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Efficient Sequential Monte Carlo Sampling for
Continuous Monitoring of a Radiation Situation

Václav ŠMÍDL and Radek HOFMAN

Institute of Information Theory and Automation
CZ-182 08 Prague, Czech Republic

(smidl@utia.cas.cz; hofman@utia.cas.cz)

The monitoring of a radiation situation around a nuclear power plant is a demanding task due to the high
uncertainty of all involved variables and limited availability of measurements from a sparse monitoring
network. Assessment of the situation requires experienced specialists who may be unavailable during
critical times. Our goal is to provide an automated method of instant radiation situation assessment that
does not underestimate its uncertainty. We propose a state-space model based on an atmospheric dispersion
model, local correction of a numerical weather model, and a temporal model of the released activity.
This state-space model is highly nonlinear and evaluation of the likelihood function requires extensive
numerical calculations. The sequential Monte Carlo method is one of the few options for estimating the
state recursively. Since the simple bootstrap approach yields an extremely computationally demanding
algorithm, we investigate the use of existing techniques for the design of a more efficient proposal density.
We propose combining the Laplace approximation and various population Monte Carlo methods. Data
from an existing monitoring network were used to calibrate relevant parts of the model. Performance of
the methods in a real radiation emergency situation is evaluated in a simulated experiment due to the lack
of real data. The proposed tailor-made proposal was found to be much more computationally efficient
than previously published methods. The adaptive Monte Carlo methods thus represent a compelling
computational approach for the evaluation of probabilistic environmental models. The data used and a
Python implementation of the methods are available as supplementary material online.

KEY WORDS: Atmospheric dispersion model; Importance sampling; Information geometry estimation;
Population Monte Carlo; Proposal density; Radiation protection.

1. INTRODUCTION

We are concerned with a scenario in which the release of
radionuclides into the atmosphere occurs following a hypothet-
ical accident at a nuclear power plant facility. The radioactive
effluent forms a plume that moves over the terrain according
to the current meteorological situation. Protective countermea-
sures must be introduced as soon as possible to protect the pub-
lic from the harmful effects of ionizing radiation. The necessary
countermeasures are typically prescribed by law and classified
according to the expected radiation level into different sever-
ity categories. Determining this expected value is therefore the
most important factor for the decision making of the crisis man-
agement authority. The most reliable source of information is
direct measurements of the radiation level. However, detailed
measurements in all affected areas are typically available only
several hours or days after the beginning of the release. There-
fore, it may be too late to warn people in affected areas.

For this scenario, we aim to design an algorithm that processes
the stream of measurements available from radiation monitor-
ing networks (RMN) and provides a prediction of the radiation
situation in real time. The algorithm combines techniques for
simulation of dispersion of the pollutants in the atmosphere
with statistical evaluation of their probability using data from
the RMN. This task is known in the environmental literature
as data assimilation, and the dominant methods in this field are
interpolation (Eleveld et al. 2007; Winiarek et al. 2010), vari-
ational approaches (Jeong et al. 2005; Kovalets et al. 2009),
and genetic algorithms (Haupt et al. 2009; Cervone, Franzese,
and Grajdeanu 2010). These methods typically provide only

point estimates of the estimated parameters, without indication
of their reliability. Reliability of these estimates is then judged
from complex sensitivity studies, such as Twenhöfel, van Troost,
and Bader (2007).

An alternative approach is statistical estimation, for example,
Anderson et al. (1999). Indeed, the value of statistical tech-
niques such as the Markov chain Monte Carlo (Delle Monache
et al. 2008; Senocak et al. 2008) and sequential Monte Carlo
(Johannesson, Hanley, and Nitao 2004; Hiemstra, Karssenberg,
and van Dijk 2011) has been demonstrated and the techniques
are gaining in popularity. An obvious advantage of these meth-
ods is their ability to evaluate the reliability of their estimates
using only observed data. Moreover, the sequential Monte Carlo
(SMC) approach is able to process a continuous stream of data
in real time, which is necessary for a continuous monitoring
system. We follow the pioneering work of Johannesson,
Hanley, and Nitao (2004), where a state-space model for the
task of locating a source of the release was proposed and its esti-
mation via SMC was studied. We modify the state-space model
for our scenario using realistic conditions from a selected power
plant. We show that estimation of the new model from data pro-
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vided by a sparse RMN via the classical particle filter (Gordon,
Salmond, and Smith 1993) is computationally inefficient.

The main concern is then to find a strategy of generating
efficient proposal densities. Many techniques were proposed
specifically for SMC, for example (Pitt and Shephard 1999),
other techniques are based on adaptation of nonsequential tech-
niques for the sequential scenario (Cornebise, Moulines, and
Olsson 2008), and references therein. A specific property of
the studied model is a computationally expensive evaluation
of the likelihood function. Moreover, the likelihood is sharply
peaked and the parameter evolution model has high variance.
These properties make this application an excellent area, where
sophisticated adaptive proposals have significant impact. Due
to flexibility of the importance sampling methodology, these
techniques can be freely combined to take advantage of proper-
ties of the application specific model. Specifically, we design
an efficient problem-specific proposal density by combin-
ing two well-known general-purpose approaches (Pitt and
Shephard 1999; Cornuet et al. 2012) with lesser known con-
cepts of information geometry (Kulhavý 1996). The proposed
combined proposal is significantly more efficient on the stud-
ied application. Therefore, only 1000 particles are sufficient for
reliable estimation of the state variables. This result demon-
strates that computational overhead of modern adaptive Monte
Carlo methods over simpler alternatives is much smaller than is
generally perceived.

2. RADIATION ACCIDENT

Awareness of radiation security has increased after the
Chernobyl disaster, and every nuclear power plant is now sur-
rounded by a network of radiation sensors. The sensors are
connected to the central emergency warning system and con-
tinually measure radiation levels. Evaluation of the radiation
situation and prediction of its evolution from these readings is
very challenging for two reasons. First, the spread of the pol-
lutant in the atmosphere is a complex stochastic process with
many unknowns. Second the number of continually measured
quantities is very limited. Each of the factors is now described
in detail.

2.1 Dispersion of a Pollutant in the Atmosphere

The radioactive material is located in a very small area inside
the power plant, hence the location of its release is known with
sufficient accuracy. After the pollutant is released to the atmo-
sphere, its concentration, C, depends mainly on the following
phenomena: (1) advection by wind, (2) dispersion by turbulent
processes in the atmosphere, and (3) radioactive decay of the
pollutant and its deposition. The first two processes are modeled
by the following partial differential equation:

∂C

∂τ
+

3∑
k=1

uk

∂C

∂sk

=
3∑

k=1

Kk

∂2C

∂s2
k

. (1)

Here, τ is the continuous time, s = [s1, s2, s3] are spa-
tial coordinates in the Cartesian coordinate system, u =
[u1, u2, u3] are wind speeds in the Cartesian coordinate sys-
tem, and K = [K1,K2,K3] are diffusivity coefficients param-

eterizing atmospheric dispersion. However, Equation (1) is not
analytically solvable for general functional forms of uk and Kk .
Various simplified solutions arise under different assumptions
(Holmes and Morawska 2006).

In this article, we consider the Gaussian puff approximation
which is based on an instantaneous point-source release of ac-
tivity. It is obtained as an analytical solution of Equation (1)
for constants uk and Kk , and the following boundary conditions
(Hanna, Briggs, and Hosker 1982): (1) the concentration is ap-
proaching zero with increasing distance for the source, (2) the
release source is infinitely small at t = 0, (3) integral of the con-
centration over the whole space is the original released activity,
Q, in becquerel Bq.

Continuous release can then be approximated as a sequence
of puffs, (Zannetti 1990), released at discrete time steps with
sampling period �t , with symbol t being reserved for the
current time step. A puff with activity Qκ is released during
one sampling period starting at time τ = κ �t and ending at
τ = (κ + 1)�t , and temporal evolution of its concentration in
continuous time τ is

Cκ (s, τ ) = Qκe
−λ(τ−κ�t)

(2π )3/2σ1σ2σ3
exp

[
− (s1 − l1,κ,τ )

2σ 2
1

2

− (s2 − l2,κ,τ )2

2σ 2
2

− (s3 − l3,κ,τ )2

2σ 2
3

]
. (2)

Here, λ denotes the decay constant of the modeled radioisotope.
For the purpose of evaluation of the measurements the concen-
tration is evaluated at discrete times t. Since t is generally used
to denote the current time, the index of the puff will be often
used relative to the current time, that is, κ = t − 1. Time evolu-
tion of the location of the κth puff center is fully determined by
the wind field at the previous location

l1,κ,t+1 = l1,κ,t − �t vt (lκ,t ) sin(φt (lκ,t )),

l2,κ,t+1 = l2,κ,t − �t vt (lκ,t ) cos(φt (lκ,t )), (3)

l3,κ,t+1 = l3,κ,t ,

where vt (lκ,t ) and φt (lκ,t ) are the wind speed and the wind di-
rection at location lκ,t , respectively. Specifically, l3,κ,t is the
effective release height given by the height of the release plus
the plume rise. For practical reasons, the rate of dispersion is
here parameterized using dispersion coefficients σk = √

2Kkt,

(Gifford 1976).
The puff model described in this section is only one of many

approximations available. In this text, we use the term dispersion
model in the sense of a computer program that represents the
spatial concentration of a pollutant in a parametric form and
is capable to compute its propagation in time given the wind
field and the new released activity. Such a model may include
additional physical phenomena such as dry and wet deposition
of the pollutant, or terrain profile.

2.2 Continuous Monitoring System

A radiation accident has several phases that can be formally
distinguished (Raskob et al. 2010): (1) prerelease phase: an
abnormal situation happened in the power plant, however, the
radiation has not leaked outside of the reactor building yet,
(2) early phase: the radiation material is being released from
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516 VÁCLAV ŠMÍDL AND RADEK HOFMAN

Figure 1. Simulation experiment of an accidental radiation release. Left: simulated measurements of three RMN sensors with the highest
observed values. Right: contour plot of the total ground-level radiation dose accumulated during the first 3 hours after the release; locations
of the radiation dose sensors are denoted by pentagons; largest populated areas (points of interest, POI) are denoted by triangles, and crosses
denote centers of the puffs and circles are drawn around them with diameter 2σ1 (Equation (2)). The illustrative background map is from the
http://www.openstreetmaps.org, © OpenStreetMap contributors.

the power plant into the atmosphere and the radioactive cloud is
still within the monitored area, and (3) late phase: the radiation
cloud has already passed. An example of a hypothetical release
is displayed in Figure 1.

Radiation accidents are typically studied retrospectively from
the data recorded in all phases of the accident. More and more
data are being measured in the late phase which enables a de-
duction of what has happened and what will be the final con-
sequences. For example, aerial surveillance provides measure-
ments of radionuclide deposition on the ground with high spatial
resolution, and simple interpolation can provide a clear contour
of the total dose. However, this analysis usually comes too late
to be of use to citizens living near the power plant. Since there
is no time to add sensors before the early phase starts, we must
limit ourselves to data that are available routinely during normal
operation of the plant. This is predominantly the RMN which is
built around a power plant, typically in circles with poor spatial
resolution, Figure 1 (right). The amount of observed data pro-
vided by the RMN during a release is very small, for example,
less than 100 scalar values in the release displayed in Figure 1.
Our aim is to process these data recursively without the need of
human interaction. This objective represents many challenges
for modeling and computational evaluation of the results.

First, meteorological parameters would only be available in
the form of numerical predictions, since more accurate weather
estimates using, for example, satellite data are available with
unacceptable delay. Local calibration of the weather forecast is
needed. Second, the data available in the early phase are sparse
in time and space. Note that the hypothetical release in Figure 1
generated at most eight data points above the radiation back-

ground level on any sensor of the RNM. Moreover, more than
half of the sensors did not register any increased radiation levels.
Uncertainty about the true situation is therefore very high. If the
continuous monitoring system is to be considered trustworthy
by the decision makers, it must admit this uncertainty. Under-
estimation of the uncertainty is considered a severe flaw of the
system. Third, the procedure must be affordable to compute on
an inexpensive hardware. The use of expensive equipment is
not justified since the algorithm will routinely analyze measure-
ments of the natural background radiation.

3. STATE-SPACE MODEL FOR CONTINUOUS
RADIATION MONITORING

The spatio-temporal distribution of the pollutant can be mod-
eled by a discrete-time stochastic process:

xt ∼ p(xt |xt−1) (4)

yt ∼ p(yt |xt−1), (5)

where xt is the state variable, yt is the vector of observations.
Probability distributions in Equations (4) and (5) are assumed
to be known.

In principle, the state variable should contain the concentra-
tion, C, which is infinite dimensional since it is a solution of
the PDE (1). However, estimation of such system from sparse
measurements is difficult. Therefore, we follow Johannesson,
Hanley, and Nitao (2004) and approximate the spatio-temporal
distribution of the pollutant by a deterministic model (in our
case the puff model (2)) with unknown parameters. The state
xt then contains only the selected unknown input values of

TECHNOMETRICS, NOVEMBER 2014, VOL. 56, NO. 4
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the dispersion model. The remaining input values will be
considered to be known parameters (i.e., internal parameters of
the computer program, described at the end of Section 2.1).

The deterministic dispersion model is treated as a mapping
from the space of the state xt to the expected values of the mea-
surements, ŷt = η(xt ). As an example of such mapping, the puff
model from Section 2.1 will be used in this article. Extension
of the deterministic model to a full stochastic state-space model
thus requires choosing transition probability density (Equation
(4)), and the measurement probability density yt ∼ p(yt |ŷt ).
Previously published approaches differ in what quantities of the
dispersion model are considered to be unknown (belonging to
the state variable xt ) or known and thus internal to the determin-
istic dispersion model. For example, the model of Johannesson,
Hanley, and Nitao (2004) was designed for the localization of
an unknown source of radiation. Therefore, the state variable
was composed from the location of the source, lτ,0, and activity
of the released material Qt . All remaining variables, including
the wind field, were assumed to be known. Further extension of
the model for unknown dispersion coefficients is also available
(Delle Monache et al. 2008; Senocak et al. 2008).

The assumptions mentioned above are only partially relevant
for the purpose of the continuous monitoring system described
in Section 2.2. The location of the source is well known. Sen-
sitivity studies of the parameters of the puff model (Twenhöfel,
van Troost, and Bader 2007) identified the following parameters
as the most significant: (1) magnitude of the release at each time
step, (2) the wind speed and direction. Models for these two
terms have been proposed in Johannesson, Hanley, and Nitao
(2004) and Hiemstra, Karssenberg, and van Dijk (2011), respec-
tively. While there are other unknown parameters, we consider
only these three here to illustrate the complexity of the problem.

The choice of the probability density of the measurements is
relatively easy since it can be deduced from characteristics of
the measuring devices. However, different types of measure-
ments can be considered. Measurement of the concentration C,
which is assumed in all previous works, is too expensive for
real application. Existing RMNs are composed of sensors of the
integrated dose rate, hence we have to design a new observation
model for this quantity. We will now shortly discuss all com-
ponents of the model and the choice of the involved probability
densities.

3.1 Elicitation of Probability Density Functions

Probability densities of the state transition model (4) and the
measurement model (5) must be fully specified. However, exact
shape of the densities in the studied application is not known
and must be either obtained experimentally or assumed. For
example, the manufacturers specify accuracy of the measuring
devices only by their relative accuracy in percents of the mea-
sured value. This can be interpreted as two statistical moments
of the distribution, for example,

mean(yt ) = y true
t = μt, std(yt ) = γμt , (6)

for relative observation error, or std(yt ) = σt , for absolute error.
The first equality represents the assumption of unbiased mean
value of the measurements. The maximum measurement error
provided by the manufacturer is interpreted as being equal to 2
standard deviations.

One way to turn these quantities into a density, p(yt ), is by
moment matching. The following parametric forms have the
same moments as Equation (6):

yt ∼ N (μt, (γμt )
2), or N (

μt, σ
2
t

)
, (7)

yt ∼ G(γ −2, γ 2μt ), (8)

yt ∼ iG (
γ −2 + 2, (γ −2 + 1)μt

)
. (9)

Here, N (μt, σ
2
t ) denotes Normal probability density with mean

μt and variance σ 2
t ; G(k, θ ) denotes Gamma density with shape

parameter k and scale parameter θ ; and iG(α, β) denotes the
inverse Gamma density with shape parameter α and scale pa-
rameter β. Comparison of these probability densities for μt = 1,
and various γ is displayed in Figure 2. Note that for relative error
as low as 10%, all of these are very similar. Their differences be-
come more obvious for a higher relative error, when the gamma
densities assign very low probabilities to the region around zero.

From these three choices, the Normal density (Equation (7)) is
typically favored since it has the greatest entropy of all possible
densities (Dowson and Wragg 1973). However, this probabil-
ity density has to be truncated if the variable is positive by
the definition, the other densities are more natural choices for
positive variables. Since they are almost equivalent, our choice
of a particular form will be motivated primarily by analytical
advantages of their subsequent estimation.

0.7 0.8 0.9 1.0 1.1 1.2 1.3
yt

p(
y t

)

mean(yt) = 1, std(yt) = 0.1

N
G
iG
lN

0.5 1.0 1.5
yt

p(
y t

)

mean(yt) = 1, std(yt) = 0.3

N
G
iG
lN

Figure 2. Comparison of different probability densities with equal first two moments. All probability densities have the same mean value
μt = 1, but different standard deviations γ = 0.1 (left) and γ = 0.3 (right).

TECHNOMETRICS, NOVEMBER 2014, VOL. 56, NO. 4
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3.2 Release Scenario

In previous work (Johannesson, Hanley, and Nitao 2004;
Hiemstra, Karssenberg, and van Dijk 2011), the model of the
magnitude of the release was split into the model of the first
step of the release and a random walk on its temporal evalua-
tion. Using a Gamma density, the model of the first step is

p(Q1) = G(αQ, βQ), (10)

followed by random walk

p(Qt |Qt−1) = G(
γ −2

Q , γ 2
QQt−1

)
, t > 1, (11)

where γQ governs the spread of the random walk.
However, a random walk model of temporal evolution of the

accidental release is highly unreliable due to frequent abrupt
changes, as demonstrated by events in the Fukushima Daiichi
accident (Katata et al. 2012), which was a sequence of rapid
changes with only a few stationary periods. This would sug-
gest the need for a hidden Markov label field switching models
(Equations (10) and (11)), instead of their deterministic change
after t = 1. However, this would increase the complexity of the
evaluation scheme. Therefore, we propose to ignore the station-
ary periods and a priori assume that the puffs are temporally
uncorrelated, that is, the prior (Equation (10)) holds for all t.
Moreover, we aim for completely uninformative prior, that is,
for αQ = 1 and βQ → 0 for which (Equation (10)) approaches
the improper Jeffreys’ prior on the scale parameter (Jeffreys
1961). This model is suitable only if the measurements are in-
formative about the released quantity.

3.3 Wind Field Corrections

We assume that the radioactive pollutant is released from a
nuclear power plant of known location and altitude, stored in
three-dimensional vector. From this point, it is advected by the
wind field (Equation (3)). While it is possible to obtain numerical
weather forecasts from various sources, their accuracy at the
power plant location is usually poor. An illustration of this fact is
displayed in Figure 3 by comparing the wind direction obtained

from the numerical weather forecast and from the meteostation
at the power plant.

Since accurate predictions of the wind field are the most criti-
cal variable in the task of prediction of the radiation situation in
the early phase of the accident, we need to calibrate the forecast
for the location of the power plant. Due to the limited amount of
meteostations, we need a really simple parameterization of the
calibration. We follow (Hiemstra, Karssenberg, and van Dijk
2011) and choose model

vt (s) = ṽt (s)at , (12)

φt (s) = φ̃t (s) + bt , (13)

where ṽt (s), φ̃t (s) are the wind speed and the wind direction
predicted by the numerical model at location s, respectively.
Constants at and bt are unknown biases of the weather prediction
model at time t. Correction of the wind field forecast is then
achieved by estimation of at and bt . More complex models of
the local wind field are available (Monbet, Ailliot, and Prevosto
2007), however, their calibration requires significantly more
points of measurement than we have in the area.

The constants at and bt are expected to vary in time, with
moments

mean(at ) = at−1, std(at ) = γaat−1,

mean(bt ) = bt−1, std(bt ) = σb.

Matching of these moments to the densities (Equation (8)) and
a truncated version of (Equation (7)) yields

p(at |at−1) = G(
γ −2

a , γ 2
a at−1

)
,

p(bt |bt−1) = tN (bt−1, σb, 〈bt−1 − π, bt−1 + π〉). (14)

The Gamma density was chosen for at since its variance is
proportional to its mean value and allows for conjugate update.
The standard deviation of the wind direction is constant and
typically lower than 30◦, the appropriate von Mises distribution
can be very well approximated by the truncated Normal with
support on the unit circle.

Figure 3. Comparison of histograms of the wind direction at the location of the power plant for year 2008 from the numerical model (left)
and observed data (right).
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3.4 Measurement Model

Measurement of the local concentration of the pollutant
C(s, τ ) considered in Johannesson, Hanley, and Nitao (2004);
Haupt et al. (2009) requires a large and expensive device. A more
affordable Geiger counter typically measures a time integral of
radiation gamma dose rates which is measured in sieverts per
hour [Sv/h]. The RMN considered in this text is equipped with
several radiation dose sensors and a meteostation. The Geiger
counters have a fixed operation range from several nSv/h to
Sv/h. The meteostation is equipped with an anemometer pro-
viding measurements of the wind speed and the wind direction.

3.4.1 Integrated Dose Rate of the Puff Model. In this sec-
tion, we derive a mapping ŷt = η(xt ) for the puff model from
Section 2.1. The purpose is to demonstrate the computational
cost of such an operation. Evaluation of the dose rate for a more
complex dispersion model would be even more costly.

If a single puff (Equation (2)) of activity Qκ is the only source
of radiation, the jth sensor in the radiation monitoring network in
location sRj

would register dose cj,κ,tQκ , where the coefficient
cj,κ is computed as (Raza, Avila, and Cervantes 2001)

cj,κ,t = Kc

Qκ

∫ t

t−1
�(sRj

, τ, E) dτ. (15)

Here, Kc = ω K E μaρ
−1 is a physical constant computed from

the dose conversion factor K, the gamma energy E produced by
the decay of the assumed radionuclide, the ratio of absorbed
dose in tissue to the absorbed dose in air ω, the air density
ρ, and the mass attenuation coefficient μa . The fluency rate
�(sRj

, τ, E) from the puff is calculated as the following three-
dimensional integral over the volume of the puff:

�(sRj
, τ, E) =

∫
�

Cκ (s, τ ) (1 + k μr) exp(−μr)

4πr2
ds. (16)

Here, ambient activity concentration C(s, τ ) is defined by Equa-
tion (2); k = (μ − μa)μ−1 where μ is a linear attenuation coef-
ficient (Raza, Avila, and Cervantes 2001); � ⊂ R3 is a spatial
domain of integration (s ∈ �); and r = ||sRj

− s|| is the dis-

tance of spatial locations s and sensor sRj
. The full puff model,

that is, a sequence of all puffs, contributes to the jth sensor by
dose

yQ,j,t =
K∑

κ=1

cj,κ,tQκ. (17)

Transformation of the activity concentration C(s, τ ) into the
time integrated dose rate yQ,j,t via Equations (15)–(17) is in
the simplest possible form and it is still highly nonlinear. An
analytical solution is not available and the dose (Equation (17))
must be evaluated numerically. Many methods were proposed to
increase efficiency of its evaluation, such as the “n/μ” method
(Pecha and Hofman 2011), however, it requires substantial com-
putational resources.

3.4.2 Measuring Devices. The measured value of the ra-
diation dose is a sum of natural background radiation, ynb, and
the dose from the release, yQ (Equation (17)). According to the
studies of the radiation dose sensors (Thompson et al. 2000), the
error of measurement is typically proportional to the measured
dose with a constant of proportionality γy , typically in the range
7%–20%. Therefore, we assume that the measurements at jth
sensor have moments

mean(yj,t ) = ynb,j + yQ,j,t , (18)

std(yj,t ) = γy(ynb,j + yQ,j,t ),

where ynb,j is the radiation background at the jth sensor. We
choose the inverse Gamma density,

p(yj,t |x1:t ) = iG(
γ −2

y + 2,
(
γ −2

y + 1
)
(ynb,j + yQ,j,t )

)
, (19)

since it is conjugate with the Gamma density of the released ac-
tivity Qt , Equation (10). The value of natural background ynb,j is
different for each sensor, however, it is relatively stable in time,
see measurements for the whole month of May 2010 in Figure 4
(right). Since the quantiles of the measurements displayed in
Figure 4 (left), correspond well to the model (Equation (19)),
with yQ,j,t = 0, and γy = 0.2, we consider ynb,j to be known

Figure 4. Natural background measured by selected sensors of the radiation network in May 2010 displayed via their quantiles in the form
of a boxplot (left) and raw data (right).
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and fixed at the average value on the sensor over the previous
year, that is, fluctuation of the natural background is considered
to be negligible.

Anemometers accuracy is typically also available in terms of
relative error of the wind speed, vt , and constant error of the
wind direction, φt , that is,

std(vt ) = γvvt (smeteo), std(φt ) = σφ,

where smeteo is the location of the meteostation. From all choices
of possible densities (Equations (7)–(9)) we select the inverse
Gamma form (9) for vt as a conjugate model to (Equation (14)).
Probability density of the wind direction φt is considered as
Normal with fixed variance (Equation (7)).

3.5 Summary of the State-Space Model

Summarizing results from previous sections, the state of the
considered dynamical system is composed of the wind field
model and parameterization of all puffs in the puff model,
that is,

xt = [at , bt ,Qt−K, . . . Qt , lt−K, l2 . . . , lt ],

where lt−K is the location of the oldest puff that is still within
the monitored area.

The vector of measurements is composed of one anemometer
and J radiation dose sensors

yt = [vt , φt , yQ,1,t , yQ,2,t , . . . yQ,J,t ].

The parameter evolution model is then composed of all consid-
ered models

p(xt |xt−1) = p(at |at−1)p(bt |bt−1)p(Qt ), (20)

given by Equations (14) and (10) and deterministic model (Equa-
tion (3)). The observation model is

p(yt |xt ) = p(vt , φt |at , bt )
J∏

j=1

p(yQ,j,t |Qt−K:t , lt−I :t ). (21)

This state-space model (Equations (20) and (21)) is designed
for the purpose of continuous monitoring, where simplicity is
extremely important due to the lack of data (see Figure 1, left,
for illustration). Therefore, many elements that are in principle
uncertain are considered to be known:

• Composition of the radionuclides in the release is critical
for evaluation of the observations (Equation (18)), since
the majority of the parameters in (Equation (15)) is known
for specific radionuclides. A different composition of the
release would yield different measurements. For this pur-
pose, many scenarios of potential power plant faults are
prepared with precomputed parameters of the expected re-
lease. We assume that the specific scenario is selected from
the list of prepared options in the prerelease phase of the
accident by an expert or an expert system of the power
plant.

• Another important parameter is the temperature of the re-
leased material which influences the altitude of the release.
Once again, we assume that the temperature is available

from the release scenario. In this text, we consider a com-
mon scenario where the pollutant is captured in the con-
tainment for a long enough time to cool down to the tem-
perature of the surrounding air and the height of the puff is
then equal to the height of the release.

• Dispersion of the pollutant depends on many more atmo-
spheric parameters than just the considered wind speed and
direction. For example, the height of the mixing layer and
dispersion coefficients. In this article, we set these param-
eters to their typical values for an aggregated parameter
called Pasquill’s category of stability (Hanna, Briggs, and
Hosker 1982) which is provided by the meteostation.

• The error of approximation of the reality by the puff model
can be taken into account only via the measurement error
(Equation (19)). In practice, the error is spatially dependent
and a detailed correction term as in Kennedy and O’Hagan
(2001) would be appropriate.

The accuracy of the presented model is thus very dependent on
the correct scenario of the release which provides all necessary
input parameters for the dispersion model. Potential extensions
of the state-space model may thus estimate the most likely sce-
nario from a predefined set or any of the relevant parameters
of the model. Reliable estimation of these extensions is possi-
ble only with more measurements, provided, for example, by
unmanned aerial vehicles (Šmı́dl and Hofman 2013).

4. SEQUENTIAL MONTE CARLO ESTIMATION

The model (Equations (4) and (5)) is fully specified by prob-
ability density functions (Equations (20) and (21)). Sequential
estimation of the posterior state probability is based on recursive
evaluation of the filtering density, p(xt |y1:t ), using Bayes rule
(Peterka 1981):

p(xt |y1:t ) = p(yt |xt )p(xt |y1:t−1)

p(yt |y1:t−1)
, (22)

p(xt |y1:t−1) =
∫

p(xt |xt−1)p(xt−1|y1:t−1)dxt−1, (23)

where p(x1|y0) is the prior density, and y1:t = [y1, . . . , yt ] de-
notes the set of all observations. The integration in Equation
(23), and elsewhere in this article, is over the whole support of
all involved probability density functions.

Equations (22) and (23) are analytically tractable only for a
limited set of models. The most notable example is the linear
Gaussian model for which Equations (22) and (23) are equiv-
alent to the Kalman filter. For other models, (22)–(23) need to
be evaluated approximately. One option is sequential Monte
Carlo (e.g., Gordon, Salmond, and Smith 1993; Doucet, de
Freitas, and Gordon 2001) which provides an approximation
of the posterior density by a weighted empirical density

p(x1:t |y1:t ) ≈
N∑

i=1

w
(i)
t δ

(
x1:t − x(i)

1:t

)
, (24)

where x1:t = [x1, . . . , xt ] is the state trajectory, {x(i)
1:t }Ni=1 are

samples of the trajectory (the particles), w(i)
t is the weight of the

ith sample,
∑N

i=1 w
(i)
t = 1, and δ(·) denotes the Dirac δ-function.

The main appeal of sequential Monte Carlo methods is that
this approximation can be evaluated for an arbitrary model
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(Equations (4) and (5)) given a suitable proposal density,
q(x1:t |y1:t ), yielding

w
(i)
t ∝ p(x1:t |y1:t )

q(x1:t |y1:t )
. (25)

An important property of Equation (25) is the possibility of
recursive evaluation. However, it often converges to a degener-
ate system where one particle has weight of 1 and the others
zero. This is prevented by the use of the resampling procedure,
where existing particles are copied or removed according to
their w

(i)
t so that the new particles have equal weights (Doucet,

de Freitas, and Gordon 2001).

4.1 Choice of the Proposal Density

The proposal density is often the determining factor in the
computational efficiency of the particle filter and was heav-
ily studied for this purpose. The optimal proposal density is
(Doucet, de Freitas, and Gordon 2001)

q(x1:t |y1:t ) = q(xt |xt−1, yt )q(x1:t−1|y1:t−1),

q(xt |xt−1, yt ) = p(xt |xt−1)p(yt |xt )∫
p(xt |xt−1)p(yt |xt )dxt

. (26)

However, evaluation of the integral in Equation (26) is com-
putationally intractable and Equation (26) is helpful only as a
theoretical concept. The goal is to approximate Equation (26) as
closely as possible, with many approaches for how to achieve it.
From the range of possibilities, we will focus on the following
options:

• the original approximation q(xt |xt−1, yt ) ≡ p(xt |xt−1) of
Gordon, Salmond, and Smith (1993), which is often called
the bootstrap approximation. The main advantage of this
choice is simplicity of the resulting algorithm.

• local linearization of Equation (26) via a Taylor expansion
(Pitt and Shephard 1999; Doucet, Godsill, and Andrieu
2000), which is also known as the Laplace approximation
(Kass and Raftery 1995).

• parametric representation of the proposal, q(xt |xt−1, θ ),
and estimation of the parameter using several populations
of particles. This technique is well known in classical
Monte Carlo methods (Oh and Berger 1992; Rubinstein
and Kroese 2004) and has been used in sequential Monte
Carlo in Cornebise, Moulines, and Olsson (2008).

Each of these approaches is well suited for models that meet
their assumptions. For more complex models, such as the one
in Section 3, it is advantageous to combine them for different
parts of the model to improve the performance.

4.2 Problem Specific Proposal Density

The problem of generating good samples of parameters of
dispersion models has already been studied in Johannesson,
Hanley, and Nitao (2004), where a combination of MCMC and
SMC has been proposed. This is particularly advantageous for
estimating an unknown location of the source. However, this
approach is not suitable for our continuous monitoring system,
where evaluation of the likelihood function requires a compu-

tationally expensive numerical routine, and the computational
resources per each time step are fixed and limited.

On the other hand, we may use specific features of the pro-
posed model and common conditions of its use. Specifically,
the RMNs were designed to measure quantities that are essen-
tial in prediction of the consequences of the release. Therefore,
we have direct observability of the forecast biases at , bt from
the anemometer (with large variance though), and almost direct
observability of the released activity Qt from the first ring of
sensors in the proximity of the power plant (Figure 1). These
measurements are informative about the corresponding state
variables, but their accuracy is insufficient for exact estima-
tion. Considering the measured wind direction as the actual
one would cause deviations between the predicted and the mea-
sured radiation dose on sensors. These deviations would increase
with increasing distance of the sensor from the location of the
meteostation.

Therefore, we propose the following two stage proposal
density:

1. Each state variable is estimated from the observed quantity
that is the most informative. The proposal density (Equa-
tion (26)) is then conditionally independent as follows:

q[1](xt |xt−1, yt ) = q(at |at−1, vt )q(bt |bt−1, φt )

× q(Qt |y1:t , l1:t )q(lt |lt−1, at , bt ). (27)

2. Using the particles from the first stage, we choose a para-
metric form q[2](xt |θ ), and estimate its parameters using
information geometric approach of Kulhavý (1996).

The first stage makes use of the latest measurements which is
necessary to follow rapid changes in any of the state variable.
The second stage relaxes the assumption of conditional indepen-
dence and provides a proposal based on all measured quantities.
The second stage can be repeated several times in the sense of the
method of population Monte Carlo (PMC; Cappé et al. 2004).
These methods are based on repetitive runs of the importance
sampling, each time with a different proposal. Each run of the
importance sampling produces a population of the particles. The
key improvement is in using the statistics of the previous popu-
lation to adjust parameters of the proposal function for the next
run. Formally, the full set of N particles is composed of parti-
cles from M populations, each of n[m] particles, m = 1, . . . , M ,∑M

m=1 n[m] = N . The proposal function is in the form q(xt |θ ),
with parameter θ , and is adapted in each population by replacing
parameter θ with its actual estimate, giving q(xt |θ̂ [m]). Various
modifications of the basic method have been proposed; we will
study three of them.

PMC: the original algorithm of Cappé et al. (2004), where the
samples from the mth population are used to estimate the pa-
rameters θ̂m+1 and are discarded afterward. The final estimate
is then based only on the samples from the Mth population.
This is computationally inefficient but can be proven to con-
verge to the optimal solution.

AMIS: the idea of deterministic mixture sampling is used to in-
crease computational efficiency of the scheme (Cornuet et al.
2012). Each parametric proposal generated by the previous
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populations is interpreted as a component of a mixture density

q
[m]
AMIS(xt |θ ) =

m∑
k=1

n[k]∑m
k=1 n[k]

q
(
xt |θ̂ [k]

)
, (28)

and the weights (Equation (25)) are reevaluated after each
population. The estimates of the parameters θ̂ [m+1] are evalu-
ated using all reweighted samples. However, proof of conver-
gence of this approach to the optimal value is not available.

mAMIS: a modification of the AMIS procedure that can be
proven to converge to the optimal value (Marin, Pudlo, and
Sedki 2012). It still uses the mixture density (Equation (28)),
but the parameter estimates are based only on the samples
from the previous population. As a consequence, it is suffi-
cient to recompute the weights using Equation (28) only after
the last population.

A problematic part of this approach is the choice of the initial
value of the parameters, θ̂ [0]. From this point of view, the pro-
posal density (Equation (27)) from the first stage is only a smart
initialization of the PMC.

4.3 First Stage: Update of Conditionally Independent
Densities

For the choice of inverse Gamma density (Equation (19)) for
the likelihood of the measured wind speed, the Gamma transition
models (Equation (14)) are conjugate with posterior density in
the form of Gamma density. So is the Normal likelihood of the
wind direction and its Normal random walk model (Equation
(14)). The first two factorized densities in Equation (27) are then

q(at |at−1, vt ) ∝ p(vt |at )p(at |at−1) = G(ka, θa), (29)

q(bt |bt−1, φt ) ∝ p(φt |bt )p(bt |bt−1) = N (μb, rb), (30)

with parameters

ka,t = γ −2
a + γ −2

v + 2,

θa,t = [
γ −2

a a−1
t−1 + ṽt v

−1
t

(
γ −2

v + 1
)]−1

, (31)

μb,t = rb,t

[
σ−2

b bt−1 + σ−2
φ (φt − φ̃t )

]
,

rb,t = (
σ−2

b + σ−2
φ

)−1
.

Derivation of q(Qt |y1:m, s1:t ) is more demanding since the
likelihood (Equation (19)) is not conjugate. We propose to fol-
low the Laplace method (Kass and Raftery 1995), based on
local linearization via the Taylor expansion. The conditional
distribution on the dose Qt is then

q(Qt |y1:m,t , s1:t ) = tN (
μQ, σ 2

Q, 〈0,∞〉 )
, (32)

where algorithm for evaluation of moments μQ, σQ is described
in the supplementary material available online.

4.4 Second Stage: Multiple Populations

Once we have an empirical approximation of the posterior in
the form of empirical density from the first stage, we may use
it to initialize the population-based algorithms. We choose the
parametric form to be

q(log at , bt , log Qt |μθ,�θ ) = N (μθ,�θ ), (33)

which requires an additional Jacobian in the evaluation of
the likelihood function. Estimation of the parameters θ =
[μθ,�θ ] can be done via the cross entropy (CE) minimization
(Rubinstein and Kroese 2004). The idea of CE is to choose
a value of the parameter θ as the one that minimizes the
Kullback–Leibler divergence between the empirical representa-
tion (24) and q(xt |θ ). For parametric forms from the exponential
family, the minimum can be obtained analytically. Specifically,
for the Normal distribution, q(xt |θ ) = N (μθ,�θ ):

μ̂θ =
∑

i

wix
(i)
t , �̂θ =

∑
i

wix
(i)
t

(
x(i)

t

)′ − μ̂θ μ̂
′
θ . (34)

Note however, that for an extremely low number of effective
samples, neff = (

∑
i(w

(i)
t )2)−1, this estimate would be mislead-

ing since the covariance matrix may not be positive definite.
To derive a more robust solution, we note that the CE method

is a special case of the so-called geometric parameter estimation
(Kulhavý 1996). Specifically, Equation (34) is the maximum
likelihood estimate which is sensitive to the lack of data. There-
fore, we propose to replace it by Bayesian version of geometric
estimation (Kulhavý 1996, chap. 2):

p(θ |xt , wt ) ∝ p(θ ) exp
(−neff KL(pemp(xt |y1:t ), p(xt |θ ))

)
.

(35)

Here, pemp(·) denotes the approximate posterior (24), and
KL(·, ·) is the Kullback–Leibler divergence. Substituting a Nor-
mal distribution (Equation (34)) into Equation (35), we obtain a
nonstandard form of a conjugate Bayesian update of its param-
eters. The conjugate prior for the Normal likelihood is in the
form of Gaussian–inverse-Wishart

p(θ |xt , wt ) = N (
x̂[0], γ [0]�θ

)
iW

(
ν[0],�[0]

)
,

with statistics x̂[0], γ [0], ν[0],�[0]. Posterior statistics in the sense
of Equation (35) are

γ [m]
t = γ [0]

1 + γ [0]neff
,

x̂[m]
t = x̂[0] + γtneff

(
μ̂θ − x̂[0]

)
, (36)

ν[m]
t = ν[0] + neff,

�[m]
t = �[0] +

[
neff(�̂θ + μ̂θ μ̂

′
θ − x̂t x̂′

t )

+ 1

γ [0]

(
x̂[0]

(
x̂[0]

)′ − x̂t x̂′
t

)]
.

Note that Equation (36) can approach Equation (34) arbitrarily
close by for a very flat prior. However, an informative prior
regularizes the parameter estimates in cases with very small
neff . For this application, we propose to set the prior statis-
tics to match the moments of the unweighted samples from
the first stage. This uniquely determines statistics x̂[0] and �[0],
while statistics γ [0] and ν[0] need to be chosen. The full algo-
rithm for population Monte Carlo setup of M populations is in
Algorithm 1.

5. RESULTS

5.1 Simulation Setup

The simulated accident was a release of radionuclide
41Ar with a decay half-life of 109.34 min. Radionuclide 41Ar was
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Algorithm 1 Population Monte Carlo estimation for the contin-
uousmonitoring system
Initialization: sample state variable xt from prior densities,
p(xt ). Select the number of populations M and the number
of particles in them, for example, n[m] = N

M
.

At each time t do:

1. Collect measurements yt .
2. For each particle, i = 1, . . . n[1] do:

(a) Update parameters ka,t , θa,t , μb,t , rb,t using Equation
(31) and sample new values of a

(i)
t , b

(i)
t from Equations

(29) and (30).
(b) Compute new locations of all puff centers l(i)t using

Equations (12), (13), and (3).
(c) Evaluate radiation dose coefficients ci,t for each sensor

using Equation (15).
(d) Update parameters μQ,t , σQ,t of proposal density

(Equation (32)) and sample new values Q
(i)
t .

3. Evaluate statistics μ̂t , �̂t (34) for n[1] particles and set
x̂[0] = μ̂t , �

[0] = ν[0]�̂t .
4. For each population m = 1, . . . ,M − 1 do:

(a) Evaluate weights w
(i)
t (Equation (25)). PMC &

mAMIS: only for the last population using proposal
(Equation (33)). AMIS: for all previous samples using
Equation (28). Compute neff .

(b) Evaluate parameters x̂[m]
t , γ

[m]
t , ν

[m]
t , �

[m]
t using

weights from Step 4(a) via Equations (36) and (34),
and recompute μ̂

[m]
θ , �̂

[m]
θ = 1

ν
[m]
t

�
[m]
t .

(c) Sample particles in the n[m+1] population from Equa-
tion (33)with μ̂

[m]
θ , �̂

[m]
θ .

5. Evaluate weights w
(i)
t (Equation (25)). PMC: for i from the

last population. AMIS & mAMIS: for all samples using
Equation (28).

chosen because it allows us to use simplified formula (16) for
evaluation of the dose. Bayesian filtering is performed with a
sampling period of 10 min, matching the sampling period of the
RMN which provides measurements of a time integrated dose
rate in 10-min intervals. The same period was assumed for the
anemometer.

Observations were sampled from distributions described in
Section 3.4 with mean values evaluated from the dispersion
model. Integration (15) must be performed in both time and
space domains. Integration in time is done in substeps �t/5.
Spatial integration in Equation (16) is approximated using Gauss
quadrature rules (Golub and Welsch 1969), and the “n/μ”
method (Pecha and Hofman 2011) with n = 15. The same eval-
uation routines are used for the particles.

5.2 Model Calibration

Documentation provided by manufactures of the radiation
dose sensors was used to establish their accuracy in terms of
parameters introduced in Section 3.4. In our case, the parameters
were γy = 0.2 for the dose monitoring stations, γv = 0.1 and
σφ = 5 degrees for the anemometer.

Parameters of the transition model from Section 3.3 can be
estimated from historical data. Since the observations of the

wind field as well as their forecasts are recorded, we can choose
a fixed length window of historical data and estimate parameters
γa, σb. For the presented example, we estimated γa = 0.2 and
σb = 15 from a continuous windows of historical data of 1000
samples. This estimation procedure can be repeated for new
observations. The numerical weather predictions were provided
by the MEDARD system (Eben et al. 2005) with grid resolution
9 km. The category of Pasquill’s atmospheric stability was D.

5.3 Idealistic Scenario With Known Release Time
and Duration

As noted in Section 3.2, validity of the random walk transition
model (Equation (11)) for the released activity is questionable.
To verify if the data are sufficiently informative to justify the
use of the temporally uncorrelated prior (Equation (10)), we
simulated a release with constant release rate Qt from time
t = 1, to t = 6, with Q1:6 = [1, 1, 1, 1, 1, 1] × 1016Bq. This
scenario allows for comparison with previous approaches that
were using the bootstrap proposal (e.g., Hiemstra, Karssenberg,
and van Dijk 2011).

Results for estimation of the SMC with N = 1000 particles
for various proposal densities are displayed in Figure 5 in the
form of boxplots of Qt . Note that the number of efficient parti-
cles has significant impact on the spread of the posterior density
(Figure 5, left) and consistency of the estimate for repeated runs
of the same procedure in a Monte Carlo study (right). The fol-
lowing proposal densities are compared: bootstrap, particles are
drawn from the transitional density (Equation (20)); Laplace,
where all N particles are drawn from the first stage, that is, N =
n[1]; PMC,with 100 particles in the first stage, 4 populations of
100 particles to adapt the parametric form, and finally 500 par-
ticles from the last population; AMIS, with 100 particles in the
first stage and then 9 adaptive populations of 100 particles; and
mAMIS, with the same setup as AMIS. The bootstrap filter was
run with the transitional density (Equation (11)). All other fil-
ters used the temporally uncorrelated prior (Equation (10)) with
uninformative parameters, αQ = 1, βQ = 0. The use of the tran-
sition proposal in the population-based methods yields results
nearly identical to those with the temporally uncorrelated prior.

All methods have nearly identical execution time, since the
most expensive operation is evaluation of the moments of the
likelihood (Equation (19)) via Equations (15)–(17) which is
done N times for all methods. All methods were implemented
in the C language and their execution time was measured. The
number of effective samples per second of execution time is
displayed in Figure 6 (right).

Note that the most demanding part of estimation is for t =
1, . . . , 6 in which the new puffs are being released. In this part,
the bootstrap filter often degenerates to neff = 1, in spite of
the fact that the initial density (10) had its mean value at the
simulated value 1016 Bq and low dispersion of 10%. Even for
the bootstrap proposal, the estimated parameters are close to
the true value, Figure 5 (right); hence, the accuracy of the point
estimate may be sufficient for some tasks. However, from t =
3, all particles have the same value and all quantiles of the
posterior lie on the same line in Figure 5 (bottom left). This
lack of reliable uncertainty bounds makes the method similar
to the optimization methods mentioned in the introduction. The
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Figure 5. Release with constant release rate, known start and duration. Left: estimates of the released activity of the first puff, Q1 using
data available at times t = 1, . . . , 18, from a typical run of the SMC estimation. Dashed horizontal line denotes simulated value of Q1. Right:
distribution of the expected value of Q1 at times t = 1, . . . , 18 for 100 Monte Carlo trial runs of the SMC estimation.

Laplace method yields a more efficient proposal, however the
estimated neff can be also very low, as in time t = 6 (Figure 6,
left). This is not surprising, since the Laplace approximation is
not recommended if the number of observations is low (Kass
and Raftery 1995). After t = 6, the puffs are no longer generated
and then Qt = 0,∀t > 6. In times t = 7, . . . , 11, the puffs in
the air are still close to the radiation sensors and thus provide
additional information about wind speed and direction. After
t = 11, the RMN registers only measurements of the natural
radiation background and the proposals (Equations (29) and
(30)) for the wind speed and the direction becomes optimal
(Equation (26)).

Accuracy of the estimates provided by all methods can be vi-
sualized in Figure 5 via boxplots of estimation results for Q1 for
all studied methods. The best results are for the AMIS method,

since the variance within a single run is preserved in all 18 steps
(Figure 5, top left), and the method yields the most consistent
results as demonstrated by lowest variance of the mean of Q1 in
the Monte Carlo study (Figure 5, top right). This suggests that
the potential theoretical drawback of the AMIS method—that
is, the possibility of a biased estimate—does not occur, or that
it is negligible in this application. The best performance of the
AMIS method can be contributed to its ability to achieve the
highest number of effective particles. Note that it never falls be-
low 100 (Figure 6, left), which sharply contrasts with that of the
bootstrap proposal which falls as low as one effective particle.

Another important conclusion from this experiment is that
the ring of sensors near to the power plant is sufficiently infor-
mative about the release activity and it is sufficient to consider
uninformative and uncorrelated prior Equation (10). This model

Figure 6. Release with constant release rate, known start, and duration. Left: average number of effective particles over 100 Monte Carlo
trials. Right: average number of effective particles per one second of execution time over 100 Monte Carlo trials.
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Figure 7. Continuous monitoring of a sudden release of activity. Top row: Boxplot of estimated activity of the last 12 (hypothetically)
released puffs, and its comparison to the simulated values (dashed line). Bottom row: contour plots of the mean value of the ground level
gamma dose at each point on the map. Clear space corresponds to the background level, solid lines in the contours correspond to levels
[1e − 6, 1e − 5, 1e − 4, 1e − 3, 1e − 2]Sv/h, respectively.

can be reliably estimated by the proposed adaptive proposals,
where both components are important: the Laplace’s approxi-
mation is necessary to create the initial estimate, and the pop-
ulation strategies allow further improvement even in situations
with very low neff as demonstrated at t = 6.

5.4 Continuous Monitoring

Test of continuous operation of the SMC was performed in
a simulation of a sudden release of the pollutant. The python
code and data for this experiment is provided online as a supple-
mentary material. The simulated release started at t = 12 and
ended at t = 18 with Q12:17 = [1, 5, 4, 3, 2, 1] × 1016 Bq. The
initial samples represent a period of normal operation, which

is supposed to be arbitrarily long. Results of continuous esti-
mation are displayed in Figure 7 for four selected time steps,
t = 12, 15, 18, 21, corresponding to the exact moment of the
release, and 30, 60, 90 min after that. At each time step, a win-
dow of 12 puffs is estimated. During normal operation, the
estimated activity fluctuates around Qt ≈ 1e10, because the
ground-level dose from such a puff is much lower than the
radiation background, as demonstrated on the corresponding
contour plot (Figure 7). Inaccurate estimation of the dose in
this regime is thus insignificant for the main purpose of the
system.

The abrupt release of activity is immediately recognized, and
its activity correctly tracked. When the release is over, the es-
timated released activity returns immediately to the values that

Figure 8. Histograms of the total committed dose from a radiation accident in selected POI (locations of the POI are displayed in Figure 1).
The vertical line denotes the simulated value.
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were estimated before the release. This confirms informative-
ness of data from the first ring of the RMN.

The posterior densities (Equation (24)) encode useful infor-
mation which needs to be presented to the decision makers. One
of the most valuable supporting materials from the human point
of view is the contour plots of the total committed dose (Bartzis
et al. 2000), which is a superposition of contours from Figure 7.
However, in the probabilistic formulation, the total committed
dose has its own posterior density, leading to contours of its
own, or alternatively a histogram of the quantity of interest at
the POI, see Figure 8. An important conclusion is that the radi-
ological quantities simulated from the true parameters are well
within the highest posterior density regions and the procedure
does not underestimate their uncertainty.

6. CONCLUSION

We studied issues related to the design of a fully automated
system of continuous monitoring of a radiation situation that
would provide guidance for human decision makers during crit-
ical situations. Based on previous work, we propose a stochastic
model of the accident and a measurement model that suits the
existing RMNs. The model is highly nonlinear and its evalu-
ation requires a computationally demanding numerical proce-
dure. The main task was to sequentially estimate the state of the
model including its uncertainty bounds.

Bayesian methods and Monte Carlo techniques in particular
have been shown to be effective tools for estimation of such
models. They have already been used for similar tasks using the
bootstrap approach. We have shown that the bootstrap filter is
extremely inefficient in the considered setup and may signifi-
cantly underestimate the uncertainty of the estimate. We propose
a two-stage strategy of design of a new proposal density based
on a combination of ideas of local linearization, population
Monte Carlo, and information geometric parameter estimation.
The new proposal density significantly improved efficiency of
the filter that allows us to evaluate much more informative es-
timates in the same computational time. The new proposal also
allowed us to use a noninformative prior on the released activity,
which simplifies tracking of abrupt changes of the release rate.

With the proposed scheme of adaptation of the proposal den-
sity, the estimation can be run with only 1000 particles which is
affordable to compute in real time with inexpensive hardware.
Moreover, efficient proposals may allow us to estimate more
parameters of interest, for example, the dispersion coefficients
or Pasquill’s category of atmospheric stability, in the future.

SUPPLEMENTARY MATERIAL

Data and code: Data and code used in the experiment in Section
5.4. The code is implemented in the Python language using
numpy libraries. Further speedup of the code execution can
be achieved by translation of the code to the C language via
the cython project. However, this is optional. (zip file)

Derivations: Laplace approximation of the shifted inverse
gamma likelihood and gamma prior. (pdf file)
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Šmı́dl, V., and Hofman, R. (2013), “Tracking of Atmospheric Release of Pol-
lution Using Unmanned Aerial Vehicles,” Atmospheric Environment, 67,
425–436. [520]

Thompson, I., Andersen, C., Bøtter-Jensen, L., Funck, E., Neumaier, S., and
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