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SUMMARY

Joint parameter and state estimation is proposed for linear state-space model with uniform, entry-wise
correlated, state and output noises (LSU model for short). The adopted Bayesian modelling and approximate
estimation produce an estimator that (a) provides the maximum a posteriori estimate enriched by information
on its precision, (b) respects correlated noise entries without demanding the user to tune noise covariances,
and (c) respects bounded nature of real-life variables. Copyright © 2013 John Wiley & Sons, Ltd.
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1. INTRODUCTION

Online prediction, fault detection and quality check, advanced signal processing, feedback control,
and others need an adequate model of the considered system. Description of the expected behaviour
of the modelled system can often be constructed from first principles when including (often directly
unobserved) states. The non-negligible stochastic part causing departures from the expectation is
also to be modelled as its presence calls for feedback [1]. In generic case, grey-box state-space
models [2] are obtained, which have the white-box, black-box, and input–output models as their
special cases. Their exploitation needs estimators of both the model state and parameters. The
extent of the research dealing with their various aspects (concepts, formal solutions, algorithms,
approximations, analysis, and applications, concerning both general and specialised cases) is
enormous (cf. references in [3]). The current paper focuses on online estimators, which (a) provide
parameter and state estimates, including their precisions, (b) respect strong correlations of stochastic
disturbances, especially of the state noise, and (c) cope with strictly bounded variables with
incompletely known bounds.

These demands have arisen from practical needs of traffic control [4–6] where the reliable control
and/or prediction requires information about the estimation quality. There, bounded variables are
obviously involved such as a queue length at signalised intersection [4], a car position on the road
[5], or a maximal permitted drive speed [6]. Strongly correlated errors occur whenever the adopted
model is obtained by the linearisation [5, 6]. To our best knowledge, no ready solutions meet the
demands (a)–(c) as the further discussion indicates.

Kalman filtering (KF) and its extensions (e.g. [7]) meet the demand (a) under the assumption
that the employed linear state-space model has normally distributed state and observation noises.
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KF, however, faces significant, extensively counteracted, troubles with respect to both (b) and (c) as
seen in the following representative samples of existing solutions.

As for requirements (a) and (b), KF and its extensions work well when the noise covariances are
well chosen. Then, they also provide adequate information on the estimate precision. The covari-
ances are predominantly taken as design parameters of KF as their estimation represents a highly
nonlinear problem [8, 9]. The number of covariance entries grow quadratically with the state and
output dimensions, which soon makes their experimental tuning infeasible. The number of opted
entries can be decreased by a nontrivial parsimonious parametrisation [10] or made linearly grow-
ing in a factorised version of the state-space model [11,12], but the sensitivity to covariances choice
persists, and neither (a) nor (b) are met.

The requirement (c) can be fulfilled by a projection of the estimates onto the constraint
surface via quadratic programming [13]. Another way is proposed by the probability density
function (pdf) truncation approach [14] where the pdf of the state estimate is computed by the
standard KF and then truncated at the constraint edges. The constrained state estimate is equal
to the mean of the truncated pdf. The induced high-computational demands limit the degree of
meeting (c). More importantly, techniques employing a projection or truncation in conjunction with
the system model having unbounded support and light tails respect the constraints during estima-
tion but not during modelling. Consequently, the posterior pdf forming the outcome of the Bayesian
treatment is a worse estimator than necessary. Indeed, this pdf is a product of prior pdf on parame-
ters and initial state, and likelihood function as a product of pdfs describing the state-space model
with observed data inserted. The system model with the constrained states has a complex state
and parameter-dependent normalising factor entering the likelihood. This factor is neglected by the
discussed techniques.

The complexity of the support and form of the exact posterior pdf corresponding to the adequate
modelling of boundedness limits feasibility of the Bayesian estimation. Nevertheless, it is desirable
to address it as there is a broad range of problems in which explicit inclusion of constraints into the
system model significantly improves the estimation quality.

The correct modelling of state boundedness and elaboration of the corresponding joint estimator
providing both point estimates and information on their precisions are the main methodological con-
tributions of the current paper. The proposed estimator considers uniform noises, but it can surely
be extended to other models with bounded noises.

Sequential Monte Carlo sampling alias particle filtering [15] is a serious competitor
to our treatment. Particle filtering avoids linearisation and provides a range of algorithms cop-
ing with (b) and (c). In [16], a constrained particle-filtering algorithm based on acceptance/
rejection and optimisation strategies is proposed. Simulations show the efficacy of the proposed
method in constraints handling and its robustness against poor prior information. Good
results are obtained if computationally intensive simulations can be performed. Our semi-analytical
treatment is able to decrease this load, and so it suits the situations where such simulations cannot
be used.

The methods assuming unknown-but-bounded errors of state-space equations [17, 18] represent
a significant group coping well with the unknown bounded states. The approach has been equipped
with recursively updated ellipsoid [19] or boxes [20] approximating complex constraint sets aris-
ing in it. In a related work [21], interval analysis and set inversion are employed for estimation
characterising the accuracy of the parameter estimates.

These methods give up a stochastic interpretation of the disturbances. They lose the rich Bayesian
methodology [22]. Practically, they give up the whole arsenal of ready tools ranging from knowl-
edge elicitation [23], to structure estimation [24], to aim elicitation [25]. This loss is pointless, as a
careful comparison of stochastic estimation theory and unknown-but-bounded approach [26] reveals
that the latter provides results having exact stochastic equivalents.

A general stochastic filtering applied to models with uniformly distributed noise is in [4]. It
leads to linear-programming-type algorithms coping efficiently with constraints and relaxing the
need to supply external information on ranges of the noises in the model. The resulting filter
copes well with missing data [5]. However, it provides a point estimate only, namely a maximum a
posteriori probability (MAP) estimate. Moreover, it neglects correlations between noise entries. The
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current paper removes these drawbacks and obtains the estimator, which meets the requirements
(a)–(c).

After formalising the addressed problem (Section 2) and summarising the used theory
(Section 3), the complete LSU model specifying the posterior pdf on unknown variables is described
in Section 4. Then, online MAP estimation is presented in Section 5.1. It is performed on a sliding
window [27] and provides multiple point estimates of the same unknown variable as a by-product.
This enables us to obtain the estimate precision as presented in Section 5.2. Behaviour of the
overall algorithm is illustrated and discussed in Section 6. Section 7 summarises algorithmic and
methodological achievements and lists open problems.

Throughout, � means definition by equality. Boldface fonts are reserved for column-oriented
vectors and matrices. Calligraphic fonts are used for their compound versions. The transposition
is marked 0. z? denotes a set of z-values. zt is the value of z at discrete-time instant t 2 t? �
f1, 2, : : : ,T g, T < 1. ´t Ii is the i-th entry of zt . `z is the length of the vector z. The ordered
sequence zkWl � .zk , zk�1, : : : , zl/, 06 l 6 k (it is void for k < l). z, z are lower and upper bounds
on z, respectively. The inequalities z > z > z are meant entry-wise. �.zI z?/ is the set indicator,
which equals 1 if z 2 z? and 0 otherwise. Ozt is a point estimate of zt . z.˛/ is the vector z of the length
˛. M.˛,ˇ/ denotes the matrix M with ˛ rows and ˇ columns. I.˛/ is the square identity matrix of the
order ˛. Mij is the entry of the matrix M in the i-th row and j -th column. The symbol f denotes
pdf distinguished by the argument names. No formal distinction is made among a random variable,
its realisation, and a pdf argument.

2. ADDRESSED ESTIMATION PROBLEM

The considered system is modelled by the linear discrete-time state (1) and observation (2) equations

Ext D Axt�1CBut Cwt (1)

Fyt D Cxt C et (2)

t 2 f� �min.�, � � 1/, : : : , �g (3)

� 2 �? � f1, : : : ,T g, 16�6 T � 1.

The structured time set (3) prepares the estimation on a moving window of the length �C 1. The
vector yt is an `y-dimensional output, and ut is an optional `u-dimensional input. Data records
dt D .yt , ut / contain the observed variables and `x-dimensional state xt unobserved ones, t 2 t?.
Matrices A, B, C, E, and F have dimensions making (1) and (2) meaningful. wt and et are vec-
tors of the state and output noises, of sizes `x and `y, respectively. They are assumed to be zero
mean identically distributed, conditionally independent of past, having uncorrelated entries and
constant variances. E and F are upper triangular matrices with unit diagonal: their presence models
correlation of noise entries.

If the noises wt , et are Gaussian and parameters, including noise covariances, known,
the Bayesian state estimation reduces to the KF [29]. The paper departs from this standard
and assumes that the state wt and the observation et noises are uniformly distributed on a
multivariate box with the centre at zero (0) and with unknown half-widths q and r of the support
intervals, respectively. Denoting the uniform pdf Umodelled variable(mean, half-width), the adopted
assumptions imply

f
�
wt jdt�1W1, ut , xt�1W0,‚

�
D f .wt jq/DUwt .0, q/

f
�
et jdt�1W1, ut , xt�1W0,‚

�
D f .et jr/DUet .0, r/ ,

(4)

where ‚ denotes the collection of time-invariant unknown parameters determining the paramet-
ric LSU model (1), (2), and (4). Section 4.1 provides the remaining details of the considered
parametrisation.
Addressed problem: A recursive, online implementable, estimator of the parameters and states of
the LSU model is searched for. Point estimates and information on their precisions are needed.
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3. PRELIMINARIES

In the considered Bayesian set-up [11, 22, 28], the system is modelled by pdfs. The chain rule
factorises the joint pdf of all involved variables as follows:

f
�
dT W1, xT W0,‚

�
D f .x0,‚/„ ƒ‚ …

prior pdf

Y
t2t?

f
�
ut
ˇ̌
dt�1W1

�
„ ƒ‚ …

controller

�
Y
t2t?

f .yt jxt , ut ,‚/„ ƒ‚ …
observation model

� f .xt jxt�1, ut ,‚/„ ƒ‚ …
state evolution model

.
(5)

This form assumes that ‚ and xT W0 are unknown to the controller, that is, it accepts the natural
conditions of control [29]. The sequence dT W1 of data records dt D .yt , ut /, t 2 t?, is sequentially
observed. Standard Bayesian estimation on a window of a fixed length �C 1 works with the data
d� W��� and internals X� , collecting both unobserved states and unknown parameters,

X� � Œx0� , : : : , x0���, x0����1,‚0�0, (6)

where � is defined in (3). The estimation reduces to evaluation of characteristics of the posterior pdf
f .X� jd� W���/ of X� conditioned on the observed data d� W���. The Bayes rule provides the formal
solution

f
�
X�
ˇ̌
d� W���

�
D

L
�
X� , d� W���

�
f .x����1,‚/R

X?�
L
�
X� , d� W���

�
f .x����1,‚/dX�

L
�
X� , d� W���

�
�

�Y
tD���

f .yt jxt , ut ,‚/ f .xt jxt�1, ut ,‚/ �.X� IX?� /.

(7)

L.�, �/ is the likelihood function—a function of internals with data fixed at observed values. The set
X?� delimiting possible values of internals is specified in (18).

The posterior pdf can be evaluated without knowing the controller, which is canceled in (7).
A design of the Bayesian estimator requires a specification of the prior pdf, observation, and
state evolution models. The LSU model discussed in Section 4 provides a nontrivial specification
example.

Note that truncation of Gaussian distribution, an exact respecting of bounds on states in KF frame-
work, would lead to the same set X?� . However, the likelihood would be much more complex because
of the dependence of the normalisation factor of the system-describing pdf on internals.

Evaluation of the normalisation integral in (7) as well as of moments of the posterior pdf (7) is
mostly too complex for online estimation and filtering. This makes us consider a MAP estimate OX�
of internals X� , [28],

OX� D arg maxX?�L
�
X� , d � W���

�
f .x����1,‚/ , (8)

which does not need them. Section 5.2 adds information on the precision of this point estimate.
The observation and state evolution models are decisive modelling elements. It is advantageous

to apply the chain rule also to their traditional vector-describing form (5)

f .yt jxt , ut ,‚/D
`yY
iD1

f .yt Ii jxt , t ,‚/ , (9)

where  t is the regression vector of a finite length ` ,  t � Œyt IiC1, : : : ,yt I`y , u0t �
0. The pdf

f .yt Ii jxt , t ,‚/ is called factor of the observation model, observation factor for short. An obser-
vation factor models a scalar entry of the output without neglecting correlations with others. Its
functional form, regression vector, and parameters generally differ for different output entries. This

Copyright © 2013 John Wiley & Sons, Ltd. Int. J. Adapt. Control Signal Process. (2013)
DOI: 10.1002/acs



ESTIMATION OF UNIFORM MODEL

flexibility and the scalar-wise modelling of the uncertainty are the main gains of the factorised form
(9). Analogically, the state evolution model factorises

f .xt jxt�1, ut ,‚/D
`xY
iD1

f .xt Ii jxt�1, �t ,‚/ , (10)

where the finite-dimensional �t � Œxt IiC1, : : : , xt I`x , u0t �
0. The consideration of factors of the state

evolution model, state factors for short f .xt Ii jxt , �t ,‚/, also needs scalar modelling of uncertainty
and enhances modelling flexibility with respect to the functional form and parametrisation.

4. DETAILED DESCRIPTION OF THE LSU MODEL

This section thoroughly describes the LSU model outlined in Section 2.

4.1. Parametrisation of the LSU Model

The model matrices A, B, C, E, and F in the state-space model (1)–(4) are expressed as sums

ED kEC uE,

where kE contains known entries of E and zeros, and uE includes unknown entries of E and zeros.
A similar decomposition applies to all model matrices. The unknown entries are collected into the
column vector � , forming a ‘coefficient part’ of the unknown parameters‚ (12), as follows

� �
�
col. uA/0, col. uB/0, col. uC/0, col. uE/0, col. uF/

�0
. (11)

There, the mapping col.Z/ transforms the nonzero entries of the matrix Z into a column vector.
The full collection of the estimated parameters is

‚ �
�
� 0, q0, r0

�0
, (12)

where � is given by (11) and the half-widths q, r are defined in (4).

4.2. Prior information and constrained support of the state evolution model

Physically motivated prior information usually has the assumed form of possible ranges of internals.
For t defined in (3), it reads

xt 6 xt 6 xt , � 6 � 6 � , 0< q6 q, 0< r6 r)

2
4 �

0
0

3
5D‚ 6‚ 6‚ D

2
4 �

q
r

3
5 . (13)

The user specifies window length�C1 (Sections 6 and 7), and surely met boundaries‚,‚, as well
as the bounds restricting the model support xt 6 xt 6 xt (typically time invariant). The constraint
on the initial state x����1 is modified by the information propagating over time (Section 5).

4.3. Probabilistic representation of the LSU model

The state (1) and observation (2) equations serve for an explicit specification of the pdfs describing
the LSU model. Separation of the unit diagonal I.`x/ of the matrix E, ED I.`x/Cƒ gives

xt D�ƒxt CAxt�1CBut Cwt .

Thus, the individual entries xt Ii , i D 1, : : : , `x, of the state vector xt evolve as follows

xt Ii D�

`xX
jDiC1

ƒijxt Ij C

`xX
jD1

Aijxt�1Ij C

`uX
jD1

Bijut Ij

„ ƒ‚ …
QxtIi

Cwt Ii . (14)
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A similar decomposition of the matrix FD I.`y/C… gives

yt D�…yt CCxt C et ,

and the individual output entries yt Ii , i D 1, : : : , `y, evolve as follows

yt Ii D�

`yX
jDiC1

…ijyt Ij C

`xX
jD1

Cijxt Ij

„ ƒ‚ …
QytIi

Cet Ii . (15)

Recall the nonzero matricesƒ and… model nontrivial correlations of noise entries. Equations (14)
and (15) together with the assumptions (4) provide the state factors in (10) corresponding to (14)

f .xt Ii jxt�1, �t ,‚/DUxtIi . Qxt Ii , qi /. (16)

The observation factors in (9) corresponding to (15) are

f .yt Ii jxt , t ,‚/DUytIi . Qyt Ii , ri /.

The prior information, enriched by the knowledge of the system model support, is given by (13).
States x����1 and parameters ‚ are assumed a priori mutually independent. The joint pdf of data
d� W��� and internals X� (6), � 2 �?, with‚ (12), is

f
�
d� W���, X�

�
D

0
@ `xY
iD1

1

2 qi

`yY
jD1

1

2 rj

1
A
�C1

`‚Y
jD1

1

N‚j �‚j

�

�Y
tD���

0
@f �ut ˇ̌dt�1W1�

`xY
iD1

1

Nxt Ii � xt Ii

1
A�.X� IX?� /.

(17)

The indicator �.X� IX?� / restricts the support of this pdf to the set X?� (18) delimited by the observed
data d� W��� D

�
u� W���, y� W���

�
and by the system model support. The set X?� contains such inter-

nals X� (6) for which the noise terms in (1) and (2) are within the multivariate box defined by (4)
and (13), that is, for t , � specified by (3),

X?� D
˚
X� W .xt ,‚/ meeting (13) and

jxt Ii � Qxt Ii j6 qi , jyt Ij � Qyt Ij j6 rj , i D 1, : : : , `x, j D 1, : : : , `y
�

.
(18)

5. SOLUTION TO THE ESTIMATION PROBLEM

This section forms the technical core of the paper and provides the solution to the addressed
estimation problem. Section 5.1 describes the MAP estimate of internals, whereas Appendix A
complements technical details. Section 5.2 evaluates precision of the estimate.

5.1. Online point estimation of internals

We focus on point estimation and evaluate a series of MAP estimates OX� (8) of the unknown X� (6),
� 2 �?. With the joint pdf (17), it holds

OX� D arg maxX�2X?�

0
@ `xY
iD1

1

2 qi

`yY
iD1

1

2 ri

1
A
�C1

. (19)
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The support X?� (18) defines the maximisation domain. The maximisation is performed as the min-
imisation of a negative logarithm of (19) divided by �C 1 while omitting a positive constant that
does not influence the result. Then, the MAP estimation converts into

OX� D arg minX�2X?�

0
@ `xX
iD1

log.qi /C
`yX
iD1

log.ri /

1
A . (20)

A simplified form of the MAP estimation is obtained by linearising the objective function in (20)
via the first-order Taylor expansion

OX� D arg minX�2X?�

0
@ `xX
iD1

qi C

`yX
iD1

ri

1
A . (21)

To perform recursive estimation, we need to know the pdf (17) in each time step. In the transi-
tion from f

�
d� W���, X�

�
to f

�
d�C1W���C1, X�C1

�
, we have to (i) add a new constraint concerning

the state at time t D � C 1 and (ii) replace the discarded constraint concerning the state at time
t D .� C 1/ � � � 1 by a relevant part of the prior information (13) concerning the new initial
state, that is, x���. The latter reduces to the replacement of x����1 6 x����1 6 x����1 by
x��� 6 x��� 6 x���. The latter interval is chosen as an intersection of the interval estimate of
x��� described in Section 5.2 and a priori physically determined bounds on this state.

In summary, the MAP estimate OX� of internals X� is the minimiser of (20) or (21) on the set X?�
(18). In the following, special cases of interest are discussed in detail.

5.1.1. Estimation of state and noise boundaries (void �). For completely known model matrices,
the problem (21) reduces to linear programming (LP) problem

Find a vector X� , � 2 �?, such that

J � C0X� D
`xX
iD1

qj C

`yX
jD1

rj !min

while A�X� 6 B� , X� 6 X� 6 X� ,

(22)

X� D Œx0� , : : : , x0���, x0����1, q0, r0�0, � 2 �?. (23)

C0 � Œ00
.`Xfi�`x�`y/

, 10
.`xC`y/

�, consists of the vectors of zeros and ones of the indicated lengths. A�
and B� are the known matrix and vector, respectively, reflecting the inequalities (18) describing X?� .
X� , X� are known vectors also implied by (18). A construction of A� , B� , X� and X� is thoroughly
described in Appendix A.1.

5.1.2. Estimation of state and all noise characteristics. In general, the MAP estimation (20)
becomes a nonlinear programming problem [30] due to the presence of products of internals. The
adopted simplest solution, similar to the extended KF [7], linearises these products around cur-
rent estimates and reduces the MAP estimation to the LP problem (22). In detail, we deal with the
particular case of � D Œcol. uE/0, col. uF/0�0 (cf. (11)),

X� D Œx0� , : : : , x0���, x0����1, col. uE/0, col. uF/0, q0, r0�0, (24)

with states and the full noise description estimated. This special case is sufficient for reproduction
of the results of the illustrative example (Section 6). It also guides in a straightforward solution to
the general case (11).
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Rearranging the inequalities in (18), so that all entries of X� are on the left-hand side, gives, for
t D � , � � 1, : : : , � ��, i D 1, : : : , `x, k D 1, : : : , `y,

xt Ii C

`xX
jDiC1

ƒijxt Ij �

`xX
jD1

Aijxt�1Ij � qi 6
`uX
jD1

Bijut Ij

�xt Ii �

`xX
jDiC1

ƒijxt Ij C

`xX
jD1

Aijxt�1Ij � qi 6 �
`uX
jD1

Bijut Ij

�

`yX
jDkC1

…kjyt Ij C

`xX
jD1

Ckjxt Ij � rk 6 yt Ik

C

`yX
jDkC1

…kjyt Ij �

`xX
jD1

Ckjxt Ij � rk 6 �yt Ik .

(25)

The product terms ƒijxt Ij in (25), which make the problem nonlinear, are linearised using their
latest estimates (indices omitted)

ƒxD .ƒ� Oƒ/.x� Ox/CƒOx� OƒOxC Oƒx�ƒOx� OƒOxC Oƒx, (26)

where Oƒ, Ox are the newest available estimates of ƒ and x, respectively. The first equality follows
from simple algebraic operations; the approximation neglects the quadratic term. The LP problem
(22) is obtained if the term .ƒ� Oƒ/.x�Ox/ can indeed be neglected. The explicit form of the involved
matrices and vectors is in Appendix A.2.

5.2. Precision of state estimates

The MAP estimation (20) or (21) provides the point estimate OX of the unknown X. The individual
states are, however, estimated several times during recursive estimation. This offers a possibility to
extract information on precision of the state estimates. Here, a Bayesian solution is proposed that is
inspired by ensemble filtering [31].

At time t , .nC1/MAP estimates Oxt�njt�k of xt�n, based on data up to time t�k, k D 0, 1, : : : ,n,
are available for 2 < n6min.t ,�/. Fixing n and considering i-th entry xt�nIi of xt�n, we search for
an interval estimate of xt�nIi while its estimates form the ‘data’ Oxt�njt�kIi 2 Œxt�nIi��t�nIi , xt�nIiC
�t�nIi �, �t�nIi > 0 is unknown. Maximum entropy principle [32] recommends to model the ‘data’
by the pdf f . Oxt�njt�nIi , : : : , Oxt�njt Ii jxt�nIi , �t�nIi / of the form

f . Oxt�njt�nIi , : : : , Oxt�njt Ii jxt�nIi , �t�nIi /D
nY
kD0

U Oxt�njt�kIi .xt�nIi , �t�nIi /

D
�.xt�nIi I ��t�nIi 6 st�nIi � xt�nIi < st�nIi � xt�nIi 6 �t�nIi /

.2�t�nIi /nC1

st�nIi D min
kD0,:::,n

Oxt�njt�kIi , st�nIi D max
kD0,:::,n

Oxt�njt�kIi .

(27)

To complete the probabilistic description of the discussed variables, we need to define the prior
pdf f .xt�nIi , �t�nIi /. The ranges of these variables can be specified from the results obtained on
the previous window. For presentation simplicity, we do not use this information. Without such
information, the maximum entropy principle leads to the improper uniform pdf on the widest pos-
sible domains xt�nIi 2 .�1,1/, �t�nIi 2 .0,1/ with independent xt�nIi and �t�nIi . With this
choice, the likelihood function in (27) becomes proportional to the posterior pdf on xt�nIi , �t�nIi
determined by the sufficient statistics st�nIi , st�nIi equivalent to

�t�nIi D
st�nIi C st�nIi

2
, �t�nIi D

st�nIi � st�nIi

2
. (28)
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The interval estimate of xt�nIi is delimited by boundaries

EŒxt�nIi ˙ 	�t�nIi jst�nIi , st�nIi ,n�, 	 > 0, (29)

where EŒ�jst�nIi , st�nIi ,n� is the expectation determined by the discussed posterior pdf. The
optional 	 controls the probability assigned to the interval estimate.

To simplify reading, we suppress the fixed subscript t�nIi for variables in integrations. First, we
need to evaluate the normalisation integral of the posterior pdf. It reads

JnC1 D
1

2nC1

Z 1
�1

Z 1
max.0,s�x,x�s/

��n�1d�dx

D
1

2nC1

�Z �

�1

Z 1
s�x

��n�1d�dxC

Z 1
�

Z 1
x�s

��n�1d�dx

�
D

1

2n
1

n.n� 1/

1

�n�1t�nIi

.
(30)

With it, the expectation of �t�nIi has the form

EŒ�t�nIi jst�nIi , st�nIi ,n�DEŒ�t�nIi j�t�nIi , �t�nIi ,n�D 0.5Jn=JnC1 D
n

n� 2
�t�nIi , (31)

and the expectation of xt�nIi becomes

EŒxt�nIi jst�nIi , st�nIi ,n�DEŒxt�nIi j�t�nIi , �t�nIi ,n�DK=JnC1 D �t�nIi .

These formulae exploit the definitions (28), the normalisation integral (30), and the equality

K �

R �
�1 x

R1
s�x �

�n�1d�dxC
R1
�
x
R1
x�s �

�n�1d�dx

2nC1
D

1

2n
1

n.n� 1/

�t�nIi

�n�1t�nIi

.

6. ILLUSTRATIVE EXPERIMENTS

This section provides an example on which the functionality of the proposed estimator is illustrated.
It also illustrates validity of the claims made with respect to KF-based estimators. The reader inter-
ested in the motivating practical application is referred to works [4–6,33]. A detailed study including
the innovative features of the proposed estimator will be published in an independent paper.

6.1. Simulation setup

Experiments were performed with the simulated system of the form (1), (2), and (4) given by

AD

2
4 1 �0.5 0.2
0.5 0.1 0

0.3 0 �0.1

3
5 , BD

2
4 0.1
0.6
0.3

3
5 , CD

	
1 0 0.5
0 1 0.5



, DD

	
0

0




ED

2
4 1 0.5 0.25
0 1 0.3
0 0 1

3
5 , FD

	
1 0.4
0 1



, qD

�
0.1 0.1 0.1

�0
, rD

�
0.3 0.3

�0
.

The correlation-expressing entries � � ŒE1,2, E1,3, E2,3, F1,2�
0 are taken as unknown; for details,

see Section 5.1.2. Thus, the estimated internals are X� D Œx0� , : : : , x0���, x0����1,� 0, q0, r0�0.
The system was stimulated in open loop by independent identically distributed inputs u� having

uniform distribution on the interval Œ�1, 1�. The experiments ran for � 2 �? D f1, 2, : : : ,T g, T D
2500. The state constraints x 6 xt 6 x were applied, see (13), with x D Œ�0.80I �0.61I �0.40�,
xD Œ0.76I 0.66I 0.44�. They were attained in less than 30% cases.

The memory length � varied in order to demonstrate its influence on the estimation quality and
evaluation time.

Then, the results obtained by the LSU estimator were compared with those based on the truncated
KF. In this case, we changed the simulated system by setting ED I.3/, FD I.2/ to have fully compa-
rable results. KF ran with noise dispersions matching the simulated ones and then with incorrectly
chosen, three times higher, values.
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Additional estimation runs with LSU models differing in the state dimension `x were also made
to inspect dependence of the evaluation time on problem size.

The evaluations ran in MATLAB interpreter so that time demands have had a relative meaning only.
The function ‘linprog’ from MATLAB optimisation toolbox solved the LP problem (22). Naturally,
any general-purpose LP programming code could be used. The freely available implementation
found at the link [34] was used for runs with the truncated KF.

6.2. Performance criteria

The estimation quality and comparison of the LSU estimator with the truncated KF exploits the
following criteria.

The absolute prediction error ı.y� Ii / and its mean Nı.yi / are defined as follows:

ı.y� Ii /� jy� Ii � Oy� Ii j, � 2 �
?, Nı.yi /D

1

T ��

TX
�D�C1

ı.y� Ii /, i D 1, 2, (32)

where y� is the simulated output and Oy� is its prediction based on estimates gained from data
observed up to time � � 1.

The absolute error of the state estimates ı.x/ and its mean Nı.x/ are defined similarly

ı.x� Ij /� jx� Ij � Ox� Ij j, � 2 �
?, Nı.xj /D

1

T ��

TX
�D�C1

ı.x� Ij /, j D 1, 2, 3, (33)

where x� is the simulated state and Ox� is its estimate based on data measured up to time � � 1.
The evaluation complexity is quantified via a mean computational time tc per estimation step.
The mean volume V of the interval LSU estimate (31) is evaluated for the largest n D � and

	 D 1. Its KF counterpart VKF is the mean of ellipsoids volumes determined by covariance matrices
P� resulting from KF

V �

�
2�

�� 2

�3 PT
�D�C1…

3
jD1����Ij

T ��
, VKF �

PT
�D�C1 jP� j

T ��
. (34)

The confidence N in the LSU interval estimate is expressed by

N � (the number of x� … the box with ends (29) for nD�)�
100

T ��
, � D�C 1, : : : ,T , (35)

that is, by the portion of the realised states xt outside of the constructed LSU interval estimate for
the specified 	 and � 2 .�C 1,T /. Similarly, the confidence NKF in the KF estimate is expressed
by

NKF �
�
the number of x� … .x� � Ox� /0P�1� .x� � Ox� /6 	3

�
�

100

T ��
, � D�C 1, : : : ,T . (36)

Note that the omission of the initial � values in KF-related characteristics makes the results
comparable with their LSU counterparts.

6.3. Results

Table I summarises the numerical indicators of the LSU filtering quality as a function of the memory
length �; see definition (3).

Figures are appropriately zoomed to provide an insight into a typical behaviour, which is other-
wise lost when displaying the whole estimation progress. Figure 1, shows estimates of the unknown
F entry as a function of time for a pair � values. Figure 2 displays the interval estimates of
the third state entry as a function of time. Additionally, Figure 3 shows dependence of the mean
computational time tc per estimation step on the size of the estimated state.

Tables II and III provide comparison of the proposed LSU estimator with the truncated KF (for
uncorrelated noise entries).
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Table I. Performance of the LSU estimator as a function of the window
lengths �.

tc N [%]

� [s] V � 10�3 	 D 1.0 	 D 1.5 	 D 2.0

5 0.03 17 34 12 5
10 0.05 8 46 16 7
15 0.09 6 51 17 6
20 0.17 6 53 17 6
25 0.28 5 53 17 6
30 0.42 5 53 16 6
35 0.62 5 53 16 5
40 0.87 5 53 16 5
45 1.14 5 53 16 5
50 1.53 5 54 16 5

tc is the computation time per estimation step; V is the volume of the interval
estimate (34); N expresses estimator reliability; see (35).

50 100 150 200
−1

−0.5

0

0.5

1

1.5

2

time

F
12

250

Figure 1. The point estimates OF12 as a function of time (marked by : : : for � D 5 and by - - for � D 25)
and true value F12 (marked by — ).

1830 1840 1850 1860 1870
−2

−1

0

1

2

time

x t
;3

1880

Figure 2. A zoomed part of the interval estimates (29) of xtI3 as a function of time; o marks the true values
of xtI3, – bounds the interval estimates for 	 D 1, - - bounds the interval estimates for 	 D 1.5, ... bounds

the interval estimates for 	 D 2. These intervals cover the min-max range Œs, s�; see (27).
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Figure 3. Dependence of the mean computation time tc of the LSU estimator on the size of the estimated
state `x (`y D 1, `u D 1 are fixed), � holds for �D 25, o for �D 5.

Table II. Comparison of the LSU estimator and the truncated KF according
to the mean absolute state estimation errors Nı.xi /, i D 1, 2, 3, (33), and mean

absolute prediction errors Nı.yj /, j D 1, 2, (32).

State estimation errors Prediction errors
Estimator Nı.x1/ Nı.x2/ Nı.x3/ Nı.y1/ Nı.y2/

LSU, �D 5 0.15 0.10 0.06 0.10 0.10
LSU, �D 25 0.09 0.07 0.05 0.13 0.11
KF with well-adjusted covariances 0.07 0.06 0.05 0.13 0.15
KF with incorrect covariances 0.10 0.11 0.08 0.50 0.51

Table III. Comparison of confidence interval volumes V ,VKF and reliability
N ,NKF of the LSU estimator and truncated KF (cf. (34) and (35)).

N [%]

Estimator V 	 D 1.0 	 D 1.5 	 D 2.0

LSU, �D 5 1.7� 10�2 30 11 4
LSU, �D 25 5.6� 10�3 49 14 5

NKF [%]

Estimator VKF 	 D 1.0 	 D 1.5 	 D 2.0
KF with well-adjusted covariances 7.1� 10�7 67 9 1
KF with incorrect covariances 7.1� 10�4 10 1 0

6.4. Discussion

The presented as well as a range of nonpresented experiments confirmed the expected properties of
the proposed algorithm.

� Quality of the LSU estimator increases with memory length � up to saturation. The
improvement is paid by increasing computational time (cf. Table I).
� The volume of the interval estimate also decreases with the memory length up to satura-

tion. When stabilised, the reliability of estimates expressed by N stabilises, too. Then, the
scaling factor 	 qualitatively behaves as the multiple of standard deviation used for practical
determination of quartiles of normal distribution (cf. Table I and also Figure 2).
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� The point estimates of parameters move around true values. They do not stabilise completely,
as the finite memory-based estimation acts as a sort of forgetting and make the estimator
permanently sensitive to parameter changes (cf. Figure 1).
� The computational complexity is well under control and allows treatment of problems of

real-life complexity (Figure 3).

The comparison of the LSU estimator and the truncated KF also confirms the expectations.

� Our estimator with a sufficiently long memory is competitive with the truncated KF having
well adjusted variances of state and measurement noise, both with respect to state estimation
and prediction (cf. Table II).
� The truncated KF becomes worse than the LSU estimator in both their roles if the noise

variances are improperly adjusted.
� The truncated KF provides much smaller confidence regions than the LSU estimator. Here,

the effect of the finite memory is visible. Outcomes of both estimators are relatively reliable.
Our limited experience indicates that the combined effect of truncation and improperly tuned
variances of KF is quite complex and hardly predictable. In this respect, the LSU exhibits a bit
worse but robustly and predictably varying quality (cf. Table III).

7. CONCLUSION

In the paper, a joint estimator of parameters and states of a linear state-space model with entry-wise
correlated uniform noises is proposed.

Practically, the estimator meets conditions allowing its wide simple use for complex multivariate
systems. It (a) avoids the difficult tuning of noise covariances inhibiting the efficient use of the
standard KF, while tuning the estimator optional parameters is simple and robust to their choice;
(b) provides recursively both point estimates and information on their precision; (c) incorporates
simply hard bounds on the estimated variables, which decreases the ambiguity of the estimates as
the inspected model becomes set smaller because of the exploitation of the available information
on possible ranges of estimated variables; (d) fits to robust control applications that deal with
polytope-type descriptions of uncertainty; and (e) copes simply with missing data [5].

Methodologically, the work opens a way to state and parameter estimators fitting to models with
bounded (not necessarily uniform) noises. Also, the proposed Bayesian counterpart of ensemble fil-
ters is applicable to a range of moving-window estimators. Even for the proposed estimator, it opens
a way to a systematic choice of the proper window length�. At present, it is selected experimentally
under the classical guiding: (i) select the longest � you can computationally afford or (ii) stop the
increase of � if the observed improvement of the prediction quality is negligible. The ensemble-
type processing will, however, allow to make the choice via classical Bayesian structure estimation
[35] and its simplified variants originating in Akaike’s work [36]. The claimed advantages of the
stochastic interpretation of noises are well seen on this important problem. Future work will include
the following:

� an exploitation of the information on the estimate precision for estimating a fine model structure
as well as the memory length via Bayesian hypotheses testing [29];
� selection or development of specialised linear or nonlinear programming codes, which exploit

the fact that good prior guesses are available from preceding time steps for a majority of the
estimated internals;
� a use of the LSU model in marginalised particle filters;
� an exploitation of the LSU models as factors in models considering different distributions and

their dynamic mixtures [37]; and
� extensive tests on variety of real data.

Despite the significant extent of these open problems, the LSU model is sufficiently matured to be
used in difficult problems requiring recursive estimation [38].
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APPENDIX A: ON-LINE ESTIMATION OF INTERNALS IN DETAIL

A.1. Estimation of state and noise boundaries: void �

Here, the arrays involved in (22) for void � , that is, X� (23), are presented. After rearranging (1)
and (2) so that entries of X� are on the left-hand side, it holds, for t D � ��, : : : , � ,

Ext �Axt�1 � q6 But
�Ext CAxt�1 � q6 �But

Cxt � r6 Fyt
�Cxt � r6 �Fyt .

The matrices A� and B� have the following form:

A� D
	

A11 A12
A21 A22



, B� D

	
B1�
B2�



, with

A11D

2
6664

E �A 0.`x,`x/ : : : 0.`x,`x/ 0.`x,`x/

0.`x,`x/ E �A : : : 0.`x,`x/ 0.`x,`x/

...
...

...
. . .

...
...

0.`x,`x/ 0.`x,`x/ 0.`x,`x/ : : : E �A

3
7775˝K

A12D 1.2.�C1//˝
�
�I.`x/ 0.`x,`y/

�

A21D

2
64

C : : : 0.`y,`x/ 0.`y,`x/ 0.`y,`x/

...
. . .

...
...

...
0.`y,`x/ : : : 0.`y,`x/ C 0.`y,`x/

3
75˝K

A22D 1.2.�C1//˝
�
0.`y,`x/ � I.`y/

�
B1� D

�
Bu� : : : Bu���

�0
˝K, B2� D

�
Fy� : : : Fy���

�0
˝K

where ˝ denotes Kronecker product, and K� Œ1 � 1�0,
0.˛,ˇ/ is the zero matrix of the indicated dimensions. Note that A� is time invariant.

Prior information on X� reflecting constraints (18) is in the form X� 6 X� 6 X� with

X0� D
h

x0� , : : : , x0����1, 00
.`x,1/ 00

.`y,1/

i0
X
0

� D
�

x0� , : : : , x0����1, q0, r0
�0

.

A.2. Estimation of state, noise boundaries, and correlating matrices E and F

Here, the matrices and vectors involved in (22) for X� (24) after linearisation (26) are presented.
Because of the linearisation, the majority of matrices and vectors become truly time and data
dependent.

A� D
	

A11� A12� A13 A14
A21 A22 A23� A14



, B� D

	
B1�
B2�




A11D

2
6664

OE� �A 0.`x,`x/ : : : 0.`x,`x/ 0.`x,`x/

0.`x,`x/
OE� �A : : : 0.`x,`x/ 0.`x,`x/

...
...

...
. . .

...
...

0.`x,`x/ 0.`x,`x/ 0.`x,`x/ : : : OE� �A

3
7775˝K,
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where OE� D I.`x/C
Oƒ� ; see (26).

A12D

2
666666666666666666664

OX.1/� 0 0 : : : 0
0 OX.2/� 0 : : : 0
...

...
...

. . . 0
0 0 0 : : : OX.`x�1/

�

0 0 0 : : : 0
...

...
...

...
...

OX.1/��� 0 0 : : : 0
0 OX.2/��� 0 : : : 0
...

...
...

. . . 0
0 0 0 : : : OX.`x�1/

���
0 0 0 : : : 0

3
777777777777777777775

˝K,

where OX.i/t D Œ Oxt IiC1, : : : , Oxt I`x �, t D � , : : : , � ��, i D 1, : : : , `x � 1 (cf. (10)),

A13D 0.2`x.�C1/,`y�1C`y�2C:::C`y�`yC1/, A14D 1.2.�C1//˝
�
�I.`x/ 0.`x,`y/

�
,

A21D

2
64

C : : : 0.`y,`x/ 0.`y,`x/ 0.`y,`x/

...
. . .

...
...

...
0.`y,`x/ : : : 0.`y,`x/ C 0.`y,`x/

3
75˝K,

A22D 0.2`y.�C1/,`x�1C`x�2C:::`x�`xC1/, A24D 1.2.�C1//˝
�
0.`y,`x/ � I.`y/

�
,

A23D

2
6666666666666666666664

Y.1/� 0 0 : : : 0
0 Y.2/� 0 : : : 0
...

...
...

. . . 0

0 0 0 : : : Y
.`y�1/
�

0 0 0 : : : 0
...

...
...

...
...

Y.1/��� 0 0 : : : 0
0 Y.2/��� 0 : : : 0
...

...
...

. . . 0

0 0 0 : : : Y
.`y�1/

���
0 0 0 : : : 0

3
7777777777777777777775

˝K,

where Y.i/t D Œyt IiC1, : : : ,yt I`y �, t D � , � � 1, : : : , � ��, i D 1, : : : , `y � 1 (cf. (9)),

B1� D

2
64

Bu� C OƒOx�
...

Bu���C OƒOx���

3
75˝K, B2� D

�
y� : : : y���

�0
˝K,

where X� , X� are known vectors; they stem from the constraints (18) and have the following form:

X0� D
h

x0� , : : : , x0����1, col.E/0, col.F/0, 00
.`x/

, 00
.`y/

i
X
0

� D
�

x0� , : : : , x0����1, col.E/0, col.F/0, q0, r0
�
.
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