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Model-based extraction of input and organ functions in dynamic scintigraphic imaging

Ondřej Tichýa*, Václav Šmı́dla1 and Martin Šámalb2

aInstitute of Information Theory and Automation, Adaptive Systems, Pod Vodárenskou vežı́ 4, Prague 182 08, Czech Republic; bInstitute
of Nuclear Medicine, Charles University Prague, Salmovská 3, Prague 12000, Czech Republic

(Received 22 January 2014; accepted 15 April 2014)

Image-based definition of input function (IF) and organ function is a prerequisite for kinetic analysis of dynamic
scintigraphy or positron emission tomography. This task is typically done manually by a human operator and suffers from
low accuracy and reproducibility. We propose a probabilistic model based on physiological assumption that time–activity
curves (TACs) arise as a convolution of an IF and tissue-specific kernels. The model is solved via the Variational Bayes
estimation procedure and provides estimates of the IF, tissue-specific TACs and their related spatial distributions (images) as
its results. The algorithm was tested with data of dynamic renal scintigraphy. The method was applied to the problem of
differential renal function estimation and the IF estimation and the results are compared with competing techniques on data-
sets with 99 and 19 patients. The MATLAB implementation of the algorithm is available for download.

Keywords: blind source separation; convolution; dynamic medical imaging; compartment modelling

1. Introduction

Quatitative kinetic analysis of medical structures is often

based on source separation of dynamic image sequences

from various modalities. The sequence of images allows to

study changes in the images in time which allows to

quantify a kinetic parameter of the studied organs. In this

paper, we assume that the organ images have time-

invariant shape and we observe only temporal changes in

organ activities. This approach is widely used in dynamic

scintigraphy (Di Paola et al. 1982) or positron emission

tomography (Margadán-Méndez et al. 2010). The analysis

is typically performed in two steps. First, time–activity

curves (TACs) of the organs or tissues of interest are

extracted from the dynamic image sequence, and kinetic

analysis is performed on these data. The standard kinetic

analysis requires two types of TACs: (i) the input function

(IF), reflecting the changes of tracer concentration in the

blood and (ii) organ functions, reflecting the changes of

tracer concentration in a specific organ or tissue (Patlak

et al. 1983; Vriens et al. 2009).

In practice, the IF can be directly measured by

sampling the arterial blood (Greuter et al. 2003). This

approach needs a medical intervention which is often not

appropriate in clinical practice. This invasive procedure

can be substituted by extraction of the IF from the

observed images. However, the IF is not observed directly,

and its extraction from the observed images is not unique.

Existing state-of-the-art techniques are based on manual

selection of regions of interest (ROIs) in the observed

images. The IF can be extracted from a ROI placed

directly on the heart, if available, or on other vascular

structures if they can be recognised on the images

(Germano et al. 1992). TACs of the organ functions are

also usually obtained by user-defined ROIs placed

manually on the organs of interest. This approach suffers

from subjectivity, low accuracy and poor reproducibility

(Caglar et al. 2008; Brink et al. 2012). Despite the operator

intuitively tending to avoid image areas with tissue

overlaps that represent mixtures of different organ

kinetics, it is often impossible to exclude them simply

because no regions that would manifest pure IF or specific

organ function exist in the analysed image. User-

independent decomposition of dynamic image sequences

into organ-specific images and associated TACs is thus a

prerequisite for more reliable quantitative analysis of both

clinical examinations and research experiments.

Automatic, or semi-automatic methods for ROI

selection are available (Garcia et al. 2010); however,

they are not completely reliable and the activity is always

counted from the full area of the ROI which may still

include some background organs. An alternative approach

is to use blind source separation (BSS) methods. They

have no physiological assumption in their basic form,

(Miskin 2000); however, some extensions have also been

proposed (Chen et al. 2011; Riabkov and Di Bella 2002).

The aim of this work is to design a mathematical model

that integrates all common assumptions of the domain and

to use this model to create a new BSS method for this

particular task. The model is designed to include

convolution of the IF and tissue-specific kernels. The IF

and the kernel parameters are considered to be unknown.

They are estimated from the observed images using the
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presented BSS method based on the Variational Bayes

(VB) approach (Šmı́dl and Quinn 2006).

The proposed method is tested in three situations. First,

it is used to create a semi-automated procedure for

estimation of differential renal function (DRF). Suitability

of the procedure is studied on a dataset of 99 patients (VFN

Praha 2013). For comparison, the same data were analysed

using manual ROI placement by an expert and by a trained

novice as well as the state-of-the-art algorithms of BSS

such as (Miskin 2000) or (Šmı́dl and Tichý 2012). Second,

we compare the estimated TACs from the competing

algorithms with those TACs obtained by an experienced

physician on a dataset of 19 patients where the manual

estimates from a physician are available. Third, estimated

IFs from ROIs of left and right kidneys using the proposed

method are compared in order to study the consistency of

estimates.

2. Methods

The goal of the designed method is to automatically identify

tissue structures and their related TACs from the observed

sequence of images. The estimation procedure is based on a

probabilistic model that is designed using common

assumptions used in nuclear medicine. These assumptions

are the following: (i) the observed image is a superposition

of the underlying tissue images, (ii) the TACs are described

by a compartment model, where each TAC arises as a

convolution between a common IF and a tissue-specific

kernel (Riabkov and Di Bella 2002), (iii) the tissue images

and the TACs are non-negative and (iv) the variance of the

observation noise is identical for all pixels. Assumption (iv)

can be easily relaxed for signals with noise proportional to

the signal strength by using the correspondence analysis

preprocessing (Benali et al. 1993). These assumptions are

now formulated mathematically via a probabilistic model.

The VB methodology is used to estimate all unknown

parameters of the proposed model.

2.1 Mathematical model assumptions

The observed sequence of images is indexed by a discrete

time index t, the number of images in the sequence is n.

The sequence is assumed to be composed of r underlying

tissues indexed by symbol f ¼ 1; . . . ; r, r is unknown.

Each observed image is stored in one vector dt with the

pixels stored column-wise and is assumed to be a sum of

contributions from the underlying tissues

dt ¼
Xr
f¼1

af xt;f ; ð1Þ

where af are the tissue image in the same vector form as

the observed image, and xt;f is the activity of the f th tissue

at time t. The TAC xf , i.e. the organ function, is supposed

to be the result of convolution of the common IF, b, and a

tissue-specific kernel, uf . The tissue-specific kernels, uf ,

are modelled using increments wf as suggested in Kuruc

et al. (1982), hence

xt;f ¼
Xt
i¼1

bt2iþ1ui;f ; ut;f ¼
Xn
i¼t

wi;f ; ð2Þ

and

wi;f ¼
hf sf # t # sf þ lf

0 otherwise;

8<:
where wf is the f th tissue-specific vector with non-

negative elements with specified structure. Here, hf is the

height of each increment in the f th tissue, sf is the starting

point of the increments and sf þ lf is the ending point of

the increments. In other words, vectorwf is supposed to be

in the form of ½0; . . . ; 0; hf ; . . . ; hf ; 0; . . . ; 0� ; Mw f
.

Following Kuruc et al. (1982), we model the IF b as a

sum of increments:

bt ¼
Xn
i¼t

gi; ð3Þ

where g is vector with increments of the same size as

vector b. The original motivation of Kuruc et al. (1982)

was to allow only positive increments gi; however, this

assumption is not present in our model.

2.2 Probabilistic model

The deterministic model assumptions in Section 2.1 are

valid only approximately. For example, the measurements

of dt (1) are subject to noise with unknown variance v.
The observed images dt are thus random realisations from

the probability density:

f ðdtjvÞ ¼ tN
Xr
f¼1

af xt;f ;v
21Ip

 !
; ð4Þ

f ðvÞ ¼ Gðq0; r0Þ; ð5Þ

where p denotes the number of pixels in the image, In is the

identity matrix of size n, tNð:; :Þ is the multivariate normal

distribution truncated to positive values with a given mean

vector and covariance matrix. Following the Bayesian

approach, each unknown parameter needs to have a prior

distribution of its potential values. The prior distribution of

the unknown variance of the observation noise, v, is

assumed to be of the gamma form, Gð:; :Þ, with prior

parameters q0; r0. The choice of distributions from

exponential family also known as conjugate priors,

O. Tichý et al.2
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Ghahramani and Beal 2001), is motivated by tractability in

VB inference (Šmı́dl and Quinn 2006).

The convolution kernel (2) may also differ from the

assumed form, where variances of the differences wf are

unknown, denoted jf . The model of the TACs is composed

from kernels wf and the IF b. The prior distribution of the

f th TAC model is then

f ðwf jjf Þ ¼ tNðMw f
; jf InÞ; ð6Þ

f ðjf Þ ¼ Gðkf ;0; nf ;0Þ; ð7Þ
and f ðhf Þ ¼ tNð0r£1; t0Þ, f ðlf jsf Þ ¼ Uð0; n2 sf Þ and

f ðsf Þ ¼ Uð0; nÞ, where the parameters indexed with zero

are assumed to be known prior parameters, 0n£1 denotes

zero matrix of the respected size and Uð:; :Þ is the uniform
distribution.

The differences between the true IF and the model of

increments of the blood, g, are assumed to have an

unknown variance c. The prior distributions for the

parameters of the IF and the tissue images are

f ðgjcÞ ¼ Nð0n£1;c21InÞ; f ðcÞ ¼ Gðz0;h0Þ; ð8Þ
f ðaf jy f Þ ¼ tNð0p£1; y21

f IpÞ; f ðy f Þ ¼ Gðaf ;0;bf ;0Þ; ð9Þ

where y f is a hyperparameter that allows to select the

number of relevant tissue images, r, via the automatic

relevance determination (ARD) approach (Bishop and

Tipping 2000). The ARD approach is based on the

assumption that the expected value of the variance of a

redundant parameter approaches zero in the VB solution.

In further text, this model will be denoted as the blind

compartment model separation (BCMS).

2.2.1 Alternative model of the IF

The incremental model of IF (3) is one of many possible

parameterisations. For comparison, we also consider direct

estimation of the IF b. Since we are using probabilistic

approach, we also need to specify model of variance of all

elements of b. Assuming unknown mutually independent

variance of each element bt of the IF, we model

f ðbtjctÞ ¼ Nð0;c21
t Þ; ð10Þ

f ðctÞ ¼ Gðzt;0;ht;0Þ; ð11Þ
where ct is the unknown precision (inverse variance) of

element bt, and (11) is its conjugate prior (Tipping and

Bishop 1999). Model (10) and (11) is commonly known as

ARD (Tipping and Bishop 1999).

2.3 VB solution

VB method (Miskin 2000; Šmı́dl and Quinn 2006) is a

technique for assessment of shaping parameters u of

posterior distribution f ðujDÞ. A parametric probabilistic

model of the observation is given as f ðDjuÞ, data D are

conditioned by multivariate parameter u ¼ ½u1; . . . ; uq�0.
The task is to find out a distribution ~fðujDÞwhich should be
as close as possible to the true posterior distribution

f ðujDÞ. Formally,

~fðujDÞ ¼ argmin
�f[Fc

Dð�fðujDÞkf ðujDÞÞ; ð12Þ

where DðfkgÞ is a measure between functions f and g and

Fc is the space of conditionally independent functions. The

VB method selects as the measure the Kullback–Leibler

divergence (KLD) (Kullback and Leibler 1951), i.e.

D ; KLD, which is defined as

KLD ð�fðujDÞkf ðujDÞÞ ¼
ð
�fðujDÞ ln

�fðujDÞ
f ðujDÞ du: ð13Þ

Then, the shaping parameters of posterior distribution

can be found using the VB theorem.

Let f ðujDÞ be the posterior distribution of multivariate

parameter u ¼ ½u1; . . . ; uq�0. Let �fðujDÞ be an approximate

distribution restricted to the set of conditionally indepen-

dent distributions as

�fðujDÞ ¼
Yq
i¼1

�fðuijDÞ: ð14Þ

Then, the minimum of KLD, i.e.

~fðujDÞ ¼ argmin
�f[Fc

KLDð�fðujDÞkf ðujDÞÞ; ð15Þ

is reached for

~fðuijDÞ / exp E~fðu=ijDÞ½lnðf ðu;DÞÞ�
� �

; i ¼ 1; . . . ; q;

ð16Þ
where symbol / means up to normalising constant, Ef ð�Þ
means expected value of an argument with respect to

distribution f and u=i denotes complement of ui in u;
hence, u=i ¼ u1; . . . ; ui21; uiþ1; . . . ; uq

� �
.

Proof can be found in Miskin (2000).

We will formulate the steps of the VB method in the

sense of Šmı́dl and Quinn (2006). The first step is a

formulation of the observation model f ðDjuÞ and prior

distributions of parameters f iðuiÞ followed by construction

of the joint distribution of parameters and observed data

f ðu;DÞ. The fundamental assumption necessary for

analytical tractability of the method is that joint

distribution is from separable-in-parameters family

(Šmı́dl and Quinn 2006):

ln f ðu1; u2;DÞ ¼ f 1ðu1;DÞ f 2ðu2;DÞ ð17Þ

Computer Methods in Biomechanics and Biomedical Engineering: Imaging & Visualization 3
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is an example for two parameters model. The next

step is computing the VB marginals using the VB

theorem (16).

In the following step, the standard parametric posterior

distributions are identified from ~fðuijDÞ as
~fðuijDÞ ; f iðuijciÞ; ;i; ð18Þ

where ci is vector with parameters of selected standard

distribution. The equations for parameters ci can be

established where the expectations of parameters of other

distributions are taken as temporary constants. This step

forms a set of implicit equations together with

formulations of moments of standard distributions used

in (18). The set can be solved iteratively with selected

prior parameters and starting points of estimates. The

selection should be done carefully since only convergence

to a local minimum is guaranteed.

Following the VB method, the optimal approximative

posterior densities (18) were identified to be

~fðgjD; rÞ ¼ Nðmg;SgÞ; ~fðcjD; rÞ ¼ Gðz;hÞ; ð19Þ

~fðvectðWÞjD; rÞ ¼ tNðmvectðWÞ;SvectðWÞÞ;
~fðjf jD; rÞ ¼ Gðkf ; nf Þ;

ð20Þ

~fðAjD; rÞ ¼ tNðmA; Ip^FAÞ;
~fðy f jD; rÞ ¼ Gðaf ;bf Þ;

ð21Þ

~fðvjD; rÞ ¼ Gvðq; rÞ: ð22Þ
Note that vectorised form of matrix W ¼ ½w1; . . . ;wr�,
vectðWÞ, has to be used for computation reason. Shaping

parameters

mg;Sg; z;h;mvectðWÞ;SvectðWÞ; kf ; nf ;mA;FA;af ;bf ;q; r

of posterior distributions (19)–(22) are forming the set of

implicit equations given in Appendix A. The equations

need to be solved iteratively. The computation scheme is

shown in Figure 1. Each experiment runs till the

hyperparameters y f are stabilised.

VB solution for Model (10) and (11) is a straightfor-

ward modification of Equations (A2), (A8) and (A9) from

the BCMS model.

3. Experiments and results

The iterative algorithm was tested on the dataset from

planar renal scintigraphy. In this modality, the pixels of the

images are obtained as counts of radioactive particles

observed by a scintillation camera. The principle of the

imaging is described in Di Paola et al. (1982) and its key

properties are relatively low resolution and Poisson-

distributed noise. Therefore, the observed images are

scaled using correspondence analysis (Benali et al. 1993)

Stoping RuleResults

Initialization
Convolution
Kernels
Estimation

Tissue Images
Estimation

Relevance
Determination

Input Function
Estimation

Figure 1. The computation scheme of the BCMS algorithm.

Figure 2. The uptake part of the scintigraphic sequence. Rough rectangular ROIs placed on left and right kidneys are visualized by
darker colour.

O. Tichý et al.4
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to match the assumptions of homogeneous noise (4). Since

the camera registers radioactive particles from all depths

of the body, the image is a 2D projection of the whole

body. Therefore, each pixel contains contributions from

organs from different depths of the body which is

modelled by superposition of r organs in (1).

A typical sequence contains 180 images of 128 £ 128

pixels recorded in 10 s interval. For detailed analysis, we

typically select only some pixels (via the rough rectangular

ROI) and either all images or the initial part of the

sequence known as the uptake (Durand et al. 2008).

Detection of the uptake time is manual and the same part is

used for all compared methods.

The BCMS algorithm provides results in the form of

tissue images, af, tissue-specific convolution kernel, uf and

IF, b. Results of the application of the BCMS algorithm to

the ROI of the right kidney of the uptake part of the

scintigraphic sequence shown in Figure 2 are displayed in

Figure 3. For these data, the ARD property of the

algorithm selected two structures to be relevant which

corresponds well with biological assumptions. The

estimates corresponding to the background are displayed

in the first row, those corresponding to the parenchyma in

the second row.

In the following sections, we apply the BCMS

algorithm to available datasets from clinical renal

scintigraphy. First, we test the performance of the

algorithm for estimation of the DRF and provide statistical

comparison to competing methods. Second, we use the

database that contains 19 patients with estimated TACs

of parenchyma by an experienced physician. Third, we

study estimates properties of the estimated IFs on both

datasets.

3.1 DRF estimation

DRF (Gordon et al. 2011) is mathematically simple but

clinically important and a hardly obtainable parameter.

It is defined as

DRFL ¼ Lp

Lp þ Rp

; ð23Þ

where DRFL is DRF for the left kidney, Lp is the total

activity of the left parenchyma (i.e. one of the tissues from

decomposition (1)) and Rp is the total activity in the right

parenchyma. The parenchyma is the spongy tissue

covering the whole kidney which accumulates the activity

from the blood. The DRF is traditionally computed on the

uptake part of the sequence, i.e. the interval when the

kidney only accumulates the activity without secretion and

only the parenchyma-part of the kidney is activated

(Durand et al. 2008).

In this section, four methods are applied to the data-

set and their results are compared: two manual and three

semi-automatic.

(i) Reference manual method (RMM): The assess-

ment of DRF is typically based on manual

drawing of the ROIs of parenchyma; however,

details of subsequent evaluation differ from one

hospital to another (Caglar et al. 2008; Brink et al.

2012). The studied dataset already provides

results of the DRF analysis obtained by an

experienced physician using a range of methods

including the Patlak–Rutland plot (Patlak et al.

1983), crosschecking with the deconvolution

method (Kuruc et al. 1982).

(ii) Common BSS (BSS þ ) method: The task of

decomposition of the observed data into a

superposition of a product of two unknowns

(Equation (1)) has been studied in the BSS

literature. Specifically, the method described in

(Miskin 2000) is based on the same assumptions

as the proposed BCMS method, except for the

convolution model. Comparison with this method

then allows to study the influence of this

modelling choice to the results.

(iii) Factor analysis with integrated regions of interest

(FAROIs): The BSS problem has several exten-

sions such as (Šmı́dl and Tichý 2012). Here, the

TACs are modelled in the same way as in the

BSS þ method; however, the tissue images are

assumed to be sparse. The sparsity is imposed

using mixture modelling where switching between

mixtures is done using probabilistic parameter i [
½0; 1� for each pixel. This forms an automated

probabilistic ROI for each tissue image.

(iv) Straightforward manual method (SMM): This an

example of another commonly used approach.

Four ROIs are manually drawn for each dataset in

our case by a trained novice. These are the left and

the right kidneys, and the left and the right

backgrounds on the outer side of the kidneys. The

activity of the reference backgrounds is subtracted

from the activity in the related kidneys. It is

assumed that the same background is behind (or in

front of) the kidney.

(v) Semi-automatic BCMS-based method (BCMS):

The operator is asked to place two rectangular

ROIs around each kidney. The BCMS method is

applied to each of these rectangular ROIs to obtain

estimates of two underlying structures (as demon-

strated in Figure 3). The estimate of the

parenchyma images is thresholded at 0:5£
maximum of the image to remove remaining

traces of the background.

(vi) Semi-automatic BCMS-based method with an

alternativemodel of the IF (10 and 11) (BCMSard).
Otherwise identical to the BCMS method.

Computer Methods in Biomechanics and Biomedical Engineering: Imaging & Visualization 5
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3.1.1 Statistical comparison

The four described methods will be compared via

difference of their results of DRF from those provided

by the experienced expert (RMM) as a reference value.

Since the expert considered all assumptions of the

approach in his evaluation, we will consider the automatic

method that is closer to his results to be better. The DRF

estimates from the expert are publicly available in VFN

Praha (2013) for 99 patients with both kidneys as well as

source data and their detailed description. We applied all

introduced methods to this dataset and display the results

of the estimated DRF for each method in Table 1 via

quantiles of their differences from the reference value.

Note that the estimates of the BCMS method are

systematically closer to the reference values than those

of the competing methods. The computation time of the

semi-automatic methods (ii), (iii) and (v) is comparable,

one sequence is processed under 1min. The maximum

number of tissues is set to r ¼ 3.

The results for the patients with diagnosed abnormality

in kidney function are shown in Table 2. There is

significantly lower signal, hence, the spread of the errors is

much higher. Note that manual analysis of these data is

much more demanding, since the trained novice (line

SMM in Table 2) achieved the worst results. However, this

variance in results is suppressed when the analysis is

performed by experienced experts as shown in Brink et al.

(2012), where maximum–minimum difference was less

than 6% in large majority of the cases. The worst

reproducibility was observed for data from children with

low glomerular filtration rate.

From the compared methods, the BCMS method is the

closest to the reference results, on both the full dataset

(Table 1) and the selected abnormal cases (Table 2).

Table 1. Quantiles of the difference of the estimated DRFs
from the reference value for all 99 patients.

Method ,5% ,10% 10%

BSS þ 39.6% 82.2% 18.8%
FAROI 54.5% 84.8% 15.2%
SMM 36.5% 70.8% 29.2%
BCMS 63.5% 89.6% 10.4%
BCMSard 66.7% 87.9% 12.1%

Note: Bold value denotes the best result.

Table 2. Quantiles of the difference of the estimated DRF from
the reference value for the patients with diagnosed abnormality in
kidney function.

Method ,5% ,10% 10%

BSS þ 39.1% 69.6% 30.4%
FAROI 45.3% 75.5% 24.5%
SMM 17.4% 47.8% 52.2%
BCMS 58.7% 80.4% 19.6%
BCMSard 64.2% 79.2% 20.8%

Note: Bold value denotes the best result.
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Figure 3. Estimates provided by the BCMS algorithm for a selected dataset, right ROI. Left: estimated tissue images; middle: estimated
TAC; right: estimated tissue-specific kernel.
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3.2 Experiment with expert TACs reference

We have studied clinical data from 19 patients, i.e. 38

image sequences for kidneys. In this dataset, an

experienced physician selected the parenchyma structures,

subtracted vascular backgrounds and other tissues from

these, and provided the TACs of the parenchyma tissues.

These values will be used as references for comparison of

the proposed methods and its competitors. The BSSþ ,

FAROI, BCMS and BCMSard algorithms are applied to

rough rectangular ROI of each kidney, and the tissue

related to the parenchyma structure is automatically

detected. The expected number of tissues is set to r ¼ 4.

The SMM was not used due to poor performance in the

previous experiment. Since we do not have a direct

comparable scale of the TACs, all TACs of the

parenchyma (or its estimate) are scaled to have minima

at 0 and maxima at 1. Estimates of the parenchyma for a

selected kidney are given in Figure 4 for illustration. To

perform a quantitative evaluation, we compute the mean

square error (MSE) and the mean absolute error (MAE)

for each TAC,

MSEi ¼ 1

n

Xn
j¼1

xðiÞj;par 2 x
ref;ðiÞ
j;par

� �2
;

MAEi ¼ 1

n

Xn
j¼1

xðiÞj;par 2 x
ref;ðiÞ
j;par

��� ���; ð24Þ

where xðiÞpar is the TAC of parenchyma from the ith studied

sequence and xref;ðiÞpar is the reference TAC of the same

sequence from the physician.

The methods are compared in terms of average MSE

and MAE over all 38 TACs,

mMSE ¼ 1

38

X38
i¼1

ðMSEiÞ;

sMSE ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1

382 1

X38
i¼1

ðMSEi 2 mMSEÞ2
vuut ;

ð25Þ

and analogically for MAE.

Table 3. Statistical evaluation of differences between the estimated TACs from the reference TAC from the physician.

Algorithm mMSE ^ sMSE mMAE ^ sMAE Best MSE Best MAE

BSS þ 0.0314^ 0.0340 0.1197^ 0.0687 7 8
FAROI 0.0358^ 0.0469 0.1202^ 0.0860 13 11
BCMS 0.0207^ 0.0296 0.0914^ 0.0601 18 19
BCMSard 0.0270^ 0.0323 0.1060^ 0.0690 N/A (7) N/A (8)

Notes: The competing methods are compared in terms of the average mean and absolute error over all 38 TACs. The number of TACs for which a
particular method provided the best MSE and MAE is also displayed.
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Figure 4. Estimates of the parenchyma tissue images (upper row) and associated TACs (bottom row) for four tested automated methods:
BSS þ (left column), FAROI (middle left column), the proposed BCMS algorithms (middle right column) and the BCMSard (right
column). The estimates of the TACs (full line) are compared with the reference from the expert physician (dashed line).
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The results are displayed in Table 3. The BCMS

algorithm outperforms all other algorithms in terms of

average MSE and MAE. We note that each tested method

was able to provide the best estimated for some tested

kidneys. However, the BCMS provided the best result in

more cases than other methods. The main advantage of the

BCMS is, however, its consistency throughout the tested

dataset. This is demonstrated by the boxplot visualization

of the full distribution of MSE errors for the tested dataset

(Figure 5).

3.3 IFs estimation

The estimate of the IF is an output of the BCMS algorithm.

Since the ground truth of the IF is not available, we

propose the following experimental validation. First, we

compute IFs for both left and right ROIs of kidneys

separately. Second, we compare estimates of the IF for the

left and the right kidneys. If the model assumption (2) is

valid, the estimates should be very close to each other.

The BCMS algorithm was run on non-overlapping

ROIs of the left and right kidneys for both datasets used

above. Histogram of the differences in the estimated IFs

for all 118 patients is displayed in Figure 6 via histogram

of differences

Di ¼
Xn
j¼1

�b
ðleftÞ
j 2 �b

ðrightÞ
j

��� ���; ð26Þ

where �b
ðleftÞ
j denotes estimate of the IF from the ROI of

the left kidney scaled to unit area �bj ¼ bj=
Pn

j¼1 bj. In

effect, difference (26) denotes the area of the differences

(AODs) between these curves. The estimated IFs for two

selected sequences are displayed in Figure 7. These were

BSS+ FAROI BCMS BCMSard
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Figure 5. Boxplots of distribution of the MSE for all 38 datasets.
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Figure 6. Histogram of difference between IFs obtained for the left and the right ROIs.

O. Tichý et al.8

D
ow

nl
oa

de
d 

by
 [

C
ze

ch
 A

ca
de

m
y 

of
 S

ci
en

ce
s]

 a
t 0

5:
12

 0
2 

Ju
ne

 2
01

4 



selected from both sides of the histogram in Figure 6,

with AODs 0.1489 and 0.4619, respectively. We

conjecture that even in the case of the worse result,

Figure 7 (right), the IFs well correspond to each other and

the difference can be contributed to the noise. Note that

the AOD is less than 0.3 for the majority of the tested

sequences. Differences for the BCMSard are completely

analogical.

4. Discussion and future work

The work presented in this paper is one of the first steps

towards fully automatic kinetic analysis of dynamic

medical sequences. The modelling choices made in this

paper are based on models from the literature; however,

with more available data, more accurate and demanding

models can be tested. Examples of such extensions are

now discussed.

The presented semi-automatic method of DRF

analysis was run with manual intervention in two key

steps: (i) positioning of the rectangular ROIs to contain

the left and right kidneys and (ii) selection of the uptake

part of the sequence. While the first step is relatively easy

to automate and seldom requires intervention, the second

step is more demanding. Specifically, we select the

uptake part to start at the peak of the vascular activity in

the ROI of the kidney. The end of the sequence is

determined by the peak of the parenchyma activity. More

detailed modelling of the sequence is needed to achieve

the fully automated method.

Note that the BCMS algorithm assumes that each

tissue is activated in the beginning of the sequence.

The assumption is valid for the given experiments;

however, the assumption is not met, e.g. for pelvis

tissue within the kidney of the urinary bladder. The

BCMS algorithm is valid well for parenchyma tissue

but more detailed modelling is necessary for general

validity of the model.

The proposed BCMS method is able to provide both

the IF and the organ function. The results presented in

Section 3 suggest that the estimated IF is reliable, and

estimates of IFs from the left and right kidneys are

comparable. Some disproportion can be explained by the

background tissue, it is also possible that the estimate is

only a local minimum in the space of possible solutions.

Also, the model assumption may not be appropriate for the

given patient. A dataset that would also have the IF

measured by blood sampling would be necessary to

resolve this issue.

Sensitivity of the method to the chosen model of

the IF is demonstrated by different performances of

the BCMS and BCMSard methods. The essential

difference of these two models is different model of

variance of the IF. The BCMS model was found to be

superior in the experimental evaluation. We con-

jecture that this is due to the presence of correlation

between the elements of b due to incremental

parametrisation.

5. Conclusion

A probabilistic model of medical image sequences and its

Variational Bayesian solution for functional analysis of

medical data were proposed. TACs are modelled as

convolution of an unknown IF with kernels. The shape of

each kernel is restricted to a piecewise-linear curve to

match the fluid behaviour in kidneys. The resulting

algorithm thus achieves blind separation of compartment

models with a common IF. No manual intervention is

required in this process. We have shown that the estimated

IF and organ function correspond well with the biological

expectations. Since the method does not use any modality-

specific assumptions, it can be used in any other modality.

The algorithm was further applied to semi-automatic

analysis of DRF from scintigraphic data. Manual interven-

tion was required to select the uptake part of the sequence

and the position of the rectangular areas containing the left

and the right kidneys. The results were compared with those

of two completely manual methods and a common BSS

method with the same level of intervention. The most
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Figure 7. Estimated IFs for two selected sequences. AODs between IFs from the left and the right ROIs is 0.1489 (left) and 0.4619
(right).
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sophisticated manual method performed by an experienced

expert was selected as a reference value. On a dataset of

99 patients, the estimates of DRF provided by the proposed

BCMSmethod were found to be systematically closer to the

reference value than those of any other method.

Furthermore, the experiment with 19 patients was given

where an experienced physician manually obtained TACs

of parenchyma. We have shown that the BCMS algorithm

outperforms other algorithms in the sense of MSE or MAE

between automatic estimates and those obtained manually

by the physician.

The MATLAB implementation of the BCMS algor-

ithm is available for download from http://www.utia.cas.

cz/AS/softwaretools/image_sequences
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Šmı́dl V, Quinn A. 2006. The Variational Bayes method in signal
processing. Heidelberg: Springer.
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Appendix A. Shaping parameters of posterior

distributions

The shaping parameters of posterior distributions (19)–(22) are
given as follows:

FA ¼ ðv̂dX0X þ ŶÞ21; mA ¼ ðv̂DX̂ÞFA; ðA1Þ

Sg ¼ ĉIn þ v̂C0Xr
i;j¼1

da0 iajXn
k;l¼1

D0
kDl dukþ1;julþ1;i

 !
C

 !21

;

mg ¼ v̂SgC
0Xr
i¼1

Xn21

k¼0

D0
k dukþ1;i

 !
D0ai^

 !
;

ðA2Þ

SvectðWÞ ¼ dA0A
� �

^v̂C0dB0BC
� �

þ dJW^In

� �� �21

; ðA3Þ

mvectðWÞ ¼ SvectðWÞ dJWvect C0dB0BC
� �21

C0B̂D0Â dA0A
� �21

� ��
þ dJW^In

� �
vect dMW

� ��
;

ðA4Þ

n ¼ n0 þ 1

2
diag dW0W

� �
þ 1

2
diag 22W 0^ dMW

� �
þ 1

2
diag M0

WMW

^
� �

;

ðA5Þ

r ¼ r0 þ 1

2
tr DD0 2 2ÂX0^ D0
� �

þ 1

2
tr dAX0XA0
� �

; ðA6Þ

a ¼ a0 þ p

2
1r;1; b ¼ b0 þ 1

2
diagðdA0AÞ; ðA7Þ

k ¼ k0 þ n

2
1r;1; z ¼ z0 þ n

2
; ðA8Þ

h ¼ h0 þ 1

2
tr cg0g� �

; q ¼ q0 þ np

2
; ðA9Þ

where x̂ denotes estimate of variable x, X is the matrix with TACs
in its columns, ^ denotes the Kronecker product, MW contains
prior vectors of W composed of estimates of h, s and l (obtained
using EM algorithm (Dempster et al. 1977)), auxiliary matrix
Dk [ Rn£n is defined as

ðDkÞi;j ¼
1; if i2 j ¼ k;

0; otherwise;

8<:
auxiliary matrices C [ Rn£n and B [ Rn£n are defined as

C ¼

1 1 · · · 1 1

0 1 · · · 1 1

..

. ..
. . .

. ..
. ..

.

0 0 · · · 0 1

0BBBBBBB@

1CCCCCCCA; B ¼

b1 0 · · · 0

b2 b1 · · · 0

..

. ..
. . .

. ..
.

bn bn21 · · · b1

0BBBBBBB@

1CCCCCCCA;

ðA10Þ
where b1; . . . ; bn are elements from vector of IF b, and 1r;1 is a
matrix of those of the given size.

The required moments are computed according to, e.g.
appendix in Šmı́dl and Quinn (2006).

Computer Methods in Biomechanics and Biomedical Engineering: Imaging & Visualization 11

D
ow

nl
oa

de
d 

by
 [

C
ze

ch
 A

ca
de

m
y 

of
 S

ci
en

ce
s]

 a
t 0

5:
12

 0
2 

Ju
ne

 2
01

4 


	Abstract
	1. Introduction
	2. Methods
	2.1 Mathematical model assumptions
	2.2 Probabilistic model
	2.2.1 Alternative model of the IF

	2.3 VB solution

	3. Experiments and results
	3.1 DRF estimation
	3.1.1 Statistical comparison

	3.2 Experiment with expert TACs reference
	3.3 IFs estimation

	4. Discussion and future work
	5. Conclusion
	Acknowledgements
	Notes
	References
	Appendix

