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Abstrakt. A common problem of imaging three-dimensional objects into image plane is
superposition of projected structures. In medical imaging, it has been successfully fixed
by tomography where it was minimized to partial volume effect in small individual voxels.
The problem remains to be solved in dynamic planar imaging to separate overlapping
structures and in dynamic tomography to reduce partial volume effect further. In a series
of images recording distribution of radiopharmaceuticals and molecular probes with time,
an obvious approach is to separate different overlapping structures using their specific
dynamics [1]. Since the problem is ill-posed, many additional assumptions were proposed
to achieve unique separation [2], [3]. We propose a probabilistic model for blind separation
using convolution model [4], assuming each specific tissue dynamics as convolution of input
function and specific tissue kernel (organ impulse response or retention function). The key
assumptions of separability is that the tissue images and the convolution kernels are most
likely sparse. These assumptions are formalized as a Bayesian model with hierarchical prior
and solved by the Variational Bayes method. These general assumptions are shown to be
relevant in analysis of dynamic image sequences in scintigraphy. We demonstrated that
the method outperforms other methods for blind source separation with domain-specific
assumptions in selected tasks in dynamic renal scintigraphy and dynamic positron emission
tomography. MATLAB implementation of the algorithm is available for download from
http://www.utia.cz/S-BSS-vecDC.
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The scheme of the S-BSS-vecDC Method.
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