model operating on data vectors
belonging to the same set Sx. This allows the decision maker to focus on exploitation
of the domain knowledge and then to use a single universal approximate learning
algorithm (cf. the situation in designing general-purpose optimisation algorithms).

Using the approximation (3.27) in Bayes’ rule, the approximate pd
F(x|νt−1,Vt−1) is updated in the same way as the exact empirical pd

G(x|νt−1,Vt−1,xt) =
νt−1

νt−1 +1
F(x|νt−1,Vt−1)+

1
νt−1 +1

δ (x− xt) (3.28)

= (1−βt−1)F(x|νt−1,Vt−1)+βt−1δ (x− xt), βt−1 =
1

νt−1 +1
.

To keep the computational complexity under control, the pd G(x|νt−1,Vt−1,xt) has
to be again approximated by a feasible pd F(x|νt ,Vt), νt > 0, Vt ∈VVV . The approxi-
mation quality depends on the chosen functional form F(x|ν ,V ) of the approximate
pd. A specific choice is made jointly with the choice of the proximity measure.

Proximity Measure and Functional Form of F(x|ν ,V )

The axiomatically recommended approximation of a pd G(x) by a pd F(x) min-
imises the KLD of the approximated pd to the approximate pd, [4, 40],

D (G||F) =
∫

xxx
G(x) ln

(
G(x)
F(x)

)
dx︸ ︷︷ ︸

KLD

=−
∫

xxx
G(x) ln

(
F(x)

)
dx︸ ︷︷ ︸

Kerridge inaccuracy, [47]

+
∫

xxx
G(x) ln

(
G(x)

)
dx︸ ︷︷ ︸

neg-entropy

.

The unique minimiser of the Kerridge inaccuracy with respect to the pd F coincides
with the unique minimiser of the KLD and avoids the problem that the approximated
pd (3.28) contains Dirac δ functions, which make the neg-entropy infinite. Thus, the
best approximation among pds {F(x|ν ,V )}ν>0,V∈VVV of the intermediate outcome of
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Bayes’ rule G(x|νt−1,Vt−1,xt) (3.28) is given by the values

ν̃t ,Ṽt ∈ Arg min
ν>0,V∈VVV

−
∫

xxx
G(x|νt−1,Vt−1,xt) ln(F(x|ν ,V ))dx. (3.29)

The symbol ˜ stresses the fact that minimising arguments are intermediate quanti-
ties. They will be corrected further on in order to combine learning and approxima-
tion properly into νt ,Vt , see the next subsection.

The functional form of approximate pds {F(x|ν ,V )}ν>0,V∈VVV determines the
achievable quality of approximation and the computational complexity of the min-
imisation task (3.29). The computational complexity is low for pds conjugate to the
exponential family, [1]. In the data-vectors space xxx, they have the form

F(x|ν ,V ) =
Aν(x)exp〈B(x),V 〉∫

xxx Aν(x)exp〈B(x),V 〉dx
, (3.30)

where A(x) is a non-negative function and the vector function B(x) makes the scalar
product 〈B(x),V 〉 well defined (cf. the previous subsection).

Inserting the pd of the form (3.30) into the minimised Kerridge accuracy (3.29)
and taking derivatives with respect to optional ν and V give the necessary conditions
for determining ν̃t ,Ṽt in (3.29)∫

xxx
ln(A(x))G(x|νt−1,Vt−1,xt)dx =

∫
xxx

ln(A(x))F(x|ν̃t ,Ṽt)dx∫
xxx

B(x)G(x|νt−1,Vt−1,xt)dx =
∫

xxx
B(x)F(x|ν̃t ,Ṽt)dx. (3.31)

Thus, the minimisation reduces to the choice of ν̃t ,Ṽt matching the expectations
of ln(A(x)) and B(x). For instance, if the approximate pd F(x|ν ,V ) is a Gaussian
pd then its mean and covariance have to coincide with the mean and covariance
of G(x|νt−1,Vt−1,xt). This example also shows that the class of pds (3.30) is not
rich enough to be used universally. Its members are mostly uni-modal and poorly
approximate pds exhibiting light and heavy tails in different parts of their multivari-
ate domain. Luckily, finite mixtures F(x|ν ,W ), [77], of components given by pds
F(x|ν j,Vj), j ∈ jjj = {1,2, . . . ,J}, J < ∞, of the form (3.30)

F(x|ν ,W )= ∑
j∈ jjj

α jF(x|ν j,Vj), ν =(ν j) j∈ jjj, W =(Vj,α j > 0) j∈ jjj, ∑
j∈ jjj

α j = 1 (3.32)

can approximate (loosely speaking) any pd G(x) as they have the universal approx-
imation property, [28].

Generally, the evaluation and minimisation of the Kerridge inaccuracy to mix-
tures is computationally extremely demanding as the mixture enters the logarithm.
The specific form of the approximated pd, cf. (3.28), which with the introduced
symbols has the form
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G(x|νt−1,Wt−1,xt) = (1−βt−1)F(x|νt−1,Wt−1)+βt−1δ (x− xt)

βt−1 =
1

∑ j∈ jjj νt−1; j +1
, (3.33)

allows an efficient approximate minimisation, as outlined below.
The approximate minimisation relies on the fact that the jth approximated com-

ponent G(x|νt−1; j,Vt−1; j,xt) of the updated mixture G(x|νt−1,Wt−1,xt) concentrates
the majority of its probabilistic mass into a bounded part of the data-vectors space.
The subsequent reorganisation of the updated mixture G(x|νt−1,Wt−1,xt) (3.33) al-
lows to delimit these parts. It exploits definitions

β̃t; j = cPt; j, Pt; j =
αt−1; jF(xt |νt−1; j,Vt−1; j)

∑ j∈ jjj αt−1; jF(xt |νt−1; j,Vt−1; j)
, α̃t; j = αt−1; j

1−βt−1

1− β̃t; j
, (3.34)

where βt−1 is defined in (3.33). The scalar c is chosen as the solution of the equation

βt−1

(1−βt−1)
= ∑

j∈ jjj
αt−1; j

cPt; j

1− cPt; j
, c ∈

(
0,
(

max
j∈ jjj

Pt; j
)−1
)
. (3.35)

The right-hand side of (3.35) is monotonic, continuous and covers all possible non-
negative values of the left-hand side when varying c in the considered interval. This
guarantees solvability of (3.35) and provides β̃t; j ∈ (0,1], ∀ j ∈ jjj.

The definitions (3.34) and simple manipulations confirm that the update (3.33)
can be given the form

G(x|νt−1,Wt−1,xt) = (1−βt−1)F(x|νt−1,Wt−1)+βt−1δ (x− xt) (3.36)

= ∑
j∈ jjj

α̃t; j

(
(1− β̃t; j)F(x|νt−1; j,Vt−1; j)+ β̃t; jδ (x− xt)

)
︸ ︷︷ ︸

G(x|νt−1; j ,Vt−1; j ,xt )

.

The last expression in (3.36) interprets the Bayes update as an update of individual
components with weights β̃t; j, j ∈ jjj (3.34). The weight β̃t; j is chosen to be propor-
tional to the posterior probability Pt; j that the observed data vector xt was generated
from the jth component.

Altogether, the decomposition (3.36) allows component-wise approximation, i.e.
solution of a few (J) simple approximation tasks of the type (3.29).

Open Problem

Preliminary experiments confirm efficiency of the outlined mixture-based approx-
imation. They also reveal that the computational approximation is sensitive to ini-
tialisation, as is true of any mixture estimation, [38]. A significant effort is needed
to convert the idea into a reliable and feasible algorithmic solution.
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Combination of the Approximation and Learning

The approximation step above prepares for the learning step, which involves the
processing of new observations by Bayes’ rule. Then, the projection onto the
class of feasible approximate pds follows, and so forth. Here, the general warn-
ing applies that the approximate pd F(x|ν̃t ,Ṽt) (or their mixture-related counterparts
F(x|ν̃t; j,Ṽt; j)), given by (3.29), should not serve as the prior pd for the Bayesian
updating step. The pd F(x|ν̃t ,Ṽt) is the good approximation of G(x|νt−1,Vt−1,xt)
but not of the empirical pd F(x|kt). Ignoring this fact may cause an accumulation
of approximation errors over a sequence of combined learning and approximation
steps. Gradually, this may cause a divergence of the approximate posterior pd from
the best projection within the set {F(x|ν ,V )}ν>0,V∈VVV or its mixture counterpart.

[51] completely characterises the class of non-sufficient statistics ν ,V for which
the error-accumulation problem does not arise. This class, consisting of time and
data invariant finite-dimensional images of the logarithms of the parametric envi-
ronment model, is, however, too narrow. To cover a richer class of problems, [36]
proposes a countermeasure against error accumulation.

The proposed way assumes that (3.37) holds. It says that the best unknown ap-
proximation F(x|νt ,Vt) of the correct empirical pd F(x|kt) is closer to the updated
pd F(x|ν̃t ,Ṽt) than to the non-updated approximate pd F(x|νt−1,Vt−1)

F(x|νt ,Vt) ∈ FFF =
{

F(x) : D(F(x)||F(x|ν̃t ,Ṽt))≤D(F(x)||F(x|νt−1,Vt−1))
}

=

{
F(x) :

∫
xxx

F(x) ln
(

F(x|νt−1,Vt−1)

F(x|ν̃t ,Ṽt)

)
dx≤ 0.

}
(3.37)

This is the processed knowledge about the unknown best approximation F(x|νt ,Vt)
of the exact empirical pd F(x|kt). The pd F0(x)= F(x|νt−1,Vt−1) is its available prior
guess. The minimum KLD principle, see Subsection 3.2.3.3, extends this knowledge
to the pd F(x|νt ,Vt), which should serve as the starting pd for the next learning step.
Due to the linearity of the constraint (3.37) in the constructed pd F(x|νt ,Vt), the
unique outcome of the minimum KLD principle can be found explicitly. It formally
coincides with the outcome of stabilised forgetting, [53]. The functional form (3.30)
is invariant under stabilised forgetting and the recommended pd F(x|νt ,Vt) to be
used further on is given by

νt = λt ν̃t +(1−λt)νt−1, Vt = λtṼt +(1−λt)Vt−1. (3.38)

The observation-dependent forgetting factor λt ∈ [0,1] solves the equation obtained
when the inequality (3.37) is replaced by equality∫

xxx
F(x|λ ν̃t +(1−λ )νt−1,λṼt +(1−λ )Vt−1) ln

(
F(x|νt−1,Vt−1)

F(x|ν̃t ,Ṽt)

)
dx = 0.

It has a solution in [0,1] as the left-hand side is continuous in λ ,
equals D(F(x|νt−1,Vt−1)||F(x|ν̃t ,Ṽt)) ≥ 0 for λ = 0 and becomes
−D(F(x|ν̃t ,Ṽt)||F(x|νt−1,Vt−1))≤ 0 for λ = 1.
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Open Problem

The normative theory has still not provided to decision makers a unique, optimal
theory for an unambiguous combination of learning and approximation. The above
treatment has an intuitive appeal but it is not unique and as such it needs further
justification or possibly modification. An extension to filtering – coping with more
general state-space models – remains open.

3.3.3 Approximate Design of Strategy

The search for the optimal strategy, Proposition 1, suffers even a more pronounced
curse of dimensionality than learning. The evaluated value function− ln(γ(kt)) (3.8)
acts on the space kkkt , which has a high dimension. Its complexity grows with the
amount of processed data, which calls for approximate techniques. This makes an
approximation an integral part of the optimal strategy design. In spite of significant
progress in related research, [5, 71], the normative theory still lacks a systematic
methodology for approximate strategy design. This incompleteness of the theory
leaves the decision maker insufficiently supported.

This section exploits the potential of FPD and outlines how the strategy design
can be converted into a learning problem. This enhances the unifying features of
FPD as it converts the approximate strategy design into approximate learning. The
presentation is based on [35] and deals with a stationary version of FPD.

Agreement 3 (Stationary FPD and Stabilising Strategy) The stationary FPD is
delimited by the following conditions.

• The environment model M(ot |at ,kt−1) = M(ot |at ,φt−1) is a time-invariant function
of the data vector xt = (ot ,at ,φt−1) with a recursively updatable, finite-dimensional
state vector φt−1 while the updating rule ot ,at ,φt−1→ φt is also time invariant.

• The ideal environment model M?(ot |at ,kt−1) = M?(ot |at ,φt−1) and the ideal deci-
sions rules S?(at |kt−1) = S?(at |φt−1) are time-invariant functions of the data vector
and (at ,φt−1), respectively.

• The decision horizon is unbounded, T → ∞.

Stationary FPD is meaningful if there is a stabilising strategy Ss making ∀t ≤ ∞∫
ooo,aaa

M(ot |at ,φt−1)Ss(at |kt−1) ln
( M(ot |at ,φt−1)Ss(at |kt−1)

M?(ot |at ,φt−1)S?(at |φt−1)

)
dotdat ≤ cs < ∞,

for a finite constant cs.

Proposition 2 (Solution of Stationary FPD) Let the solved stationary FPD be
meaningful, see Agreement 3. Then, the optimal FPD strategy So exists and is a
stabilising strategy. The optimal strategy is stationary, i.e. it is formed by the time-
invariant decision rules So(at |φt−1). It holds that
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So(at |φt−1) =
S?(at |φt−1)exp[−ω(at ,φt−1)]

γ(φt−1)
(3.39)

c+ω(at ,φt−1) =
∫

ooo
M(ot |at ,φt−1) ln

(
M(ot |at ,φt−1)

M?(ot |at ,φt−1)

)
dot

−
∫

ooo
M(ot |at ,φt−1) ln

(∫
aaa

S?(at+1|φt)exp[−ω(at+1,φt)]dat+1

)
︸ ︷︷ ︸

ln(γ(kt=φt ))

dot ,

where 0≤ c≤ cs.

Proof. The existence of the stationary strategy and the form of(3.39) follow from
standard considerations concerning additive losses with unbounded horizon, [5].
ut

Let us discuss the last term in (3.39), which makes this equation non-linear. It is
the conditional expectation of the value function − ln(γ(kt = φt)). The integral over
at+1 ∈ aaa defines it and can be expressed via the mean value theorem for integrals. It
means that there is an at+1(φt) ∈ aaa such that∫

aaa
S?(at+1|φt)exp[−ω(at+1,φt)]dat+1 = exp[−ω(at+1(φt),φt)]. (3.40)

The conditional expectation
∫

ooo •M(ot |at ,φt−1)dot is then expressed as the difference
between the value of the argument and innovations εt = εt(at ,φt−1), as follows:∫

ooo
ω(at+1(φt),φt)M(ot |at ,φt−1)dot = ω(at+1(φt),φt)− εt . (3.41)

By construction, the innovations (εt)t∈ttt are zero mean and mutually uncorrelated,
[63]. This now permits the strategy design to be expressed as non-linear regression
problem.

Proposition 3 (Conversion of Stationary FPD into Non-linear Regression) Let
the solved stationary FPD be meaningful, see Agreement 3. Let us parameterise the
function ω(a,φ) determining the optimal decision rule (3.39),

ω(a,φ)≈Ω(a,φ ,Θ) for a finite-dimensional parameter Θ ∈ΘΘΘ (3.42)

and assume

ω(at+1 = a,φt)≈ ω(at+1(φt) = a,φt) ≈︸︷︷︸
(3.42)

Ω(at+1 = a,φt ,Θ). (3.43)

Then, the data (at+1,φt)t∈ttt and the unknown parameter Θ ∈ΘΘΘ are related by the
following non-linear regression model
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Ω(at+1,φt ,Θ) = c+Ω(at ,φt−1,Θ) (3.44)

−
∫

ooo
M(ot |at ,φt−1) ln

(
M(ot |at ,φt−1)

M?(ot |at ,φt−1)

)
dot + εt .

Proof. The (approximate) equality (3.44) follows directly by inserting (3.40),
(3.41), and (3.42) into the second equality in (3.39). ut

Note that the constant c and possible additional characteristics of the innovations,
εt , e.g. their variance, are unknown and have to be estimated together with Θ .

Open Problem

The above paragraph outlines the basic idea of how to convert the equations describ-
ing the value function, and thus the optimal strategy, into a non-linear regression.
The choice of the pd describing the innovations, needed for the design of the learn-
ing algorithm, should be done by the minimum KLD principle. Then, approximate
learning, like that outlined in Section 3.3.2, can be used. It allows various functions
Ω(a,φ ,Θ) to be tested in parallel at relatively low computational cost. The conver-
sion of this methodology into a full and reliable algorithm represents an open, but
promising, direction, [35]. Close correspondence to established approximate tech-
niques [71] may prove helpful in this effort.

Open Methodological Problem

A methodologically interesting question is why decision makers deviate from
Bayesian DM. Various discussions, see e.g. [16], indicate that the emotionally bi-
ased attitude of DM experts in the team forming the decision maker strongly influ-
ence the choice, especially if the action can be postponed, [74]. The emotionally
motivated choice of theoretical tools (Fisher vs. Bayesian statistics vs. fuzzy sets,
etc.) should be avoided as much as possible as it introduces preferences unrelated
to the preferences of the solved DM task. FPD tries to suppress this common, DM-
quality-adverse, phenomenon by creating and offering a strong – axiomatically not
emotionally – supported and widely applicable theory. However, the constraints on
the overall deliberation effort spent by the decision maker on the solution of DM
tasks inevitably induce a significant gap between the exploited theoretical tools and
their advanced state. Thus, no attempt of this type can completely avoid personal
biases of the human beings who are involved. The ongoing development of efficient
ways of suppressing these biases is the challenge to be confronted.
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3.4 Decision-Maker Induced Internals

This section discusses other important cases in which the decision maker directly
contributes to the behaviour b ∈ bbb. In particular, these cases deal with the delibera-
tion effort needed for solving the DM task and with the role of the decision maker
within a group of interacting decision makers.

3.4.1 Deliberation Effort and Sequential Decision Making

A real decision maker devotes a limited deliberation effort to any particular DM
task. Taking account of the deliberation effort presents no theoretical problem if a
hard bound on it is proposed and attained. Then, the attained solution is the only
available option. Often, however, an additional effort can be expended in getting a
higher DM quality and it is necessary to decide whether it is worthwhile to exert
this effort or not.

Prominent works [68, 72, 73], and others, concluded that any attempt to include
search for a compromise between the additional effort and DM quality into the op-
timal design leads to an infinite regress. Loosely, they claim that an extension of the
loss of the solved DM task by a term penalising the deliberation effort increases the
deliberation effort, which calls for an additional penalisation etc.

However, classical results on sequential DM, [81], indicate that this is generally
untrue. The subsequent novel FPD version of sequential DM shows it.

In this presentation, iterative steps towards the strategy that solves the original
DM task in the best way are interpreted as discrete time. Also, an additional stopping
action

zt ∈ zzz≡ {1,0} ≡ {continue improvements, stop improvements}

is introduced. This complements the behaviour, giving b =
(
(ot ,at ,zt)t≥1,k0

)
=
(
(observationt ,original actiont ,stopping actiont)t≥1,prior knowledge

)
.

Within the original DM task, the quality of the decision strategy is evaluated by the
ideal closed-loop model, which is the product of pds16

M?(ot |at ,zt = 1,kt−1)S
?(at |zt = 1,kt−1).

The ideal closed-loop model of the inspected DM task with stopping is specified by
employing the leave-to-its-fate choice, Section 3.3.1,

16 The condition zt = 1 stresses that the optimisation is performed: it is not stopped.
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C?(ot ,at ,zt |kt−1) = M?(ot |at ,zt ,kt−1)S
?(at |zt ,kt−1)S

?(zt |kt−1) (3.45)

≡
[
M?(ot |at ,zt = 1,kt−1)S

?(at |zt = 1,kt−1)S
?(zt = 1|kt−1)

]zt

×
[
M(ot |at ,kt−1)S(at |kt−1)(1−S?(zt = 1|kt−1))

]1−zt
,

where M is the considered environment model, S is the strategy optimised in the
original DM task and the value S?(zt = 1|kt−1) ∈ (0,1) quantifies the readiness for
continuation of the search for the optimal strategy. It reflects the deliberation cost.
The ideal pd (3.45) delimits a FPD counterpart of sequential DM, which often guar-
antees stopping in a finite time and thus avoids the infinite regress, [62].

Proposition 1 applied to the ideal pd (3.45) specialises to the next proposition.

Proposition 4 (FPD with Stopping) With the ideal pd (3.45), the optimal ran-
domised strategy So has the form

So(at |zt = 1,kt−1) =
S?(at |zt = 1,kt−1)exp[−ω(at ,kt−1)]

ρ(kt−1)
(3.46)

ρ(kt−1) =
∫

aaa
S?(at |zt = 1,kt−1)exp[−ω(at ,kt−1)]dat

So(zt = 1|kt−1) = S?(zt = 1|kt−1)ρ(kt−1)/e, e = exp(1),
γ(kt−1) = exp[−S?(zt = 1|kt−1)ρ(kt−1)/e]

ω(at ,kt−1) =
∫

ooo
M(ot |at ,kt−1) ln

(
M(ot |at ,kt−1)

M?(ot |at ,zt = 1,kt−1)γ(kt)

)
dot .

The evaluations (3.46) run backwards and the value function − ln(γ(kt)) is zero at
a priori specified hard upper bound on the decision horizon t = T . Only the values
zτ = 1, τ < t, enter the knowledge kt−1.

Proof. Let us start at the last time t moment before stopping t ≤ T . The part of the
KLD D(C||C?) (3.6) influenced by the last optimized decision rule has the form

Jt = S(zt = 1|kt−1)

×
{

ln
( S(zt = 1|kt−1)

S?(zt = 1|kt−1)

)
+
∫

aaa
S(at |zt = 1,kt−1)×

[
ln
( S(at |zt = 1,kt−1)

S?(at |zt = 1,kt−1)

)
+
∫

ooo
M(ot |at ,kt−1) ln

( M(ot |at ,kt−1)

M?(ot |at ,zt = 1,kt−1)γ(ot ,at ,zt = 1,kt−1)
,
)

dot︸ ︷︷ ︸
ω(at ,kt−1)

]
dat

}

where γ(kt) = γ(ot ,at ,zt = 1,kt−1) contains the knowledge realisations with (zτ =
1)τ≤t . This inductive assumption holds for the considered t as γ(kt) = 1. The re-
arrangement of the part depending on the optimised decision rule S(at |zt = 1,kt−1)
and the fact that the KLD reaches its minimum for identical arguments gives the
optimal factor of the decision rule
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So(at |zt = 1,kt−1) =
S?(at |zt = 1,kt−1)exp[−ω(at ,kt−1)]

ρ(kt−1)

ρ(kt−1) =
∫

aaa
S?(at |zt = 1,kt−1)exp[−ω(at ,kt−1)]dat ∈ (0,1).

With this, it remains to minimise, over S(zt = 1|kt−1) ∈ (0,1), the function

min
{S(at |zt=1,kt−1)}

Jt = S(zt = 1|kt−1) ln
(

S(zt = 1|kt−1)

S?(zt = 1|kt−1)ρ(kt−1)

)
.

Its minimiser and the reached minimum are

So(zt = 1|kt−1) = S?(zt = 1|kt−1)ρ(kt−1)/e
and min

{S(at ,zt |kt−1)}
Jt =−S?(zt = 1|kt−1)ρ(kt−1)/e≡ ln(γ(kt−1)).

The last equality defines γ(kt−1) ≤ 1, which depends on the part of kt−1 entering
M, M?,S?, and containing only zτ = 1. The situation repeats for decreased t. ut

Open Problem

The simple evaluation in the second equation in (3.46) represents the only increase
of computational complexity per design step. It is compensated by an expected de-
crease of the number of design steps. The other (standard) computations are too
complex and require approximation. The approximation that transforms the design
of the strategy, Proposition 1, into a learning problem, see Subsection 3.3.3, may
serve this purpose. It needs learning combined with approximation, discussed in
Section 3.3.2. When it is well solved, the deliberation effort connected with optimi-
sation will be under control. Even then, the open problem remains of how to control
the deliberation effort in other, less formalised, parts of DM process.

3.4.2 The Decision-Maker’s Role

DM complexity inevitable forces a division of tasks. The division requires knowl-
edge fusion and possibly a search for a compromise between disparate individual
decision-making preferences. The cooperation of affective robots [29] or the ex-
ploitation of crowd wisdom [67] are examples of this situation. The way of combin-
ing more knowledge pieces or DM preferences is strongly influenced by the purpose.
Primarily, it is necessary to specify to whom the combination should serve. In other
words, the role of an individual decision maker with respect to the group, within
which the combination is to be performed, needs to be delimited. The influence of
this specification is briefly discussed now.
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Within FPD, knowledge and preferences are described by pds. This makes their
combination formally similar. Essentially, a representative pd H = (H(b))b∈bbb of a
finite (possibly large) number of pds Gκ = (Gκ(b))b∈bbb, κ ∈ κκκ , is to be constructed.
There, the pd Gκ quantifies knowledge or preferences of the κth decision maker.
The roles of the involved decision makers influence the choice of the represen-
tative, which describes the resulting combination. The following formalisation of
role-dependent processing scenarios confirms this.

Selfish Scenario The representative is formed for a κth decision maker, κ ∈ κκκ ,
offering the pd Gκ . The κth decision maker naturally takes her knowledge or pref-
erences as adequate, and uses other group members, offering other G-pds, as im-
portant but complementary sources of knowledge or preferences. In harmony with
the results on approximation of pds, [4, 40], the κth decision maker should use the
KLD D(Gk||H) as the proximity measure and, for instance, delimit the acceptable
compromises (representatives)as being in the set

{H : D(Gκ ||H)≤ a given, not-too-small, bound } . (3.47)

Then, the decision maker uses a prior guess H0 of the compromise (representative)
H and applies the minimum KLD principle.

[69] uses this scenario and arrives at a specific version of supra-Bayesian com-
bination, [21], of given pds Gκ , κ ∈ κκκ . The combination is a finite mixture of the
combined pds Gκ , κ ∈κκκ , and H0. The mixture weights are determined by conditions
(3.47) and the prior guess H0.

Group Scenario The representative H serving the whole group of decision makers is
sought. By definition, the representative H reflects group knowledge or preferences
in the best possible way. Thus, the individual pds Gκ , κ ∈ κκκ , only approximate
the group representative H. Then, the KLD D(H||Gk) is the appropriate proximity
measure and the analogy of (3.47) is

{H : D(H||Gκ)≤ a given, not-too-small, bound } . (3.48)

Then, the group uses a prior guess H0 of the compromise H and apply the minimum
KLD principle. The combination is now a weighted geometric mean of the pds
Gκ , κ ∈ κκκ , and H0. The weights are determined by conditions (3.48) and the prior
guess H0. This variant of KLD is also used in approximate learning or it serves for
extending incompletely specified G-pds, [42].

Asymmetry of the KLD well expresses asymmetry of the relation between an
individual and the group in which she acts. The asymmetry implies that different
representatives (compromises) are obtained in these two scenarios, even when both
deal with the same pds (Gκ)κ∈κκκ , H0. Thus, whenever the decision maker has free-
dom to delimit her role within the group, she influences closed-loop behaviour and
consequently the solution of the addressed DM task.
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Open Problem

The interpretation presented above reveals the controversial methodological di-
chotomy between the subjective and objective views of the world and DM. The
group scenario appears as the objective one because it leads to a common (group)
representative, while the selfish scenario (probably) fits better to DM, [68]. The
situation appears to be simple, but obtaining operational guidelines is non-trivial.
Crossing between dual versions of learning with forgetting, [37, 52], this illustrates
practically.

3.5 Concluding Remarks

This text contributes to the applicability of fully probabilistic design of decision
strategies (FPD), which is the normative decision-making theory that extends estab-
lished Bayesian DM.

The chapter shows that a significant proportion of the observed discrepancies
between the normative recommendations and real DM are caused by: i) neglecting
an important part of the closed-loop behaviour; ii) differences between the claimed
and actually respected DM preferences; and iii) incompleteness of FPD with respect
to the complexity of the strategy design.

The main results are:
ad i) The extension of the closed-loop behaviour by a pointer to adequate com-
plete DM preferences converts the hard preference-elicitation problem into a well-
supported learning of the ideal pd, which quantifies DM preferences within FPD
framework. The possibility to learn preferences systematically from decision-
maker’s actions is especially important.
ad ii) A specific construction of the ideal pd, known as the leave-to-its-fate option,
models differences between claimed and respected DM preferences well. This in-
sight can be used for analysing these differences.
ad iii) The applicability of FPD is enhanced by further development of methodology
of approximate learning and strategy design. Also, controlling of the deliberation
effort spent on DM design is embedded into sequential FPD.

This challenging of the unitary normative DM theory with needs of practical DM
has proved to be quite fruitful. In addition to the results and open problems provided
above, it has opened a pathway to consideration of an efficient human DM [79], to
a unifying interpretation [14] of quantum mechanics, and to its use in DM [64].

Acknowledgements

The reported research has been supported by GAČR 13-13502S. Dr. Anthony Quinn
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