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1. Introduction

Delay differential equations are successfully used to model and study a number of applied problems in physics, biology,
and chemistry. Basic mathematical theory of constant delay equations can be found in the classical monographs [6, 7]
and references therein.

Differential equations with state-dependent delay (SDD) attracted much attention during last decades and there been
obtained many deep results for them (see [9-11, 16] and references therein). Such equations with discrete state-dependent
delays are always nonlinear by their nature. As described in [9], this type of delay brings additional difficulties in proving
such basic properties of solutions as uniqueness and continuous dependence on initial data. The main approach to get
the well-posed initial-value problem is to restrict the set of initial functions and hence the set of solutions to C'-fun-
ctions [9]. For an alternative approach, where an additional condition on the SDD is used, to get a well-posed initial-
value problem in the space of continuous functions see [12, 13]. In this note we rely on the classical approach [9] and
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compare the SDD problem with another one with a constant delay. This constant delay problem is constructed by using
the so-called time transformations [2, 3]. This transformation could be applied to any particular solution along which
the deviating argument is monotone. To be assured that the monotonicity holds for all solutions we concentrate on
the system when the state-dependent delay is governed by an additional differential equation and provide a sufficient
condition for the monotonicity of the deviating argument. This type of equations is used to describe some models of
population dynamics, see [1] and references therein. In [1] one could also find motivations to study this type of SDD and
comparison with the frequently used case when SDD is presented by explicit or implicit functionals.

Our main goal in this note is to compare the asymptotic properties of the SDD system with the corresponding ones of
the system after the time transformation. We try to find conditions which guarantee that such properties as stability,
boundedness and compactness of the initial SDD problem survive under the time transformations.

2. Time transformations

We study the following non-autonomous system with state-dependent delay (see the autonomous case in [1])

g6y =1f(ty(®)y(t=n(1),  t>¢, (1)
A(t) = —p(n(t) =) + Gy(1), > 1, 2

with the initial data
y(t)=gq(t), '—h<t<t n(1°) = n". (3)

Here y € R™, n € R, p, n° > 0,7 >0, functions f and G are continuous. The function 1 is a state-dependent delay
since it is a solution of equation (2) where there is a dependence on y.

In the sequel we will denote h = 277 > 0 and also X = C'([—h,0]; R") x R with the natural norm.

Lemma 2.1.

Let f be continuous function, Lipschitz with respect to the second and third coordinates and G be Lipschitz and |G(y)| <
i for all y € R™. Then for any g € C'([t°—h, t°[;R™), n(t°) = n° € [0, 27] the system (1)—(3) has a unique global
solution (y; n) such that n(t) € [0,27] for all t > t°. The solution continuously depends on initial data (g; no).

Proof. The proof of the existence is simple since the righthand sides of equations (1) & (2) are continuous. Solutions
are global due to Lipschitz properties of f and G. The uniqueness follows from the well-known results on the state-
dependent delay equations (see e.g. [9]) since we consider Lipschitz initial function g.

Using the property |G(y)| < p7, one can easily show that (for any y) any solution of (2) & (3) satisfies n(t) € [0, 27]
provided n(t°) = n° €0, 27].

Now we show the continuous dependence on initial data. For the simplicity of presentation we put t® = 0. Let us consider
a pair (g;7°) € C'((—h,0; R") x [0, h] C X and an arbitrary sequence (g"; n°") such that ||(g"; n>") — (g:7°)||, = 0
as n — oo. We rewrite the system (1)—(3) in the integral form:

y"(t) = 9"(0)+/O f(s,y"(s), y" (s = n"(s))) ds, n"(t) =17 = e (n”"=7) +/Oe’”<"s’0(y"(5))d5-

Similar equations are for initial data (j;ﬁo). For the differences of solutions, using the Lipschitz properties of f and G
(the corresponding Lipschitz constants are denoted by L, and L¢) we have

(=50 < 1g"0) =500 + L [ {lg"(s =) = Fls— ()] + [gts = (5) — Fls ~s)| + 14" (5) =) } s,

(0 —7(0)] < e —7| + Lo /0 1y"(s) — ()| ds.
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Let us fix any T > 0. Since all solutions are C' in time (see e.g. [9]) for ¢ > 0, we can denote by Ly r the Lipschitz

constant of the solution 7(t), t € [—h, T} Hence [g(s —n"(s)) — G (s —7(s))| < Lg,7|n"(s)—7(s)| for all s €[0,¢] C [0, T].
Denoting for short B"(t) = max.e,q{|y"(t) —y(7)| + [n"(r) = 7(7)|} and C" = 2L + Lg + LyLy,7, we obtain

t
0<B"(t) < B"0)+ LT n?ah><0]|g”(r)—§(r)| + CT/ B"(s) ds.
TE[—h) 0
We apply the Gronwall’s inequality and get for all t € [0, T],

max {1y (1) ~g(x)| + "(0) =)} < {(1+LT) max 19" (x) ~g(r)] + 1" 7| }exp (1 (2Ls-+ Lo + LiLy ).

€0,

The last estimate and equations (1)&(2) give a similar estimate for the time derivatives, so we finally get
ly" =Gl go,qrm) + 10" =Tl go.4%) — 0 @s n — +o0. This gives the continuous dependence on initial data and completes
the proof. O

For any solution (y; n) of the system (1)—(3) we call the function o given by
a(t) =t —nt), t> 1 (4)

the deviating argument of (y; n).

Our goal is to investigate properties connected to the time transformation approach introduced in [2, 3] We are going
to use a function t = a(s) called time transformation [3] to convert a particular solution (y; ) of the system (1)—(3) into
a solution (z; x; @) of constant delay system

z(s) = f(a(s), z(s), z(s — h)) a(s), s> 50,

2(s) = ¢(s) = g(wls)), s—h<s<s, 5
x(s) = —p(x(s)—n)a(s) + G(z(s)) a(s),

x(s%) =n°,

where a satisfies the algebraic equation

{a(s) —x(s)=a(s—h), s>s° )

a(s) = w(s), 9 —h<s<sO

Here w: [s°—h, s°] - R is an arbitrary C'-function with positive derivative and such that w(s®—h) = w(s?) —n° < °,
w(s’) = 1

Remark 2.2.
We notice that equation (6) is different from the corresponding rules used in [2, 3] since here we have no given lag
function.

The time transformation « is constructed step by step (see (6) and (4)) by the rule (see more discussion in Remark 2.6)
a(s) =0 (a(s—h), se[®+(k=1)h s"+khn], k=0,1,2... (7)

Here we used (see (4)) o(a(s)) = a(s) — n(a(s)) = a(s) — x(s) = a(s—h), since x(s) = n(a(s)).
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Figure 1 shows the connection between s (new time), t (old time) and 7 (deviating argument).

Figure 1. The connection between s (new time), t (old time) and 7 (deviating argument).

T=0(t) & o7'(1) =1

It is clear that one needs the invertibility of ¢ to define a. In [3] the rule (7) was used assuming that &(t) > O (or
o(t) < 0). More precisely, it was used for those solutions along which ¢(t) > 0 (or ¢(t) < 0). In our study we can give
a simple condition which guarantees that along all solutions we have d(t) > 0 and hence o is always invertible. Such
a simple condition is 2p7 < 1. It is easy to see using (2) that in this case |7(t)| < pln—"| + |G(y(t))] < pip + pn < 1.
Here we used the assumption |G(y)| < pn. Now (4) implies ¢(t) =1 —a(t) > 0.

Remark 2.3.
Taking into account that the state-dependent delay n takes values in [0,27] = [0, h], one could say that the assumption
2un < 1 means the “slow changing of delay” in the range [0, 27].

It is important that if g(t) > 0, then &(s) > 0 since on the initial time segment &(s) = w(s) > 0, s € [so—h,so] and
a(s) = do(a(s—h))/ds = a(s—h)/d(a(s—h)) = a(s—h)/d(a(a(s))) > O step by step (see also [3, p.28]). Here we
used o(a(s)) = a(s—h) (see (6) and (7)).

By construction (see [3, Propositions 1 and 2]) the connection between a solution (y, n) of (1)-(3) and the corresponding
solution (z, x, @) of (5) & (6) is given by

y(t) =z(a (1), t>1—h,
z(s) = y(a(s)). @
x(s) = n(a(s)), s>s"—h,
t=als), t° = a(s°)
Lemma 2.4.
Let f and G be as in Lemma 2.1. Consider a sequence {(g"; n°")} such that ||(g"; n°") —(7: 7°)|| T

and a sequence {w"} such that ||w"—@|c1go_p 0z — 0 as n — oo. Then for any S > 0 the sequence of time
transformations a” uniformly converges to @, i.e. max,g0 0,5 |@"(s) —a(s)| = 0 as n — co.

Proof.  First, using (4), we have from Lemma 2.1 that max,cj0 0,7 |0"(t) = @(t)] — 0 as n — oo. This convergence
and (2) imply that |[0" =0l c1(0 01 1pr) — O.
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Since da(t)/dt > 0 on [t°, t°4 T], then there is & > 0 such that do(t)/dt > 26 > 0 for all t € [, t°+ T]. This and
lo" =l 10,0177 — O give

2 0"(0)>38>0, te [t O+T], n>ns. 9)

Using the definition of a (see (7)) and the convergence w”" — w as n — oo we only need to show that
max.c,n)|(6") 7' (1) = (@) "(1)| — 0 as n — oo. Let us denote y"(s) = (0")7'(s), ¥(s) = (@)7'(s). Assume opposite,
i.e. y"(s) does not converge to y(s) uniformly on some [s° s°+ S]. Hence there exists g9 > 0 such that for all N € N
there exist ny > N and s,, € [50, 50+5] such that |y"(sny) — V(San)| = €0. Considering N = 1,2,... we get two
sequences {n}2, and {s, }{2, C [s% s°+S] such that

iynk(Snk)—V(S”k” 2 €. (10)

Since [s% s"+S] is compact we have 5 € [s°, s+ S] and a subsequence again denoted by {n,}2, such that s, —
5 e [s%s°+S]. We can write

Vnk(snk) _7(511,() = (ynk(snk) - y“k(/s\)) + (y”k(/s\) _7(/5\)) + (V(/S\) - V(Snk))'

The last term vanishes due the continuity of y, the second one due to the point-wise convergence y"(s) — V(s) for all
s € [s% s°4+ S]. Hence the only possibility to satisfy (10) is that there is an integer ks such that for all k > ki one has

V450 = v G)| > 5

The last property together with s,, — 5 and differentiability of all y"« imply that the derivatives dy”"*/ds are unbounded
in a neighborhood of 5. This contradicts the property da”(t)/dt > & > 0 (see (9)) since dy"(s)/ds = 1/(da"(t)/dt). O

Now, combining Lemmata 2.1 and 2.4 (and the condition yi; < 1/2) we can formulate the first result on the continuous
dependence of the time transformation on initial data.

Theorem 2.5.
Let f be a continuous function, Lipschitz with respect to the second and third coordinates and G be Lipschitz and
|G(y)| < pit < 1/2 for all y € R™. Consider a sequence {(g"; n°")} such that ||(g"; n°") — (:7°) ||C1([t0—h,10];R’")><JR -0
and a sequence {w"} such that ||w" —@| c10_y 0 — O as n — oo. Then the time transformation gives the sequence of
the corresponding solutions {(z", x", a")} of the constant delay system (5) &(6) (see (8)) such that for any S > 0 one
has

max ]{IIZ"(S)—?(S)II +Ix"()=x©)| +la"(s)—a(s)[} = 0 as n— oo,

s€[s0,s0+S

and &"(s) > 0 for s € [s%, s"+S].

Remark 2.6.

We should notice that (5) & (6) is the system of coupled differential and algebraic equations. It is necessary to comment
on how to solve it. The way is different from the one of [2, 3] since we have no given lag function (c.f. [3, Section 2.1)).
Using (6), we write for s € [0, h] (and then continue step by step with the step h): a(s) = x(s) + w(s—h). Then we
substitute it into the differential equation for x in (5) to get x(s) = —p(x(s) — 1) (x(s)+ w(s — h))+ G(z(s))(x (s) + w(s — h)).
Hence )'((5)[1 + p(x(s)—n) — C(z(s))] = {—u(x(s)—ﬁ) + G(z(s))}w(s—h). We remind that the assumption 2pn < 1
implies |p(x(s)—17) — G(z(s))| < 1. It gives

x(s) = {=#(x(s)=7) + Gz(s) } (s — [T+ plx(s) = F) — Glz(s)] - (1)
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Now to rewrite the first equation in (5) we use again a(s) = x(s) + w(s—h) (and &(s) = x(s) + w(s—h)), substitute it
in (5) and use (11). It gives

f(a(s) z(s), z(s—h)) é(s) = f(x(s) + w(s—h), z(s), z(s —h)) (x(s) + @(s — h))
—u(x(s) —1) + G(z(s))
1+ u(x(s) —n) — G(z(s))
= f(x(s)+w(s—h), z(s), z(s—h))[1 + p(x(s) = 7)) — G(Z(S))]_1 “w(s—h).

Z(s)

f(x(s) + w(s—h), z(s), z(s— h))

+1) - dw(s—h)

Hence (5) & (6) can be rewritten for s € [0, h] (the first step) as

2(s) = £(x(s)+w(s—h), 2(s), 2(s— M) [1 + u(x(s) =) = G(z(s))] - @(s—h),  z(s) = g(w(s)), s €[0,h],

X(s) = {=lx(s) =70) + Glz(s)} @(s— M1 + p(x(s) =7) — Glz(s))] . x(0) = ".

It is easy to see that the last system gives solution (z(s), x(s)) for s € [0, h]. Then the time transformation « is found by
a(s) = x(s) + w(s—h). In general it reads as

2(s) = f(x(s) + als—h), 2(s), z(s — ) [1 + uix(s) =) — G(z(s)] - a(s—h), s>,
2(s) = g(w(s)), s°—h<s<s,
x(s) = {=n0x(s) =) + Gz(s) 1 + ulx(s) =) = Glz(s)] - als—h), s2s x(s”) =n",
and it can be solved step by step. Notice, that system (5) & (6) is solved directly, without any references to system (1)—(3)

(without using any solution (y, n) of (1)—(3) and without using o in (4)) since (6) is used instead of (4). Rule (6) contains
rule (4), and it is formulated in new time s.

3. Connection between asymptotic properties of systems (1)-(3)
and (5) & (6)

In this section we discuss how to determine if some qualitative properties of solutions of the initial state-dependent
delay system (1)—(3) survive the time transformation i.e. still be valid for the corresponding solutions of constant delay
system (5) & (6). We are also interested to connect the known properties of solutions of (5) & (6) with the ones of (1)—(3).

Let us start with the discussion of the property of the (partial) exponential stability. For the simplicity of presentation
we assume that the function (g(t) = 0; 7(t)) is a solution of (1)—(3). Hence, by (8), (Z(s) = 0; X(s); @(s)) will be also a
solution of (5) & (6).

Adopting to our case the definition of partial stability (stability with respect to part of the variables) from [15, p.251]
we remind that the solution (g(t) = 0; f(t)) of (1)—(3) is exponentially y-stable if there exist constants ki, k; > 0 and
ks > 0 such that [|y(1)] < ke =)y o lcg=nosrm for all ¢ > t° and all solutions satisfying ||y < k3. We remind
that n-coordinate is bounded (n(-) € [0,27]). Similarly, we define exponentially z-stable solution (Z(s) = 0; x(s); a(s))
of (5) & (6). Assume one has

_ _0
||Z(S)|| < Dge Difs=s )”Zso ”C([,/«,,()];Rm), s> SO, Dy, D7 > 0.
Hence, by (8), we get
-1 0 0 0 -1 0
ly(t)l < Doe™™" = Nizo || e oprmy = Doe™ 2 || zg0 | c—nopmm P2 =Pl 0=,

It is easy to see that if (and only if) eP2!=01a'() is bounded, then we have

_ _40
Iyl < Dse Dz c-nojrm)-
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The above considerations show that the exponential estimate for the solution z(s) implies the exponential estimate for
the solution y(t) provided there are positive constants D;, D, such that Dyt — Dya~'(t) < Ds for all t > t° and some
D; € R. Similar estimates give the inverse implication, i.e. the exponential estimate for the solution y(t) implies the
exponential estimate for the solution z(s) provided there are positive constants C;, G, such that Gs — CGia(s) < G for
all s > s% and some G; € R. Since by (8), t = a(s), we arrive to the following definition.

Definition 3.1.
We say that “s-time” and “t-time” are equivalent if there are constants A, A, > 0, By, B, € R such that Ajt+B; <s <
Azt + Bz.

Remark 3.2.
It is evident that in this case we also have s/A; — By/A; < t < s/A; — Bi/A;.

We saw that in the case of the equivalent “s-time” and “t-time” the exponential estimate survives under the time
transformation. Another consequence of the equivalence is that ¢ — 400 if and only if s — +o00, which is clearly
important for the study of long-time asymptotic behavior of solutions.

The last result suggests to study the notion of time-equivalence in detail. Let us try to find if in our case we have the
equivalence. The rules (7) and (4) show that we need to analyse the function 6~'. Using the property o(t) > t — h
(bounded delay) and invertibility of o, we get 0='(1) < T+h. Hence, by (7), one has a(s) = 07 (a(s—h)) < a(s—h)+h.
In particular, a(h) < a(0) + h, a(2h) < a(h) + h < a(0) + 2h, etc. Hence the property a(kh) < a(0) + kh and the strict
monotonicity of a give the following estimate:

a(s) < a(0)+ h +s. (12)

Since a(s) = t, estimate (12) means the lower bound in Definition 3.1 and the upper bound in Remark 3.2 (with A; =1,
By = —(a(0) + h)).

The complementary bounds in Definition 3.1 and Remark 3.2 are less obvious. For the moment we do not claim that it
is true in general case, but present an additional assumption which guarantees the bounds.

Let us assume that the value of delay is bounded from below by a positive constant, say hy > 0. More precisely,
n(t) > hy € (0,7] for all ¢ > 0. A sufficient condition for the last property is |G(y)| < p|n—hq| for all y € R™. Under
the above condition we have 07'(t) > 7 + h1. By (7), one has a(s) = o '(a(s—h)) > a(s—h) + h;.

In particular, a(h) > a(0) + hq, a(2h) > a(h) + h1 > a(0) + 2h4, etc. Hence the property a(kh) > a(0) + khq and the
strict monotonicity of a give the following estimate:

a(s) > a(0) — hy + %5. (13)

Combining (12) and (13) we conclude that “s-time” and “t-time” are equivalent (with Ay =1, By = —(a(0) + h), A, = h/hy,

B, = —(a(0) — hy)h/hq in Definition 3.1 and Remark 3.2). Exactly the same arguments give the following lemma (for the
simplicity we put s% = 0).

Lemma 3.3.
1) Assume that along a solution of (1)—(3) one has n(t) < h, < h, ie. delay is bounded (o(t) > t — hy). Then the
corresponding time transformation satisfies a(s) < a(0) + hy + shy/h, for all s > 0.

2) Assume that along a solution of (1)—(3) one has n(t) > h1 > 0. Then the corresponding time transformation satisfies
a(s) > a(0) — hy + shq/h, for all s > 0.

Remark 3.4.
Both assumptions of Lemma 3.3 are satisfied, for example, provided |G(y)| < u|7 — h¢| for all y € R™ and hy € (0, 7).
This is a case of the equivalence of “s-time” and “t-time”.
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Having the equivalence proved we can use it to compare the asymptotic behavior of the corresponding dynamical systems
(processes), constructed by solutions of systems before and after the time transformations. The previous considerations
lead to the following

Corollary 3.5.

Let f be continuous function, Lipschitz with respect to the second and third coordinates and G be Lipschitz and |G(y)| <
p|n—hy| for all y € R™ and some hy € (0,7]. Let us fix any exponentially y-decaying solution (y, n) of (1)=(3), ie.
ly(0)] < kie =)y, lc(enoprm for all t > t° and fix any w € C'([s°—h, s°];R) with positive derivative and such
that w(s®—h) = w(s®) — n°. Then the corresponding solution (z, x, a) of (5) & (6) is exponentially z-decaying.

Let us consider an autonomous case of (1), i.e. the system (cf. (1)-(3))

g(t) = £ (y(#), y(t—n(1))), n(t) = —p(n(t) —n) + Gly(t)), t>0, (14)

with the initial data
y(t)=g(t), te€[-h0] n(0) = n". (15)

We can restrict our study (using Lemma 2.1) to the set of initial data
Xa ={(g.1°) : g(0) = £*(g(0), g(—n°))} c C'(—h,0LR") x[0, h].

The set Xy is an analog to the solution manifold used in [16] (see also [9]). We notice that the reason for this restriction
is to have C' smoothness of solution at zero, i.e. §(0—) = §(0—) = §(0+) = f”(g(O), g(—no)). It is easy to see that Xja
is invariant.

We define the evolution operator S°(t): Xja — Xjo, associated to the system (14)—(15), by the formula S°(t)(g; n°) =
(y+; n(t)), where (y; n) is the unique solution of (14)—(15). It is easy to see that under our assumptions the pair (S, Xa)
constitutes a dynamical semiflow (in other words, the IVP (14)—(15) is well-posed in Xz). For more definitions and
details on dynamical systems (semiflows) see e.g. [5, 8, 14].

To discuss the properties of solutions to the non-autonomous system (5) & (6), let us remind the following definition
from [4, pp.112-119]. Let E be a Banach space. Consider the two-parameter family of maps {U(t, 1)}, U(t, 7): E — E,
parameters T € R, t > 7.

Definition 3.6 ([4, p. 113]).
A family of maps {U(t, 1)} is called a process on E if

(i) U(r, t) = I = identity,
() U(t,s)oU(s, ) =U(t, 1) forall t >s > 1 € R.

Since (5) & (6) has constant delay h we have no need to restrict our study to a solution manifold. We define
E = C(~h, 0L R™) x[0, h] x {w € C'[=h,0]: @() >0, w(=h) = w(0) — n°% @(O)[1+u(n"=7) — G(e(0)] = w(—h)}

and define U(s,so) ((p; n% w) = (zs; x(s); &), where (z; x; @) is the unique solution of (5) & (6) with initial data ((p,' n% w),
here zo = ¢.

We notice that to come back to the system (14)—(15), using a particular solution of (5) & (6), one restores function g as
follows: g(t) = zo(a (1)) for t € [t°—h, °].

Let us continue to discuss which asymptotic properties of (1)—(3) survive the time transformation Le. still be valid for the
corresponding solutions of constant delay system (5) & (6).
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One of the important properties of dynamical systems and processes are boundedness of solutions and their compactness
(asymptotic compactness) see e.g. [5, 8, 14]. Below we always assume that t — + oo if and only if s — + 0o, which is
true, for example, in the case of the equivalence of t-time and s-time. One can easily see, by (8), that ||y(t)|| < C, t > t;,
is equivalent to ||z(s)|| € C, s > s1. Hence, the existence of a bounded absorbing set for z,-coordinate is equivalent
to the existence of a bounded absorbing set for y-coordinate, both in the space C([—h,0];R™). To go further, let us
discuss the following additional assumptions on the time transformation a:

(A1) there exists Cy, > 0 such that for all s > s we have a(s) < Gy q,
(AT’) there exists Gy, > 0 such that for all t > t; we have &7'(t) < Gy,
(A2) «a is uniformly continuous on [sy, +00),

(A2") a7 is uniformly continuous on [t;, +00),

(A3) @& is uniformly continuous on [sy, +00),

(A3) &' is uniformly continuous on [t, +00).

Using (8), we have z(s) = g(a(s))a(s). Hence, the existence of a bounded absorbing set for the y;-coordinate in the space
C'([—h,0; R™) implies the existence of a bounded absorbing set for the z.-coordinate, provided (A1) is satisfied. The in-
verse implication is valid provided (A1’) is satisfied. For the system (1)—(3) the existence of a bounded absorbing set means
it is dissipative (for more details on this property see e.g. [5, 8, 14]). Let us now assume that for t > t; the y;-coordinate
belongs to a (pre-) compact set in the space C((—h, 0, R™). By the Arzela—Ascoli theorem, the family {y}>, is uniformly
bounded and equicontinuous. Using (8), we have |z(s') —z(s?)| = |y(a(s')) — y(a(s?))|- This and the above discussion
show that for s > si the z,-coordinate belongs to a (pre-) compact set in the space C([—h,0;R"), provided (A2) is
satisfied. The inverse implication is valid provided (A2) is satisfied. The similar considerations in C'([—h, 0; R™) need
the estimate |(s") — 2(s?)] = [§(als)a(s") — glalsH) a(s2)] < g(a(s")) — g (als)]la(s")] + [g(als?)]als") - a(s)]. We
see that if for t > t; the y,-coordinate belongs to a (pre-) compact set in the space C'([—h,0]; R™), then for s > s;
the z.-coordinate belongs to a (pre-) compact set in the space C'([—h,0];R™), provided (A1)—(A3) are satisfied. The
inverse implication is valid provided (A1')—(A3’) are satisfied. In particular, we have shown that assumptions (A1)-(A3)
and (A1")—(A3’) connect asymptotic properties of the dynamical system (5°(t), X«) and the process U(s, 7): E — E.

Remark 3.7.

i) Discussing assumptions (A1)—(A3), one could think that the family {a;}s>s, may belong to a (pre-) compact set in the
space C([—h,0];R) or even C'([—h,0];R), but it is never true since a(s) = t is time, which is naturally unbounded.

ii) One can see that (A1) implies (A2), but (A2) # (A1), similarly (A1) = (A2'), but (A2') & (AT').

iil) We notice that (A1) gives a(s) < Ci 45 + ki and similarly (A1) = a7 '(t) < Gyt + ky. Using Definition 3.1, we see
that (A1), (A1’) imply the equivalence of “s-time” and “t-time”.
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