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An exploitation of prior knowledge in parameter estima-
tion becomes vital whenever measured data is not infor-
mative enough. Elicitation of quantified prior knowledge is
a well-elaborated art in societal and medical applications
but not in the engineering ones. Frequently required involve-
ment of a facilitator is mostly unrealistic due to either facil-
itator’s high costs or complexity of modelled relationships
that cannot be grasped by humans. This paper provides a
facilitator-free approach based on an advanced knowledge-
sharing methodology. It presents the approach on commonly
available types of knowledge and applies the methodology
to a normal controlled autoregressive model.
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1. INTRODUCTION

An efficient use of prior knowledge influences quality of
the decision making (DM) relying on estimated models. The
considered Bayesian DM paradigm [5] combines observed
data with prior knowledge quantified by a prior probability
density function (pdf). Knowledge elicitation, i.e. mapping
of prior knowledge onto the prior pdf is supported by a range
of techniques [28, 12]. They generally rely on a facilitator,
who guides the knowledge provider and quantifies knowledge
gathered. The developed techniques mostly deal with soci-
etal and medical applications and focus on a quantification
of experts’ mental models [27]. The facilitator-dependent
knowledge elicitation is expensive and can cope only with
relatively simple cases. Moreover, it does not support ex-
ploitation of knowledge sources like simulation models or
extensive data bases.

The current paper elaborates an elicitation technique
that enables exploitation of all knowledge sources and
weakly depends on a facilitator. The need to improve adap-
tive controllers and predictors based on recursive estimation
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[3, 26] has motivated this. Experience shows that the esti-
mation of their structure as well as the resulting transient
behaviour depend, sometimes critically, on the properly ex-
ploited prior knowledge.

The papers [14, 18, 19] proposed the desired elicitation
technique that transforms knowledge into fictitious data, i.e.
data that could be observed on a modelled system, and uses
this data for the estimation as the real one. A formal struc-
ture of this transformation has also led to a treatment of the
automatic elicitation as an optimisation under knowledge-
reflecting constraints [16, 7]. The promising solutions are
insufficiently general similarly as other rare attempts [2].

The estimation for control has not employed the poten-
tial of the knowledge elicitation: wild initial behaviour of
adaptive controllers is at most handled via specific control
strategies [21, 13].

The solution proposed here suppresses drawbacks and in-
consistencies of its predecessors and covers a wider range
of types of the elicited knowledge. Moreover, it determines
a relative impact of provided knowledge, which increases
robustness with respect to misleading knowledge. The ap-
proach is elaborated for models within the exponential fam-
ily (EF), [4], that are widely used in applied adaptive sys-
tems as they enable an exact recursive estimation on ex-
tending data sets. The solution uses results [22, 15] that jus-
tify inclusion of probabilistically expressed knowledge about
possible data into the parameter estimation. The paper pro-
vides the essence of the proposed knowledge elicitation. The
elaborated cases (useful per se) offer a guide on how to apply
it.

Section 2 summarises necessary preliminaries, namely,
the adopted formula for processing probabilistic knowledge
[15] and Bayesian estimation of the normal controlled au-
toregressive model (ARX). Section 3 describes an elicitation
of prevalent types of prior knowledge. It shows how to use
the basic knowledge about data ranges and how it can be
applied to specific cases like rise time. The discussed use of
extensive simulated or obsolete data sets reveals the need
for selection of relevant data or their weighting. Quantifica-
tion of knowledge on the system’s response smoothness illus-
trates the use of Monte-Carlo evaluations. Some knowledge
types can be elicited analytically as shown on partial knowl-
edge of frequency response. Section 4 describes exploitation
of real data to control an overall impact of the processed
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knowledge. Section 5 provides illustrative examples and Sec-
tion 6 comments on the results obtained. Sections 3, 4 form
the core of the paper.

2. PRELIMINARIES

The following notation is adopted. x = {x1, x2, . . .}
stands for a set of cardinality |x|. If x is a vector, �x de-
notes its length and x′ its transpose. The lower and up-
per bounds on x ∈ x are x and x, respectively, and ap-
ply entry-wise to vectors. f(x) is the pdf of a random
variable with possible values x. cx means a certain (re-
alised) value of the random variable x. ∝ is a proportion-
ality symbol. A subscript t ∈ t = {1, 2, . . .} labels discrete
time moments. d(t) means a sequence d1, d2, . . . , dt. A sub-
script κ ∈ κ = {1, 2, . . . , |κ|}, |κ| < ∞, refers to the κth
piece/source of prior knowledge. It can be represented by
a large amount of “fictitious” data, i.e. data that could
be observed on the modelled system. They are indexed by
τ ∈ τ = {1, 2, . . . , |τ |}, |τ | ≤ ∞.

2.1 Probabilistic description of knowledge

A closed loop formed by the modelled system and the
adaptive DM system is considered. The data record dt =
(yt, ut) observed at time t ∈ t consists of the system’s out-
put yt and input ut. The addressed parameter estimation
concerns a time-invariant parametric model of the system.
This model specifies the pdf of the scalar system’s output
yt conditioned on a column regression vector ψt (of a length
�ψ), which is a known function of ut and d(t−1). The model
parameterised by a finite-dimensional unknown parameter
Θ has the form

M(Ψt,Θ) = f(yt|ut, d(t− 1),Θ) = f(yt|ψt,Θ)(1)

Ψt = [yt, ψ
′
t]
′.

The predicted system’s output yt and the regression vector
ψt form a data vector, Ψt.

Knowledge of the unknown parameter Θ is initially de-
scribed by a flat proper prior pdf f(Θ). Besides, avail-
able prior knowledge (possibly imprecise and incomplete)
of some system’s characteristic informs, often indirectly,
about Θ and should be used in its estimation. Each of
the processed knowledge sources is indexed by κ ∈ κ,
|κ| < ∞. The proposed processing of all pieces of prior
knowledge performs a gedanken experiment reflecting an
underlying system’s characteristic. The possible outcomes
of this gedanken experiment are described by a pdf fκ(Ψ),
where Ψ is a data vector composed of fictitious data, i.e.
data which would be observed on the system if this experi-
ment was performed in reality. Many data vectors, indexed
by τ ∈ τκ = {1, 2, . . . , |τκ|}, |τκ| ≤ ∞, can be considered
when constructing fκ(Ψ). The set of knowledge-expressing
pdfs

(2) K = {fκ(Ψ), Ψ ∈ Ψκ}κ∈κ

is used for a modification of the (flat) prior pdf f(Θ) to
a pdf denoted f(Θ|K). The pdf f(Θ|K) reflects the knowl-
edge provided by K and serves for the subsequent standard
Bayesian estimation as the prior pdf. To update f(Θ) to
f(Θ|K), the formula proposed in [15] is adopted

f(Θ|K) =
f(Θ) exp{β ΩK(Θ)}∫

Θ
f(Θ) exp{β ΩK(Θ)} dΘ(3)

∝ f(Θ) exp{β ΩK(Θ)}, with

ΩK(Θ) =
∑
κ∈κ

ακ

∫
Ψκ

fκ(Ψ) ln[M(Ψ,Θ)] dΨ,(4)

β ∈ (0,∞), ακ ≥ 0,
∑

κ∈κ ακ = 1, and M(Ψ,Θ) is given
by (1). The function ΩK(Θ), (4), is an expectation of the
logarithm of the parametric model (1) with respect to the

weighted average pdf f̂(Ψ) representing the prior knowledge
in the pdfs from K (2)

(5) f̂(Ψ) =
∑
κ∈κ

ακfκ(Ψ).

The formulae (3), (4) can be interpreted as follows. Let
us consider a collection K|τ | = {{ cΨκτ ∼ fκ(Ψ)}τ∈τκ

}κ∈κ,
|τ | = minκ∈κ(|τκ|) ≤ ∞, of independent realisations cΨκτ

of data vectors Ψ ∈ Ψκ. Then Bayes rule [29], applied to
them, updates the flat prior pdf f(Θ) to the posterior pdf
f(Θ|K|τ |), which is rewritten into the form resembling (3),

f(Θ|K|τ |) ∝ f(Θ)
∏
κ∈κ

∏
τ∈τκ

M( cΨκτ ,Θ)

= f(Θ) exp

{
β|τ |

∑
κ∈κ

ακ|τ |·

·
∫
Ψκ

fκ|τ |(Ψ) ln[M(Ψ,Θ)] dΨ

}

fκ|τ |(Ψ) =
1

|τκ|
∑
τ∈τκ

δ(Ψ− cΨκτ )

(a sample pdf of Ψ from κth source)

δ(Ψ− cΨκτ ) = Dirac delta on cΨκτ for Ψ, cΨκτ ∈ Ψκ

ακ|τ | =
|τκ|
β|τ |

, β|τ | =
∑
κ∈κ

|τκ|.

For |τ | → ∞, the sample pdfs fκ|τ |(Ψ) converge generally to
fκ(Ψ) and the weights ακ|τ | to ακ ≥ 0,

∑
κ∈κ ακ = 1. The

posterior pdf f(Θ|K|τ |), however, converges to a pdf that
over-fits the processed data-vectors samples as β|τ | ≥ |τ |.
Knowing that the processed knowledge is imprecise, we have
to make this posterior pdf more flat. The simplest flat-
tening [16] shrinks β|τ | by a factor ζ|τ | ∈ (0, 1) such that
β|τ |ζ|τ | → β < ∞. Thus, the formulae (3), (4) can be in-
terpreted as a flattened version of Bayes rule applied to in-
finite amounts of independent samples from K. Their use
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i) avoids demanding sampling, ii) excludes over-fitting of im-
precise prior knowledge and iii) respects relevance of knowl-
edge pieces. Section 4 shows how to optimise the weights

(6) wκ = βακ

which control influence of the respective knowledge pieces
fκ(Ψ) on f(Θ|K), see (3). The discussed formulae serve us
here as a tool only. A reader interested in alternative views
is referred to [15].

Note that the support (the set of its positivity) of the flat
prior pdf f(Θ) includes the support of the pdf f(Θ|K) and
the support of any posterior pdf using it as prior pdf. Thus, a
constrained support of f(Θ) quantifies well hard constraints
on the parameter range and we can focus on quantification
of “soft” constraints expressing the processed knowledge.

2.2 Knowledge description in exponential
family

The considered parametric models (1) from the exponen-
tial family (EF) [4] have the form

(7) M(Ψ,Θ) = A(Θ) exp 〈B(Ψ), C(Θ)〉 ,

where A(Θ) is a non-negative scalar function of Θ.
B(Ψ) and C(Θ) are multivariate functions of compatible di-
mensions and the functional 〈·, ·〉 is linear in its first argu-
ment.

The evaluation of the function ΩK(Θ) (4) for the model
(7) is simple, as the pdf (3) becomes

f(Θ|K) ∝ f(Θ)Aβ(Θ) exp 〈βV,C(Θ)〉 , with

V =
∑
κ∈κ

ακΛκ,(8)

where Λκ =

∫
Ψκ

B(Ψ)fκ(Ψ) dΨ, κ ∈ κ.

The array V is an expectation of B(Ψ) (7) with respect to

the average pdf f̂(Ψ) (5). Its increments Λκ, weighted by
ακ, are expectations of B(Ψ) with respect to fκ(Ψ).

Thus, application of (3) and (4) to the model (7) reduces
knowledge elicitation to a mapping of available domain-
specific knowledge pieces on the set K (2). This mapping is
constructed by employing maximum entropy principle [31],
which assigns to the κth piece of knowledge the pdf fκ(Ψ)
compatible with the processed piece and having the highest
entropy.

We consider knowledge expressed in the form: realisations
of data vector Ψ are highly expected to be in a set Ψκ. To
simplify the processing, we neglect a possible occurrence of
Ψ out of this set. Then, the maximum entropy principle
provides

(9) fκ(Ψ) = UΨ (Ψκ) ,

where UΨ (Ψκ) denotes the pdf of uniform random data vec-
tors on the set Ψκ, κ ∈ κ. Having (9), it remains to specify
the flat prior pdf f(Θ). For the parametric models in EF
(7), the following conjugate prior pdf is considered

f(Θ) =
Aν(Θ) exp 〈V,C(Θ)〉

I(V, ν) ,(10)

I(V, ν) =

∫
Θ

Aν(Θ) exp 〈V,C(Θ)〉 dΘ,

with V = V and ν = ν, making pdf f(Θ) flat and guaran-
teeing I(V , ν) < ∞.

Then, the posterior pdf f(Θ| cd(t),K), reflecting prior
knowledge K (2) and data vectors cΨ(t) made of the mea-
sured data cd(t), preserves the conjugate form (10) i.e.
f(Θ| cd(t),K) = Aνt(Θ) exp 〈Vt, C(Θ)〉 /I(Vt, νt). The ar-
rays Vt and scalars νt evolve recursively

(11)
Vt = Vt−1 +B( cΨt), V0 = V + βV,
νt = νt−1 + 1, ν0 = ν + β,
t ∈ t = {1, . . . , |t|},

with V defined in (8). Prior knowledge (2) influences initial
conditions in (11) by adding the term βV to V . Section 3
shows its influence generally and Example 2 of Section 5
numerically.
Remarks
• The indicator function of a constrained support can be
included into the flat prior pdf. This preserves the recursion
(11) but makes evaluation of normalisation factor and mo-
ments of the pdf f(Θ|K) numerically demanding.
• The maximum entropy principle generally provides non-
zero pdf fκ(Ψ) out of the highly expected set Ψκ, κ ∈ κ. An
influence of its approximation by the uniform pdf having the
support on Ψκ is expected to be negligible as the optimised
weighting by wκ (6), discussed in Section 4, diminishes in-
fluence of the neglected tails of fκ(Ψ) out of Ψκ.

This hypothesis can be studied within the framework of
robust Bayesian estimation, [30].
• The κth piece of knowledge often concerns data vectors
Ψ with a certain (non-random) part, typically a part of the
regression vector ψ. Let us decompose

(12) Ψ′ = [ rΨ′, cΨ′
κ] ,

where rΨ contains uncertain (random) entries and cΨκ cer-
tain (realised) entries. Applying the chain rule to the pdf
fκ(Ψ) = fκ (

rΨ, cΨκ), we get, see (8),

(13) Λκ =

∫
rΨκ

B ([ rΨ′, cΨ′
κ]

′) fκ (
rΨ| cΨκ) d

rΨ.

• Uncertain, domain-specific, knowledge can be provided in
many forms. Each requires a ready (algorithmic) mapping
of this knowledge form on the pdfs in K (2). A number of
such mappings, frequently met in practice, is designed in
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Section 3. They do not cover a full range of possibilities.
Many cases can be treated similarly as in Section 3 or as
follows:
� Knowledge “if the regression vector ψ yields the value cψκ,
then the output y ∈ yκ” quantifies by

Λκ =

∫
yκ

B ([y, cψ′
κ]

′)Uy(yκ) dy.

� Knowledge “if the regression vector yields the values
[ rψ′, cψ′

κ]
′
with rψ ∈ rψκ, then the output y ∈ yκ” quan-

tifies similarly: the averaging with respect to uniform pdf
is applied to the whole uncertain part rΨ = [y, rψ′]′ of the
data vector Ψ.
� Fuzzy rules can be treated similarly as above. It suf-
fices to interpret the involved membership functions as non-
normalised conditional pdfs used in expectation (13).

2.3 Bayesian estimation of normal controlled
autoregressive model

The discussed processing of prior knowledge is applied
to the normal controlled autoregressive model (ARX). Use
of the chain rule allows us to consider the normal ARX
model with a single output. Its Bayesian estimation, exploit-
ing data records cd(t) = ( cd1, . . . ,

cdt) observed up to the
discrete time t ∈ t, is recalled here. The normal ARX model
belongs to EF (7)

M(Ψ,Θ) = Ny(θ
′ψ, r) =

1√
2πr

exp

[
− (y − θ′ψ)2

2r

]
(14)

= A(Θ) exp

{
−tr

(
ΨΨ′ [−1, θ′]′[−1, θ′]

2r

)}
,

A(Θ) = 1√
2πr

, B(Ψ) = ΨΨ′, C(Θ) = [−1,θ′]′[−1,θ′]
2r and

〈B,C〉 = −tr(BC).
In (14) θ is a column vector of regression coefficients, ψ is

the corresponding regression vector, r is noise variance, and
tr denotes trace. This model is determined by the unknown
parameter Θ = (θ, r). The conjugate prior pdf is a normal-
inverse-gamma pdf N iG, [16],

f(Θ|V, ν) = N iGθ,r(θ̂, P, r̂, ν)

=
exp

{
− 1

2r [(θ − θ̂)′P−1(θ − θ̂)+(ν−2)r̂]
}

I(V, ν) r0.5(ν+	ψ+2)

V =

[
(ν − 2)r̂ θ̂′P ′

P θ̂ P−1

]
,(15)

I(V, ν) =

[
2

(ν − 2)r̂

] ν
2

|2πP |0.5 Γ
(ν
2

)
,

where �ψ denotes the length of ψ and Γ is the gamma func-

tion. The scalar r̂, the column vector θ̂ and the matrix P
are interpreted in (17) below. The pdf (15) is determined
by a symmetric positive definite extended information ma-
trix V – the array V in (8) specialised to the normal ARX

model – and by the scalar ν > 0 interpreted as the number of
degrees of freedom. The posterior pdf is also normal-inverse-
gamma with Vt and νt updated according to the following
specialised version of the recursion (11)

(16) Vt = Vt−1 +
cΨt

cΨ′
t︸ ︷︷ ︸

B( cΨt)

, νt = νt−1 + 1,

where cΨt = [ cyt,
cψ′

t]
′ is a data vector available at time

t ∈ t. It can be shown [29] that θ̂, r̂ and P in (15) are quan-
tities known in connection with the recursive least squares
(RLS) algorithm, to which (16) is algebraically equivalent.
The following correspondence holds (Et[·] and covt[·] denote
expectation and covariance conditioned on information pro-
cessed up to the time t ∈ t, respectively)

θ̂t = Et[θ] = RLS estimate of θ,(17)

r̂t = Et[r] =
RLS remainder

νt − 2
, r̂tPt = covt[θ].

This correspondence motivates the “standard” choice of the
prior pdf f(Θ), given by V and ν specified via (15) by θ̂ = 0,
P = diagonal matrix with a large diagonal, r̂ and ν − 2
chosen as small positive numbers, [25]. This choice quantifies
an assumption that θ and r are finite but knowledge of their
values and relations is very vague. The technique developed
here enriches this commonly accepted practice by including
available prior knowledge. The proposed approach provides
better initial conditions of (11), i.e. better initial conditions
of RLS, equivalent to the recursion (16) [29],

θ̂t = θ̂t−1 +Gt(
cyt − θ̂′t−1

cψt),

Gt =
Pt−1

cψt

1 + cψ′
tPt−1

cψt
,

Pt = Pt−1 −Gt
cψ′

tPt−1.

The recursion updates values of the sufficient statistics de-
termining the posterior pdf, expressed in RLS terms (15).
It uses the observed realisations of the output cyt and the
regression vector cψt entering the normal variant (14) of the
parametric model (1).

The choice of V0 determines the needed initial conditions
via (15), (17). Importantly, the advocated knowledge elici-
tation influences the whole V0 and thus influences both prior
estimate of regression coefficients θ̂0 and the gains Gt with
which the prediction errors cyt − θ̂′t−1

cψt modify the esti-

mates θ̂t, t ≥ 1. Example 2 in Section 5 illustrates this
influence numerically.

3. PROCESSING OF COMMON TYPES OF
PRIOR KNOWLEDGE

The processing presented below deals with knowledge
types commonly available in the control domain. It con-
structs typical mappings of knowledge pieces on pdfs in K
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(2) and applies (3) to models in EF, i.e. provides the incre-
ments Λκ in (8). The mappings are mostly specialised to the
normal ARX model for which

(18) Λκ =

∫
Ψκ

ΨΨ′fκ(Ψ) dΨ.

Section 3.1 deals with the prior knowledge of ranges of
data trajectories, i.e. the ranges of data sequences indexed
by the “fictitious” time of the gedanken experiment.

A high number of common types of prior knowledge about
the system can be expressed in terms of data ranges. A sim-
ple example of this type is quantification of knowledge about
static gain, see Section 3.2.1. Section 3.2.2 describes a more
complex example of prior knowledge processing, which con-
cerns rise time and dynamic time delay. An exploitation of
obsolete, analogous and simulated data is discussed in Sec-
tion 3.3. It makes explicit the need to counteract possible
over-fitting of prior knowledge. The necessary balance be-
tween prior knowledge and data observed can be partially
reached by using just-in-time-modelling methodology, Sec-
tion 3.3.1. Generally, the balance can be and is to be con-
trolled by the weights wκ (6). Their choice is briefly dis-
cussed in Section 3.3.2 and finalised in Section 4. Quan-
tification of response’s smoothness, Section 3.4, provides an
example of a widely-spread knowledge type, whose process-
ing requires Monte-Carlo-type evaluation. The knowledge of
cut-off frequency, Section 3.5.1, and of a point on frequency
response, Section 3.5.2, represent the domain-specific knowl-
edge analytically mappable on K (2).

3.1 Basic quantification: ranges of data
trajectories

Ranges of data trajectories are often known from: i) the
system design phase, ii) series of past experiments performed
for estimation of particular characteristics of the modelled
system, e.g. step response. Ranges of data trajectories mean
knowledge pieces constructed from ordered sequence of data
ranges. Data ranges induce ranges of data vectors

Ψ ∈ Ψκ =
[
Ψκ,Ψκ

]
, which is a shorthand notation for

(19)

Ψi ∈
[
Ψκi,Ψκi

]
, i = 1, . . . , �Ψ, κ ∈ κ.

They are determined by the lower Ψκ and upper Ψκ bound-
ary values with finite entries Ψκi and Ψκi.

The respective ranges are treated individually (thus in-
dexed by κ ∈ κ) and expressed via the uniform pdfs
fκ(Ψ) = UΨ([Ψκ,Ψκ]) on the intervals (19) in accordance
with the adopted maximum entropy. For EF, the increment
Λκ (8) becomes

(20) Λκ =

∫
[Ψκ,Ψκ]

B(Ψ)UΨ

([
Ψκ,Ψκ

])
dΨ.

For the normal ARX model, the increment Λκ (20) of the

extended information matrix V reads

Λκ =

∫
[Ψκ,Ψκ]

ΨΨ′UΨ

([
Ψκ,Ψκ

])
dΨ

=
1

4

(
Ψκ +Ψκ

) (
Ψκ +Ψκ

)′
(21)

+
1

12
diag

[(
Ψκ1 −Ψκ1

)2
, . . . ,

(
Ψκ	Ψ −Ψκ	Ψ

)2]
.

3.2 Exploitation of the basic quantification

Static gain, rise time and dynamic delay characterise a

system’s response to a change from an equilibrium. They

are examples of traditional characteristics of standardised

experiments with inspected real systems. All of them suit

for gedanken experiments.

3.2.1 Simple case

The static gain g of a system is a (negative) difference

between the initial value of the system’s output cy1 and its

steady-state value cy1 + g reached after the system’s input

change from the initial value cu1 to the value cu1 + 1. The

knowledge g ∈ [g, g] is often available and its quantifica-

tion was repeatedly addressed [14, 18]. Its definition can be

interpreted as the gedanken experiment:

• the inspected scalar system’s output and input are at their

initial constant levels cy1,
cu1,

• a unit step change is applied to the system’s input,

• the system’s output reaches a new steady state in the

interval [ cy1 + g, cy1 + g].

The initial input-output values determine the realisation

of the data vector cΨ1. The steady-state data vector Ψ2

contains the certain part cΨ2 made of cu1+1 and uncertain

one rΨ2 formed by the stabilised system’s output y ∈ [ cy1+

g, cy1+g] determining the range of the terminal data vector
rΨ2 ∈ [ rΨ2,

rΨ2]. A detailed exploitation of this knowledge

is well visible on a single-input, single-output normal ARX

model with the state in the phase form. It has the regression

vector

(22) ψ′
t = [yt−1, . . . , yt−n, ut, . . . , ut−m], n,m ≥ 0.

The processed fictitious data vectors in initial (τ = 1)

and terminal (τ = 2) steady state are cΨ1 = cΨτ=1 =

[ cy1, . . . ,
cy1,

cu1, . . . ,
cu1]

′, cΨτ=2 = [ cu1 + 1, . . . , cu1 + 1]′,
rΨτ=2 = [ cy1+g, . . . , cy1+g]′, rΨτ=2 = [ cy1+g, . . . , cy1+g]′

with (n + 1) and (m + 1) entries in the parts related to

the system’s output and input, respectively. Equations (8),

(21) and the definition cΨ2 = cΨ1 + [0.5(g+ g), . . . , 0.5(g+

g), 1, . . . , 1]′ give the increment Λ (18) of the extended in-

formation matrix V (15)
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Λ =
1

2

{
cΨ1

cΨ′
1 +

cΨ2
cΨ′

2 +

+
1

12
diag

[ (
g − g

)2
, . . . ,

(
g − g

)2︸ ︷︷ ︸
(n+1) times

, 0, . . . , 0︸ ︷︷ ︸
(m+1) times

]}
.

3.2.2 More complex case

Rise time, ρ, refers to the time required for the system’s
output to rise from a specified initial value, say zero, to
a specified final steady-state value. Dynamic delay, Δ, is
the time required for the system’s output to change from
zero to a small non-zero value. Both characteristics can be
converted into the data-ranges type of knowledge as follows.
• The system is assumed to be in a steady state characterised
by a constant system’s input cu1 and the corresponding con-
stant system’s output cy1 = 0.
• The inspected characteristics are gained when the unit
step cu1 → cu1 + 1 is applied. Thus, the system’s input
forms a certain part of the constructed data vectors, see
(12). The certain values define the increment Λ in (8) ac-
cording to (13).
• The system’s output is negligible until time Δ, i.e., its
absolute value is highly expected to be smaller than ε times
(say, ε ≈ 0.1) the guess of the static gain, ĝ (for instance,
ĝ = 0.5(ḡ+ g), for clarity ĝ > 0), i.e., the expected system’s
output range is

(23) yτ = [−ε× ĝ, ε× ĝ], for τ ≤ Δ.

• Given bounds y
τ
, yτ determine the expected range of the

output before the rise time ρ

(24) yτ = [y
τ
, yτ ], for τ ∈ (Δ, ρ] .

• For the (fictitious) time span τ > ρ, the system’s output
yτ is expected to be in the intervals

(25) yτ =
[
max

(
(1− ε)×ĝ, y

τ

)
, min

(
(1 + ε)×ĝ, yτ

)]
.

(23)–(25) specify the ranges of data records and conse-
quently of data-vector trajectories, see (19), and allow a
direct application of the results obtained in Section 3.1.

3.3 Relevant prior knowledge

Available realisations cΨκ of data vector Ψ, with κ ∈ κ
referring to the κth item in an extensive data source (typi-
cally, data base), often serve as prior knowledge. The proba-
bilistic description of this knowledge is fκ(Ψ) = δ(Ψ− cΨκ)
and the use of equation (3) reduces to ordinary Bayes esti-
mation if wκ = βακ = 1. This is a correct solution, if the
realisations are obtained on the modelled system and in an
ordinary operational mode. The situation differs, if the re-
alisations are: i) obsolete, ii) observed on a similar system,
iii) observed under significantly different operation condi-
tions, iv) obtained via simulation. Then, this knowledge has

to be used carefully as the prior pdf may practically shrink
at a wrong set so much that the real data observed will
not be able to change this. The problem is not critical if a
number of processed data vectors is small and real data is
informative [29]. Then, equation (3), reduced to Bayes rule,
can be directly applied. If these conditions are violated, two
approaches are used (see below): i) a real-time selection of
the relevant realisations, which are closely related to the cur-
rent system’s state, ii) non-unit weighting of the processed
data that can control the influence of the knowledge incor-
porated.

3.3.1 Real-time selection of the relevant data

The methodology called (among others) just-in-time
modelling, e.g. [8, 24], can counteract the mentioned shrink-
ing of the pdf f(Θ|K). This methodology assumes the ability
to store a large number of data vectors and to inspect them
in real time. The local model is built “just-in-time” relying
on the following selection of relevant data.
• Current observations made at real time t ∈ t are put in
the regression vector cψt.
• A small number |κ| of stored data vectors { cΨκ}κ∈κ with
the regression vectors { cψκ}κ∈κ “close” to the currently ob-
served cψt are selected. Here, the subscript κ refers to the
stored record serving as the κth prior-knowledge piece ex-
ploited at t ∈ t.

This choice relies on the hypothesis that similar causes,
represented by close regression vectors, lead to similar con-
sequences reflected in outputs.
• Parameter Θ of a (local) model M(Ψt,Θ) (1) is estimated
at time t ∈ t by applying Bayes rule to the data vectors
{ cΨκ}κ∈κ corresponding to the selected regression vectors
{ cψκ}κ∈κ. It means that (3) is applied with pdfs fκ ∈ K
being Dirac functions placed on the data vectors { cΨκ}κ∈κ

and the weights wκ = 1, (6).
• The pdf f(Θ|K) is used for predicting an unknown value of
the output yt modelled by the predictive pdf f(yt| cψt,K) =∫
Θ
M([yt,

cψ′
t]
′,Θ)f(Θ|K) dΘ.

The outlined idea is quite powerful if the modelled rela-
tion of y and ψ is smooth. It may, however, be sensitive to
the definition of the closeness of regression vectors cψt and
cψκ. The probabilistic treatment offers the following system-
atic approach, which considers acceptance of the natural
conditions of control, [29]. They postulate that knowledge
of the regression vector without the corresponding output
says nothing about the parameter Θ, i.e.

(26) f(Θ| cψt) = f(Θ| cψκ) = f(Θ).

The regression vectors cψκ and cψt can be assumed suffi-
ciently close if the joint pdf of yet unobserved system’s out-
put yt and unknown finite-dimensional parameter Θ, given
by the vector cψκ selected from the data base, is close to
that given by cψt observed at time t ∈ t, i.e.

(27) f(yt,Θ| cψt) ≈ f(yt,Θ| cψκ).
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Under (26), the joint pdf f(yt,Θ| cψt) can be rewritten in
the following way

f(yt,Θ| cψt) = M([yt,
cψ′

t]
′,Θ)f(Θ| cψt)

= M([yt,
cψ′

t]
′,Θ)f(Θ).

Similarly, the joint pdf of yt and Θ conditioned on cψκ reads

f(yt,Θ| cψκ) = M([yt,
cψ′

κ]
′,Θ)f(Θ| cψκ)

= M([yt,
cψ′

κ]
′,Θ)f(Θ).

Under weak conditions [6], the Kullback-Leibler divergence
[23] of f(yt,Θ| cψt) on f(yt,Θ| cψκ) is an adequate measure
of the inspected proximity. Under (26), the divergence reads

Dtκ(28)

=

∫
(yt,Θ)

M
(
[y, cψ′

t]
′
,Θ
)
f(Θ) ln

(
M
(
[y, cψ′

t]
′
,Θ
)

M
(
[y, cψ′

κ]
′
,Θ
)
)

dydΘ.

Thus, at time t ∈ t, the relevant data vectors cΨ′
κ =

[ cyκ,
cψ′

κ] have the regression vectors cψκ, κ ∈ κ, which yield
small values of the divergence Dtκ (28). The next discussion
shows that the term “small” can be well quantified.

For EF and the conjugate prior pdf f(Θ), given by (10)
with V = V and ν = ν, Dtκ becomes

Dtκ=

∫
(yt,Θ)

〈B([y, cψ′
t]
′)−B([y, cψ′

κ]
′), C(Θ)〉 A

ν+1(Θ)

I(V , ν)

× exp 〈V +B([y, cψ′
t]
′), C(Θ)〉 dydΘ.

For a single-output normal ARX model (14), Dtκ reads

Dtκ=

∫
θ,r≥0

[θ′( cψt − cψκ)]
2

2r
N iGθ,r(V , ν) dθdr

=
1

2

[
ν

(ν − 2)r̂
[θ̂

′
( cψt − cψκ)]

2+(29)

+ ( cψt − cψκ)
′P ( cψt − cψκ)] .

The quantities θ̂, r̂ and P are defined by (15) with V = V
and ν = ν. The result (29) follows from the basic properties
of the normal and normal-inverse-gamma pdfs, see for ex-
ample [16]. The first summand in the square brackets above
is proportional to the normalised squared difference of the
outputs’ predictions based on θ̂, r̂ and the regression vec-
tors cψt,

cψκ. Hence the values of Dtκ much larger than one
cannot be considered small. The second summand is propor-
tional to the squared Euclidean norm of ( cψt− cψκ) weighted
by the matrix P . The equations (15) and (16) imply that the
matrix P can be interpreted as an inversion of the second
moment of regression vectors divided by ν. Hence, the values
larger than �ψ/ν cannot be taken as small. This indicates
that the values Dtκ ≤ D̄ < 0.5(1 + �ψ/ν) are small.

3.3.2 On knowledge weighting

The regression vector cψt, around which the local model
is built, determines the selection of the relevant prior data
while the threshold D̄ controls the degree of relevance and
the amount of processed data. Without such “reference”,
typically in off-line processing mode, just case-dependent
choices of the relevant data, e.g. [11], are at disposal. Con-
sequently, a huge amount of data vectors of varying rele-
vance has to be often processed. Then, the prior knowledge
can be “over-fitted” and an influence of real observations
diminished.

The problem applies to any data-rich source, but it be-
comes especially important if the processed data sample is
generated by simulation models. Despite these models ac-
cumulating a substantial prior knowledge, their use in the
subsequent design of decision strategies is limited as the
optimising design is often unfeasible without their simplifi-
cation.

Adaptive systems supported here rely on approximate
models, too. They optimise a decision strategy in real time
by using a recursively estimated approximate model from
a tractable class of parametric models, typically from EF.
The approximation is constructed implicitly via Bayesian
estimation, which guarantees the asymptotically best ap-
proximation of the modelled system [16].

The learning transient can be substantially shortened, if
the knowledge accumulated in a simulation model is pro-
jected onto the prior pdf f(Θ|K). Application of Bayes rule
to simulated data vectors cΨκτ , τ ∈ τ = {1, . . . , |τκ|}
does the job due to the mentioned approximation abil-
ity. The formula (3) counteracts the danger of over-fitting
as the function ΩK(Θ) weights the individual sample pdf
fκ(Ψ) = 1

|τκ|
∑

τ∈τκ
δ(Ψ − cΨκτ ) representing { cΨκτ}τ∈τκ .

The weighting can be interpreted as a use of a flattened
version of the pdf, [16], obtained after standard Bayesian
estimation from the sample { cΨκτ}τ∈τκ .

Altogether, the incorporation of the κth knowledge piece
provided by a large amount |τκ|, say simulated, data vectors
reduces (for EF) to a collection of the sample version of the
normalised increment

(30) Λκ =
1

|τκ|

|τκ|∑
τ=1

Λκτ

and its weighted inclusion into (8). The choice of the weights
(6), controlling the impact of the incorporated knowledge
pieces, is to be subjective without additional information.
Section 4 provides an automatic choice of the weights wκ,
when real data records are at disposal.

3.4 Monte-Carlo quantification

Smoothness of the system’s response to standardised sys-
tem’s inputs cuκ, κ ∈ κ, is a frequently available type of
knowledge about the system. It can be expressed by a set of
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restrictions describing the highly expected output trajecto-
ries gained in the gedanken experiment

yκ ∈ yκ = {yκ : |yκ − cyκ−1| ≤ qκ|| cψκ − cψκ−1||} ,(31)

for κ ∈ κ. Each set (31) depends on cuκ,
cΨκ−1, a supplied

continuity module qκ > 0 and the norm || · ||.
Similar to the previous cases, this type of knowledge can

be expressed via uniform pdfs on yκ. They, together with the
known deterministic mapping ( cΨκ−1,

cuκ, yκ) → Ψκ, deter-
mine the conditional pdfs fκ|κ−1(Ψ| cu, cΨ), expressing the
highly expected transitions ( cΨκ−1,

cuκ) → Ψκ, for κ ≥ 2.
The pdf f1(Ψ), describing the expected initial data vectors,
can be chosen by using, for instance, available knowledge of
data ranges. This construction represents the case when pdfs
in the set K = {fκ(Ψ)}κ∈κ are given implicitly as solutions
of the equations

fκ(Ψ) =

∫
Ψκ−1

fκ|κ−1(Ψ| cuκ,Ψκ−1)fκ−1(Ψκ−1) dΨκ−1,

for κ = 2, . . . , |κ|. An explicit solution of these equations
can hardly be obtained. The underlying conditional pdfs
fκ|κ−1(Ψ| cuκ,

cΨκ−1) are, however, simple and Monte Carlo
methodology can be applied. It draws random indepen-
dent samples cΨ1τ ∼ f1(Ψ), τ ∈ τ = {1, . . . , |τ |}, and
simulates realisations cΨ2τ , . . . ,

cΨ|κ|τ by using the con-
sidered cuκ and drawing the system’s output samples cyκ
from the uniform pdf on yκ (31). For EF, these realisa-
tions serve for evaluating a sample version of the increment

Λκ = 1
|τ |
∑|τ |

τ=1 B( cΨκτ ) (30), which is then used in (8).

3.5 Analytical quantification

This section deals with important types of knowledge for
which the gedanken experiment can be evaluated analyti-
cally. The presentation is made for the normal single-input,
single-output ARX model with the phase-form regression
vector, given by m,n ≥ 0, see (22). It means that the knowl-
edge piece is expressed via analytically constructed incre-
ment Λ (18) of V (15).

3.5.1 Cut-off frequency

The term cut-off frequency refers to the smallest fre-
quency ωc ∈ (0, 2π) of the sinusoidal system’s input that
leaves the system’s output almost uninfluenced: the system’s
output stays around the initial, say zero, value. Thus, con-
sidering the sinusoidal system’s input of a fixed frequency
ω ∈ [ωc, 2π), the highly-expected fictitious data vectors are
as follows

(32) Ψτω = [yτ , . . . , yτ−n, sin(τω), . . . , sin(ω(τ −m))]′,

for τ ∈ τ = {1, . . . , |τ |}, |τ | → ∞.
In (32) the involved system’s outputs (yτ , . . . , yτ−n) have

zero mean, negligible correlations and a small variance σ2,
typically σ2 = r̂, see Section 2.3.

In correspondence with the output-input structure of the
regression vector (22), the increments Λ of (18) the extended
information matrix V (15) can be split into the blocks

(33) Λ =

[
R T
T ′ S

]
,

where R,S, T are matrices of dimensions (n+1, n+1), (m+
1,m+ 1), (n+ 1,m+ 1), respectively. In accordance with
(30), the increment Λω of the extended information matrix
V is the sample mean of ΨτωΨ

′
τω for the data vectors (32)

Λω = lim
|τ |→∞

1

|τ |

|τ |∑
τ=1

ΨτωΨ
′
τω =

[
Rω 0
0 0.5Sω

]

=

[
σ2In+1 0

0 0.5Sω

]
,(34)

where In+1 is the unit matrix of the order n + 1 and Sω is
the corresponding (m+1,m+1)-block of the decomposition
(33) for the fixed frequency ω. Using the complex form of
goniometric functions with j denoting imaginary unit, the
(k, l)-entry Sω(k, l) of the matrix Sω with k, l ∈ {1, . . . ,m+
1} can be written as follows

Sω(k, l) = 2 lim
|τ |→∞

1

|τ |

|τ |∑
τ=1

sin(ω(τ − k)) sin(ω(τ − l))

=− lim
|τ |→∞

1

2|τ |

|τ |∑
τ=1

[exp(jω(τ − k))− exp(−jω(τ − k))]

× [exp(jω(τ − l))− exp(−jω(τ − l))](35)

=
1

2
[exp(jω(τ − l)) + exp(−jω(τ − l))]

− lim
|τ |→∞

1

2|τ |

|τ |∑
τ=1

[exp(jω(2τ−k− l))+exp(−jω(2τ−k− l))]

=cos(ω(k − l)).

The last limit is zero, as it is a bounded sum of the geometric
sequences divided by |τ | → ∞.

The expressed knowledge is valid for any fixed frequency
ω ∈ [ωc, 2π). The knowledge of the cut-off frequency ωc

is expressed by the collection of increments Λω of the ex-
tended information matrices V for all ω ∈ [ωc, 2π). The for-
mal correspondence between κ and ω and between Λκ and
Λω, respectively, applied to equation (30) reveals that an av-
erage of Λω over ω ∈ [ωc, 2π) adequately represents all these
knowledge pieces. An overall increment Λ of V , computed
by averaging, reads

Λ=

∫ 2π

ωc

ΛωUω([ωc, 2π]) dω =

[
σ2In+1 0

0 0.5S

]
,(36)

S(k, l)=

{
1 if k = l,

− sin(ωc|k−l|)
|k−l| if k = l

k, l ∈{1, . . . ,m+ 1},

where Uω([ωc, 2π]) is the uniform pdf of ω on [ωc, 2π].
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3.5.2 A point on frequency response

Knowledge of cut-off frequency is a special case of a par-
tial knowledge of the system’s frequency response available
at least in connection with auto-tuners [9]. Recalling that
the frequency response is the system’s reaction to the si-
nusoidal system’s input, a relevant gedanken experiment is
described by the data vectors

Ψτωφ = [a sin(τω + φ) + eτ , . . . , a sin(ω(τ− n) + φ) +

+ eτ−n, sin(τω), . . . , sin(ω(τ −m))]′(37)

= cΨτωφ + [eτ , . . . , eτ−n, 0, . . . , 0]
′, τ ∈ τ ,

where a is the supplied estimate of the amplitude. Uncer-
tainty of this knowledge is modelled by the mutually un-
correlated noise elements eτ with zero mean and a priori
specified variance σ2, typically σ2 = r̂, see Section 2.3. In
(37) the subscript ωφ indicates the considered frequency and
the phase shift. The amplitude a represents the basic prior
knowledge supplied. The phase shift φ ∈ [φ, φ] ⊂ [0, 2π] is
another, usually more vague, part of this knowledge. For a
fixed frequency ω and a fixed phase shift φ, the increment
Λωφ (18) of the extended information matrix V (15) coin-
cides with the following sample moment evaluated for the
data vectors (37)

Λωφ = lim
|τ |→∞

1

|τ |

|τ |∑
τ=1

ΨτωφΨ
′
τωφ

=

[
σ2In+1 + a2Rω 0.5aTωφ

0.5aT ′
ωφ 0.5Sω

]
,

where matrices Rω, Sω and Tωφ are obtained via the decom-
position (33). The entries of Rω and Sω are defined by (34),
(35). The (k, l)th entry Tωφ(k, l) of the (n+1,m+1)-matrix
Tωφ equals

(38) Tωφ(k, l) = cos(ω|k − l|+ φ).

Similarly to cut-off frequency, see Section 3.5.1, the final
increment Λω of the extended information matrix can be
computed by averaging Λωφ over the possible phase shifts
φ ∈ [φ, φ̄]. In the most uncertain case when no knowledge of
the phase shift φ ∈ [0, 2π] is available, it holds

(39) Λω=
1

2π

∫ 2π

0

Λωφ dφ =

[ (
σ2 + a2

)
In+1 0

0 0.5Sω

]
.

4. DATA-BASED KNOWLEDGE
WEIGHTING

The influence of prior knowledge depends on the weights
wκ (6) with which the increments Λκ, representing the pro-
cessed pdfs in K = {fκ(Ψ)}κ∈κ, enter f(Θ|K), see (8).

The choice of wκ is critical issue for a balanced weight-
ing of prior knowledge and information brought by observed

data. It becomes even more critical, when the combined
knowledge pieces: i) concern different aspects of the mod-
elled system, or ii) reflect the same system’s property but
offered by different knowledge sources. The weights can be
chosen automatically after observing a sufficient number
υ ∈ t of real, informative data cd(υ) = ( cd1, . . . ,

cdυ). The
term “sufficient number” formally means that at least one
observed realisation cΨ of data vector Ψ is available. In prac-
tice cd(υ) must counteract a poor robustness of the maxi-
mum likelihood estimates, see [10].

In the considered case, the posterior pdf at time υ ∈ t
gets the form, cf. (7), (8),

f
(
Θ
∣∣∣ cd(υ), ν, V ,Λ1, . . . ,Λ|κ|, w

)
∝ A(Θ)νυ+

∑|κ|
κ=1 wκ

× exp

〈
V υ +

|κ|∑
κ=1

wκΛκ, C(Θ)

〉

V υ = V +

υ∑
t=1

B( cΨt), νυ = ν + υ.(40)

Let us stress, that unlike κ referring to the κth piece of
prior knowledge, t and υ refer to discrete time of real data
observations. In (40) the weight wκ = βακ ≥ 0 determines
the strength of the κth knowledge piece. The choice of the
vector w ∈ w = {w = [w1, . . . , w|κ|]

′, wκ ≥ 0} is based
on the fixed knowledge of ν, V , νυ, V υ,Λ1, . . . ,Λ|κ|. For an
instance of w, the predictive pdf, evaluated for the observed
data cd(υ), reads, cf. (10), (40),

f( cd(υ)|ν, V ,Λ1, . . . ,Λ|κ|, w)(41)

=
I
(
V υ +

∑|κ|
κ=1 wκΛκ, νυ +

∑|κ|
κ=1 wκ

)
I
(
V +

∑|κ|
κ=1 wκΛκ, ν +

∑|κ|
κ=1 wκ

) .

It is the likelihood function of the unknown w ∈ w. The
rigorous Bayesian treatment would require assignment of a
prior pdf over w and the evaluation of the posterior pdf
on w. The related computational complexity motivates the
search for the maximum likelihood estimate of w for the
given ν, V , νυ, V υ,Λ1, . . . ,Λ|κ|, i.e. the maximiser of (41)
on w. This choice respects the mentioned exceptional role
of the Kullback-Leibler divergence [6] as the maximum like-
lihood estimate minimises its affine transformation, namely,
the Kerridge inaccuracy [20] of the sample pdf of the ob-
served data cd(υ) on the optimised predictive pdf.

Hölder inequality implies that the logarithm of the like-
lihood function (41) is a difference of convex functions of
w ∈ w. Moreover, it has the finite ith derivative with re-
spect to w, if the ith moments of ln(A(Θ)) and C(Θ), defin-
ing EF (7), exist. Consequently, a rich set of optimisation
algorithms is available for its maximisation.

5. ILLUSTRATIVE EXAMPLES

The examples demonstrate: i) discarding of irrelevant
prior knowledge via weighting, Example 1, ii) positive in-
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fluence of prior knowledge on parameter estimates, Exam-
ple 2, iii) combination of knowledge pieces about the same
system’s property, Example 3.

Extensive numerical studies of other combinations, com-
parisons with previous processing versions as well as a study
illustrating just-in-time modelling methodology will be pub-
lished elsewhere.

In all examples, the following normal ARX model (14)
with single system’s output yt is considered, see Section 2.3,
(42)
yt = 1.81yt−1 − 0.8187yt−2 + 0.00468ut + 0.00438ut−1 + et,

with white normal noise et ∼ Net(0, 10
−4) and the inde-

pendent white exogenous system’s input ut ∼ Nut(0, 10
−2).

This is a discrete-time version of the continuous-time sys-
tem with the transfer function (1 + s2)−1 sampled with the
period 0.1 sec.

The used noise variance makes the simulation realistic
as the autoregressive part amplifies the noise roughly by
hundred times. The chosen variance of the simulated input,
which is attenuated by the corresponding coefficient, makes
its influence on the output similar to that of the noise. The
relation between both influences determines the ease and
rate of the estimation and the chosen case is relatively hard.
The simulation with well stimulating input ut in the open
controlled loop is favourable for data-based estimation [25].
This set up makes it harder to demonstrate positive effects
of the prior-knowledge incorporation. When successful, the
demonstration guarantees that much stronger positive ef-
fects can be expected under much harder conditions within
a closed control loop, e.g. [18].

The influence of incorporated prior knowledge is demon-
strated by comparing the estimation results gained with and
without use of prior knowledge. Each example has the fol-
lowing steps repeated for N realisations of the noise e and
system’s input u.
• Data generation – a collection of υ, see (40), learning data
records are generated by model (42).
• Parameter estimation – estimation, see Section 2.3, is run
twice on learning data: with and without prior knowledge.
The runs without prior knowledge use the standard settings
of the prior, Section 2.3, with diagonal of P equals to 106,
r̂ = 10−4, ν = 2 + 10−6.
• Evaluation of results – the results are judged according to
the prediction quality quantified by

(43) Q =
sample second moment of prediction errors

variance of the noise et in (42)
,

which is evaluated on validation data, generated after fixing
wκ in (6).

Figures, like the time course of the regression-coefficients
estimates, provide qualitative insight.
Example 1 illustrates influence of prior knowledge of a
static gain g ∈ [g, g] = [0.9, 1.1] on the prediction. The pro-
cessing steps were run for N = 100 noise and system’s input
realisations:

Figure 1. Influence of prior knowledge of static gain:
histogram of weights (8) over realisations (left) and
histogram of differences of the prediction quality over

realisations (right).

• Data generation – a collection of υ = 200 learning data
records was generated by (42).
• Parameter estimation without prior knowledge – the esti-
mation uses the standard prior, see Section 2.3.
• Parameter estimation with prior knowledge – the poste-
rior pdf obtained from the learning data was combined with
single prior knowledge of the static gain, Section 3.2.1. The
numerically computed weight w = w1 maximises the predic-
tive pdf (41) evaluated for the learning data cd(υ).
• Evaluation of results – 1,000 additional validation data
records were used for evaluating the prediction quality (43).

The results are in Figure 1. The left subplot presents the
histogram of the optimal weights w computed for each of
N = 100 noise and system’s input realisations. The higher
value of the weight, the more informative contribution and
stronger influence of the knowledge processed. It is worth
noticing that more than 20% realisations led to zero weight:
the processed knowledge is perceived as irrelevant. The right
subplot of Figure 1 presents a histogram of the prediction
quality differences (43) for the estimation with the prior
knowledge and without it. Therefore, the prediction with
the prior knowledge is worse if the difference presented is
positive. The histogram confirms predominantly positive in-
fluence of the processed prior knowledge. Quantitatively, it is
seen on elementary statistics of the prediction-quality differ-
ences evaluated on validation data: mean = −0.363, median
= −0.240, minimum = −1.664, maximum = 0.180.
Remarks
• The occurrences of (almost) zero weights, suppressing ad-
verse effect of the processed knowledge, cumulate into a sin-
gle column in the left subplot of Figure 1. This and the dis-
crete nature of occurrence counts caused the observed gap
in the graph.
• Realisations’ randomness causes deviations from the pre-
dominantly positive effects of the included prior knowledge.
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Figure 2. Influence of prior knowledge of static gain: the
logarithm of predictive pdf (41) as a function of the weight w
(left) and time courses of b0 estimate (right). Circles mark
the time course without prior knowledge. The straight line

marks the simulated coefficient b0.

Sometimes it masks the deterministic part of the simu-
lated relations. This explains the observed down-weighting
of knowledge constructed from the data measured on the
true system.
Example 2 illustrates influence of prior knowledge of a
static gain g ∈ [g, g] = [0.9, 1.1] on point estimates of the
regression coefficients in (42). The processing steps were run
once:
• Data generation – a collection of υ = 20 learning data
records was generated by (42) to initialise the estimation
and to find the optimal weights.
• Parameter estimation without prior knowledge – estima-
tion run on 150 additional data records using the standard
prior, see Section 2.3.
• Parameter estimation with prior knowledge – estimation
run on the additional data records using the prior pdf en-
riched by the knowledge of a static gain. The numerically
computed weight maximises the predictive pdf (41) evalu-
ated for the learning data cd(υ).
• Evaluation of results – the obtained time courses of the
point estimates (the time course of an appropriate entry

of θ̂t, see (17)) of the coefficient b0 = 0.00468 at ut (42)
were recorded and compared for estimation with and with-
out prior knowledge.

The obtained results are in Figure 2. The left-hand sub-
plot depicts the logarithm of the likelihood as a function of
the optimised weight w. The curve illustrates smoothness of
the maximised function as well as existence of non-trivial
maximum. The right-hand subplot, Figure 2, shows evolu-
tion of the b0-estimates for both cases. The trajectory of
b0-estimates is smoother and closer to the true value of the
regression coefficient with prior knowledge.
Example 3 illustrates an incorporation of prior knowledge
of data ranges and combination of several pieces of knowl-
edge. To select ranges properly, two independent data sets,

Figure 3. Influence of the combined knowledge of data
ranges: the contours the predictive-pdf logarithm (41) as a
function of two-dimensional weight (left) and histogram of
differences of the prediction quality over realisations (right).

|κ| = 2, each of the length 50 were generated by (42). The
realistic ranges of data vectors [Ψκ,Ψκ] were determined as
envelopes of these simulated data sets. The processing was
run for N = 100:
• Data generation – a collection of υ = 100 learning data
records was generated by (42).
• Parameter estimation without prior knowledge – estima-
tion run using the standard prior.
• Parameter estimation with prior knowledge – estimation
run using the standard prior combined with the processed
knowledge items and learning data. The numerically found
weights w = [ŵ1, ŵ2]

′, maximising (41), fixed the impact of
knowledge pieces in (40).
• Evaluation of results – an additional collection of 1,000
validation data records was generated and used for evaluat-
ing the prediction quality (43).

The left subplot of Figure 3 shows the logarithm of
the likelihood in a two-dimensional space of the weights
w = [w1, w2]

′. The maximum is marked by a circle. The plot
corresponds to the last noise and system’s input realisations.
The right subplot presents histogram of the differences of
the prediction quality (43) for the estimation with the prior
knowledge and without it. A positive difference indicates
the used prior knowledge has worsened the prediction. The
histogram confirms positive influence of the prior knowledge
processed. Statistics of the prediction-quality differences on
validation data are: mean = −0.188, median = −0.121, min-
imum = −1.138, maximum = 0.047.

6. CONCLUDING REMARKS

The paper concerns elicitation and quantification of prior
knowledge frequently met in the engineering domain. The
adopted methodology works with prior knowledge expressed
as a collection of pdfs on the space of data trajectories.
The illustrative examples indicate a visible improvement of
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the estimation and prediction results implied by the pro-
posed approach. The experience confirms [19] that the pro-
posed inclusion of the prior knowledge improves the model
structure estimation as well as the quality of adaptive con-
trol.

The reported methodology represents a significant step
towards the facilitator-free incorporation of domain-specific
knowledge into the prior pdf utilised by the Bayesian estima-
tion. A unified elicitation methodology, based on the incor-
porating knowledge of data ranges, and data-based merging
of various knowledge pieces represent the main progress. The
paper provides an approach, which: i) covers a wide range
of various knowledge types, ii) removes drawbacks and in-
consistencies of the predecessors [18], iii) objectively deter-
mines a relative impact of a knowledge piece processed. The
last item is extremely important as it increases the robust-
ness and the quality of knowledge elicitation: the knowledge
piece that does not improve prediction based on vague prior
knowledge gets a negligible weight as illustrated by Exam-
ple 1, Section 5.

The paper focuses on normal controlled autoregressive
model. This stimulates questions, concerning its practi-
cal impact and applicability width, which are briefly com-
mented here.
• ARX model is useful per se. It serves to adaptive con-
trollers applied in controlling technological processes (pri-
marily in chemical and energy industries) or in metal pro-
duction or transportation [16]. A recent survey and many
references are in [32]). Cheaper commission of such con-
trollers, suppression of wild adaptation transients and in-
creased robustness are our main contributions to them.
• The gedanken experiment unifies treatment of expert
knowledge, knowledge arising from the controlled system de-
sign, from preliminary data (even obsolete or collected only
on a similar system or simulation model). This methodology
is model-independent.
• The approach is immediately applicable to other members
of the exponential family and its mixtures, providing a pow-
erful modelling tool of complex processes. Their estimation
is sensitive to initialisation [1, 16] and can be substantially
improved by the proposed methodology.

The foreseen open problems include elicitation of knowl-
edge provided by, possibly fuzzy, production rules and ro-
bustness analysis (see Remarks in Section 2.2). These tech-
nical steps will enhance the achieved conceptual and al-
gorithmic improvements. The main progress is, however,
expected in elaborating facilitator-free quantification of
domain-specific decision making preferences (control aims).
It can be achieved by applying the methodology to the pdf
expressing control aims within the fully probabilistic design
of the control strategies [17].
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Dept. Applied Mathematics
VSB-Technical University of Ostrava
Czech Republic
E-mail address: jan.kracik@vsb.cz

Petr Nedoma
UTIA AVCR
Prague
Czech Republic
E-mail address: guy@utia.cas.cz

Antonella Bodini
CNR IMATI
Milano
Italy
E-mail address: anto@mi.imati.cnr.it

Fabrizio Ruggeri
CNR IMATI
Via Bassini 15
I-20133 Milano
Italy
E-mail address: fabrizio@mi.imati.cnr.it
url: www.mi.imati.cnr.it/fabrizio

Fully probabilistic knowledge expression and incorporation 515

http://www.ams.org/mathscinet-getitem?mr=0039968
http://www.ams.org/mathscinet-getitem?mr=0746139
http://www.ams.org/mathscinet-getitem?mr=1795206
http://www.ams.org/mathscinet-getitem?mr=0560389
http://www.ams.org/mathscinet-getitem?mr=2983741
mailto:school@utia.cas.cz
http://www.utia.cz/AS
mailto:guy@utia.cas.cz
http://www.utia.cz/AS
mailto:jan.kracik@vsb.cz
mailto:guy@utia.cas.cz
mailto:anto@mi.imati.cnr.it
mailto:fabrizio@mi.imati.cnr.it
http://www.mi.imati.cnr.it/fabrizio

	Introduction
	Preliminaries
	Probabilistic description of knowledge
	Knowledge description in exponential family
	Bayesian estimation of normal controlled autoregressive model

	Processing of common types of prior knowledge
	Basic quantification: ranges of data trajectories
	Exploitation of the basic quantification
	Simple case
	More complex case

	Relevant prior knowledge
	Real-time selection of the relevant data
	On knowledge weighting

	Monte-Carlo quantification
	Analytical quantification
	Cut-off frequency
	A point on frequency response


	Data-based knowledge weighting
	Illustrative examples
	Concluding remarks
	Acknowledgements
	References
	Authors' addresses

