
Extending Horizon of Finite Control Set MPC of
PMSM Drive with Input LC Filter using LQ

Lookahead

Václav Šmídl
Institute of Information Theory and Automation

Prague, Czech Republic
email: smidl@utia.cas.cz

Štěpán Janouš, Zdeněk Peroutka
Regional Innovation Centre for Electrical Engineering

University of West Bohemia
Pilsen, Czech Republic

email: peroutka@ieee.org

Abstract—Finite control set model predictive con-
trol (FS-MPC) has been shown to be a very effective
approach to control of PMSM drives. FS-MPC is a
very flexible tool since it can evaluate an arbitrary
loss function. However, design of the appropriate loss
function for the problem can be a challenge especially
when the design input is visible only on the long hori-
zon. An example where this problem becomes apparent
is the main propulsion drive of a traction vehicle fed
from a dc catenary. Specifically, the catenary voltage
is subject to short circuits, fast changes, harmonics
and other disturbances which can vary in very wide
range. Therefore, the drive is equipped with the trolley-
wire input LC filter. The filter is almost undamped
by design in order to achieve maximum efficiency and
the control strategy needs to secure active damping
of the filter to guarantee the drive stability. While it
is possible to introduce active damping terms to the
loss function, it is hard to predict its properties. In
this paper, we consider decomposition of the problem
to control of the LC filter and PMSM drive. We show
that the resulting controllers can be elegantly combined
using Bellman’s principle of optimality. The resulting
controller is easy to design and its performance is
demonstrated in simulation and experiments on 10.7
kW drive.

I. Introduction

Control of PMSM drives is a well researched topic with
many approaches ranging from classical control solutions
[1] to finite control set model predictive control [2]. The
finite control set model predictive control (FS-MPC) is
attractive since it naturally addresses the problem of
switching of the power electronics elements rather than
converting continuous solution through the PWM. Simple
implementation of FS-MPC together with great flexibility
lead to successful application of this approach to many
real problems [3]. However, one remaining open problem
of FS-MPC is the design of the optimality functions and
evaluation of long prediction horizons. In this paper, we
show that classical LQ control design can help to address
both of these problems. We will use the dynamic program-
ming approach [4] also known as the Bellman principle of
optimality.

The issue of long prediction horizons is mostly visi-
ble in demanding cases of drive control. One such case

is control of oscillations of trolley-wire LC filter in dc
catenary supplied traction drives, e.g. [5], [6]. Traction
drives use an input LC filter and not only a C-filter for the
following reasons: (i) an effective limitation of the trolley-
wire current (due to fast changes of the catenary voltage
and short-circuit of the trolley-wire), and (ii) EMC issues.
Thus, the LC filter is necessary for proper operation of the
drive. On the other hand, the dc-link LC filter has negative
impact on the traction drive stability.

The LC filter resonance can be excited by many events
by the drive itself (e.g. unsuitable control commands or
drive harmonics) or from the outside. One of the most
common effects from outside which can excite the filter
oscillations is the change of the catenary voltage which
can vary very fast due to different reasons. If the catenary
voltage increases then the drive still takes the constant
power from the dc-link filter (fixed torque command and
negligible speed change within the time interval of inves-
tigated transient phenomenon). Under some conditions,
this may act as a positive feedback (or negative-resistance
effect) which results in dangerous oscillations of the dc-
link filter. This phenomenon can be also explained using
frequency characteristics of the drive.

The resonant frequency of the drive is changing e.g.
with the change of the position of the vehicle within the
feeding section (change of the catenary parameters with
varying distance from the static substation). However, the
drive resonance properties are also changing with the drive
operating point (for more details see [7]). A dangerous
situation also occurs when the resonance loop is composed
of a two or more traction drives [8]. It is obvious that the
explained phenomenon significantly impacts the stability
of the traction drive and must be carefully considered
during the drive design.

II. Lookahead algorithms for MPC
The task of optimal model predictive control is com-

monly defined as finding a sequence of inputs minimizing
the chosen optimality criterion or loss function:

u∗t:t+h = arg min
ut:t+h∈U

L(xt:t+h, ut:t+h, xt:t+h), (1)

where xt:t+h denotes the trajectory of the system state xt
on the horizon of length h,

∑
u is the system input and



xt is the reference (requested) state of the system. Set U
denotes a set of all admissible control inputs ut.

Formulation (1) is particularly well suited for control of
power electronics with short prediction horizon since the
number of possible control actions is small and it is possible
to evaluate loss (1) for all of them in the considered control
period. This is the principle of FS-MPC. An alternative to
minimization of (1) over input sequence is to minimize the
loss function over policy, i.e. a function generating inputs.

A. Dynamic programming

Optimization of the loss function (1) can be done
analytically, if the loss function can be written in additive
form

L(xt:t+h, ut:t+h, xt:t+h) =
t+h∑
τ=t

lτ (xτ , uτ , xτ ),

then, optimum policy u∗t = υ∗(xt, xt) satisfies

V (xt, xt:t+h) = min
ut

{lτ (xτ , uτ , xτ ) + V (xt+1, xt+1:t+h)} .
(2)

Here, function V (xt, xt:t+h) is known as Bellman function
or cost-to-go [4]. It is evaluated in backward manner start-
ing with chosen value V (xt+h, xt+h). Analytical solution
of (2) are known only for a limited number of models, for
example linear systems with quadratic loss function (LQ).
For more complex models, the optimization (2) becomes
intractable and must be approximated.

B. Linear Quadratic control

Dynamic programming for linear system with quadratic
loss function

xt+1 = Axt +But, (3)
lt(xt, ut, xt) = xt

TQxt + utRut. (4)

solution with quadratic Bellman function V (xt, xt) =
xTt ΨT

t Ψtxt, and optimal policy u∗t = −KxTt . The recursion
can be found using square root decomposition of the
matrices Qt = Q

1
2
t Q

1
2
t , Rt = R

1
2
t R

1
2
t . Then,

lt(xt, ut) + V (xt+1) = [uTt , xTt ]ZTZ
[
ut
xt

]
, (5)
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1
2

Q
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Ψ
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2
t+1B Ψ

1
2
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 .
Using an arbitrary triangularization procedure, product
ZTZ can be uniquely decomposed into product of trian-
gular matrices

ZTZ = Y TY, Y =
[
Yuu Yux

Yxx

]
,

yielding

lt(xt, ut) + V (xt+1) =
(Yuuut + Yuxxt)T (Yuuut + Yuxxt) + xTt Y

T
xxYxxxt. (6)

Figure 1. Illustration of FS-MPC with LQ lookahead

which is quadratic in ut and thus minimized for Yuuut +
Yuxxt = 0. The optimal policy is then

u∗t = −Kxt, , K = Y −1
uu Yux (7)

and the minimum of the loss is Vt(xt) = xTt Y
T
xxYxxxt. As-

signment Ψt = Yxx completes recursion of the computation
(2). This basic algorithm can be analogously derived for
any quadratic loss function.

C. Lookahead algorithm

Evaluation of the Bellman function for a non-linear
problem is often computationally intractable and approxi-
mations were developed to address this issue. A convenient
way how to combine the best of predictive control with
dynamic programming is the limited lookahead policy [4]

u∗t:t+h = arg min
ut:t+h∈U

{
L(xt:t+h, ut:t+h, xt:t+h) + Ṽ (xt+h)

}
,

(8)
where the prediction horizon h is short as in predictive
control, and Ṽ (xt+h) is an approximation Bellman func-
tion for the prediction horizon beyond t + h. From many
different techniques for design of Ṽ () we focus on the
limited lookahead approach, where the Bellman function
is obtained by analytical solution of a simplified model of
the system. In this text, we propose to use linear Gaussian
model simplification to obtain the Ballman function in the
form of a quadratic function around a LQ controller. The
final Algorithm for LQ lookahead FS-MPC is summarized
in Algorithm 1.

The on-line part of the algorithm is identical to a
standard FS-MPC approach with additional quadratic loss
function. The key difference is in design of this additional
term. Its coefficients (Yuu and Yux) are not directly tuned
by the designer. They result from the iterative optimiza-
tion of the LQ procedure. Iterating the recursion (2) until
a steady state solution is equivalent to optimization of the
predictive control on infinite horizon length.

This design procedure can be easily extended for on-
line adaptation of the LQ Bellman function. The resulting
algorithm would be similar to the cascade control, where
the output of the LQ controller provides inputs for the
FS-MPC controller. The unique feature of such approach
is that the LQ controller provides not only reference values
but also penalization matrices for the FS-MPC controller.



Algorithm 1 Design procedure of the FS-MPC with LQ
lookahead.
Off-line (LQ):

1) Design approximate linear model of the controlled
system (or its important subsystem) with matri-
ces A,B.

2) Choose quadratic loss function lLQ with penaliza-
tion matrices Q,R.

3) Run dynamic programing algorithm to obtain
the core of the Bellman function Yuu, Yux, Yxx.
This can be done in potentially many points of
linearization.

4) Validate results of the optimized closed loop. If
not successful GOTO 2.

On-line (FS-MPC):
1) For all potential inputs u(i)

t ∈ U, i = 1, . . . , I
evaluate li = {lMPC(xt+1, ut) + (Yuuu(i)

t +
Yuxxt)T (Yuuu(i)

t + Yuxxt)},
2) Choose input function with the minimum loss li.

Figure 2. Equivalent circuit of the dc catenary supplied traction
drive with input LC filter

III. Control of PMSM drive with input LC
filter

The equivalent circuit of the drive used for the descrip-
tion of the LC filter resonance is shown in Fig. 2. The
voltage-source converter and an ac motor can be replaced
by an equivalent current source which models the filter
load.

A. Model of the controlled system

State equations of the PMSM drive are:
did,t
dt

= − Rs
Lsd

id,t + Lsq
Lsd

iq,tωt + 1
Lsd

ud,t, (9)

diq,t
dt

= − Rs
Lsq

iq,t −
Ψpm

Lsq
ωt −

Lsd
Lsq

id,tωt + 1
Lsq

uq,t, (10)

dω

dt
≈ 0, (11)

where id,t, iq,t are the currents in rotating (d-q) reference
frame of the drive; ωt is the electrical rotor speed; Lsd and
Lsq are stator inductances; Rsis a stator resistance, Ψpm

is the flux linkage excited by permanent magnets on the
rotor, and ud,t, uq,t are coordinates of the input vector.

The associated LC filter can be modelled as:
dil,t
dt

= −Rf
Lf

il,t + 1
Lf

(UT,t − Uc,t), (12)

dUc,t
dt

= 1
Cf

(il,t − iz,t), (13)

dUT
dt

= 0, (14)

where Rf , Lf and Cf are the resistance, inductance and
capacitance of the LC filter; il,t is the catenary current,
UT is the catenary voltage and Uc is the voltage on the dc-
link filter capacitor; iz is the current consumed from the
dc-link capacitor by the voltage-source converter.

The systems interact via current equation:

izUc = 3
2(idud + iquq). (15)

B. FS-MPC of the PMSM drive
Control of the PMSM drive with FS-MPC is a well

studied problem [2]. For torque control of the drive, we
may choose loss function as

lPMSM,t = i2d,t + (iq,t − iq,t)2 + χ(|i| > imax), (16)

where χ is high penalty for violation of current constraints.
The constraint are typically formulated in the phase cur-
rents, i.e. ia,t > imax coordinates.

However, loss function (16) does not consider stability
of the LC filter and can be lead to unstable behavior of the
drive. Various active damping extensions of the loss func-
tion has been proposed, e.g. in [9], [10]. In this approach,
we design active damping term using LQ lookahead.

C. Control of the LC filter
Note that the model of the LC filter (12)–(14) is linear

with state xf,t = [il,t, Uc,t, UT,t],

dx

dt
=

−
Rf

Lf
− 1
Lf

1
Lf

1
Cf

0 0
0 0 0


︸ ︷︷ ︸

Acf

[
il,t
Uc,t
UT

]
+

 0
− 1
Cf

0


︸ ︷︷ ︸
Bcf

iz,t, (17)

where iz,t is considered as controlled input of the LC filter.
Which can be linearized for sampling time ∆t as follows:

xf,t+1 = Afxt +Bf iz,t,

Af = exp(Acf ∆t), (18)

Bf =
∫ ∆t

0
exp(Acf σ)Bcfdσ (19)

The control aim is to achieve damped oscillations, we
intend to minimize quadratic loss

lLC = i2l q
2
l + (Uc − UT )2q2

c + i2zq
2
z . (20)

where ql,qc and qz are chosen penalizations;
Following the general algorithm of LQ design

(Section II-B) with the assumption of Bellman
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Figure 3. Properties of the closed loop for LQ controller with differ-
ent penalizations. Left: damping ratio; Right: resonance frequency.

function Vt = xTt ΨT
t Ψtxt, the function to minimize is

(5) with iz in the role of ut, and

Z =
[

qz 0
0 QC

Ψt+1BE Ψt+1AE

]
, QC =

[
ql 0 0
0 qc −qc

]
,

After triangularization (6), the loss function have form

lrollout = (Yuuiz,t + Yuxxf,t)T (Yuuiz,t + Yuxxf,t), (21)

which is iterated until convergence.

IV. Simulations

The proposed control approach was tested on a system
with parameters:

Rs = 0.28, Ls = 0.003465,
Lf = 0.006, Cf = 0.004,
Rf = 0.01, Ψ = 0.1989, (22)
∆t = 25e−6,

In the first experiment, we compare properties of the LC
filter. Substituting (22) into (17)–(18), we obtain linear
model with eigenvalues poles at [1, 0.9999, 0.9999], i.e. at
the stability boundary. Any disturbance can thus cause
undamped or even unstable oscillations.

Since the LQ design yields linear controller, the prop-
erties of the closed loop can be tested using standard
linear systems theory. This can be helpful for tuning of the
penalization terms qc, ql and qiz. We may design controllers
for different penalization values and check the closed loop
properties. Properties of the closed loop of the LC filter
for qiz = 1 and a range of qc = 〈0.1, 10〉 ql = 〈0.1, 10〉
are displayed in Figure 3 via damping ratio and resonance
frequency. Note that these properties are not guaranteed
for the final control system, however, these properties may
guide tuning of the penalizations.

Iterations of the LQ recursion for penalization matrices
[1, 1, 1] is displayed in Figure 4. The iterations start at
t + h, i.e. optimization on horizon of length 100 would
yield controller coefficients displayed at 900 on the x axis.
Since the coefficients stabilize after 700 iterations, resulting
controller is optimal on horizon of length 700 and more.

Application of the LQ term (21) in the FS-MPC was
tested on a step change of the catenary voltage from 200
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Figure 4. Convergence of the LQ controller and coefficient Yuu on
horizon of length h = 1000.

V to 170V. The requested current iq was kept constant at
20A for the whole time of the simulation. If the drive was
controlled by the FS-MPC controller (16), the reference
current was followed exactly, however, the drop of the
catenary voltage resulted in undamped oscillations (Figure
5 left). Including the LQ term (21) with ql = 3,qc = 10
and qiz = 0.1 to the FS_MPC loss function resulted
in suppressed tracking of the initial reference a little,
however, it secured damped oscillations of the capacitor
voltage after the drop of the catenary voltage.

V. Experiments
A laboratory prototype of the PMSM with the input

LC filter with the same parameters as in the simulation
(22) was used to verify the approach experimentally. The
control algorithm was implemented in TMS320F28335
signal processor supporting floating point calculations. The
experiments ware designed to approximate the worst case
scenario of operating conditions of a traction drive fed from
a DC-catenary.

A drop of catenary voltage from 80 V to 60 V was sim-
ulated, with constant electrical rotor speed of fme=15Hz.
The drive was operated in torque control mode and the
requested current iq= 20A was kept constant during the
experiment.

If the drive controller does not use any active damping
method, the behavior of the drive under the tested condi-
tions may results in undamped (or very lightly damped)
oscillations of the input LC-filter as demonstrated in Fig.
6. This behavior would result in emergency shutdown of
the drive.

Next, we evaluate performance of two approaches to
active damping. Both of them are based on extension of the
basic FS-MPC controller with loss function (16). The first
approach is based on introduction of a simple ‘damping’
term in the loss function

lUC,t = lPMSM,t + (Uc,t+1 − Uc,filtered)2Quc, (23)

where Uc,filtered is filtered capacitor voltage and Quc is a
penalization of the damping term. This method is closely
related to the approach of [11]. The second approach is
the proposed quadratic term (21) designed by the LQ
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Figure 5. FS-MPC control of PMSM drive without (left) and with the LQ term (right). Top row: current and voltage of the LC-filter.
Bottom row: reference and measured currents in the PMSM drive.

Figure 6. Catenary voltage drop. FS-MPC without LC-filter stabi-
lizing, constant el. rotor speed offme=15Hz, ch1: id (35A/div), ch2:
iq (35A/div), ch3: Ut (50V/div), ch4: Uc (25V/div),.

lookahead approach (Algorithm 1). Naturally, performance
of both approaches depend on the chosen penalizations. We
tried to tune the penalization matrices of both approaches
to obtain similar behavior.

In the first comparison, we tuned the penalizations to
achieve light damping of the capacitor voltage. Results
of both compared approaches are displayed in Figure 7.
The results of both methods are almost identical, proving
suitability of the simple penalization such as (23) for this
task.

In the second comparison, we tuned the penalizations
to achieve fast damping of the capacitor voltage, Figure
8. While the LQ lookahead approach was able to stabilize
the transient and achieve stable steady state performance,
the conventional approach was able to suppress the har-
monic oscillation but did not achieve stable steady state
performance. Different tuning can suppress the amplitude
of the instability in Figure 8 however, the LQ lookahead
approach always provides more stable steady state behav-
ior.

Note that the fast damping tuning increased torque
ripple (see in Fig. 8) compared to the light damping in
Figure 7. Thus, the resulting behavior is always a trade-off
between the torque ripple and the filter capacitor voltage
ripple.

VI. Conclusion

In this paper, we proposed to extend the horizon of
optimization of the FS-MPC using LQ lookahead. This is
a special case of the limited lookahead approach known
from optimal control. We proposed to use the LQ control
since it is well understood, and can be efficiently computed
even for long horizons. The approach was demonstrated
on control of a PMSM drive with an input LC filter. The
LQ lookahead was applied only for the model of the LC
filter which is linear with time invariant parameters. The
resulting filter has a cascade structure with LQ controller
providing setpoint for the FS-MPC algorithm. Even in this
simplistic setup the resulting algorithm was able to damp
oscillations of the LC filter. However, we expect that the
methodology has much wider use and can be applied to a
wider class of problems.
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