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Abstract
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1 Introduction

A fast growing recent literature in financial econometrics focuses on measuring, modeling
and forecasting volatility using high-frequency data (Andersen, Bollerslev & Diebold, 2009).
Yet, a number of important financial decisions require the specification and estimation of
the entire distribution of future price changes and volatility, or at least of a few quantiles.
Prime examples include portfolio selection when returns are non-Gaussian, risk measure-
ment and management (Value-at-Risk), and market-timing strategies where the sign of
future prices changes is to be predicted (Christoffersen & Diebold, 2006). Forecasting the
conditional distribution of future returns or its quantiles based on the use of intraday data
and nonparametric measures of ex-post variation in asset prices has so far attracted much
less attention than forecasting realized volatility. Notable exceptions include Andersen,
Bollerslev, Diebold & Labys (2003), Giot & Laurent (2004) and Clements, Galvao & Kim
(2008), who all combine time-series models for realized volatility with either parametric
or nonparametric estimators of conditional distributions, and the recent contributions by
Brownlees & Gallo (2009), Shephard & Sheppard (2009) and Maheu & McCurdy (2010),
who base their predictive densities on parametric return-based volatility models.

This paper follows a different route and proposes to couple the flexible semiparametric
quantile regression framework with nonparametric measures of the various components of
ex-post variation in asset prices to study the properties of conditional quantiles of daily
asset returns and realized volatility, and forecast their future values. The use of quantile
regression in financial econometrics is not new (Koenker & Zhao, 1996, Chernozhukov &
Umantsev, 2001, Engle & Manganelli, 2004, Cenesizoglu & Timmerman, 2008), but to the
best of our knowledge, it has not yet been applied in combination with realized volatility
and related measures.

Our approach has a number of advantages. First, by relying on nonparametric measures
of volatility we avoid making restrictive assumptions on the dynamics of the underlying con-
ditional distributions. Second, by decomposing the overall ex-post variation in the prices
process into the continuous (diffusion) and discontinuous parts (jumps), we are able to
study the predictive power of these two components separately. Given the recent evidence
on the predictive power of contemporaneous jumps for future volatility (Andersen, Boller-
slev & Diebold, 2007, Corsi, Pirino & Reno, 2010) and the finding of Todorov & Tauchen
(2011) that prices and volatility tend to jump together seems to suggests that jumps may
perhaps contain information about quantiles of future returns and volatility as well. Third,

the semiparametric nature of quantile regression avoids confining attention to the relatively



restrictive class of location-scale models (Chernozhukov & Umantsev, 2001). Last but not
least, our models are very simple to estimate yet capture, through the highly persistent re-
alized volatility measures, the persistent dynamics of the conditional quantiles documented
by Engle & Manganelli (2004) for equity returns.

In addition to the information contained in the historical high-frequency returns, we
also investigate the predictive power of the (risk-neutral) expectations of future volatility
embedded in options prices. The benefits of including implied volatility into the information
set used for forecasting future volatility has been recently documented, among others, by
Giot & Laurent (2007) and Bush, Christensen & Nielsen (2011). See also Bollerslev, Tauchen
& Zhou (2009), who find the ability of the variance risk premium to forecast future medium-
horizon stock returns. Christofferesen & Mazzota (2005) show that volatility implied by
foreign exchange options help to predict, albeit imperfectly, future distributions of spot
exchange rates. Cenesizoglu & Timmerman (2008) obtain similar results for conditional
quantiles of monthly equity index returns. Motivated by this empirical work, we include
implied volatility as an additional covariate into the quantile regression models.

Besides modeling conditional quantiles of future returns, we propose simple models
for the quantiles of future realized volatility. We follow Andersen, Bollerslev & Diebold
(2007) and Bush et al. (2011) and consider a heterogeneous quantile autoregressive model
(HQAR) with jumps and implied volatility. This model can be viewed as an extension
of the heterogeneous autoregression, originally proposed by Corsi (2009) for modeling the
conditional mean of realized volatility, to conditional quantiles. A particular version of this
model falls into the class of quantile autoregressions studied by Koenker & Xiao (2006).

Our empirical study of the S&P 500 futures prices between January 1997 and June
2008 reveals some interesting features of the conditional distribution. First, we find that
both realized as well as implied volatility possess significant predictive power for quantiles
of future returns. Second, upon decomposing realized volatility into realized downside and
upside semivariance (Barndorff-Nielsen, Kinnebrock & Shephard, 2010), we find that it is
almost exclusively downside semivariance that drives both left and right tail quantiles. Thus
the past negative intraday returns contain more information about future quantiles than
the positive ones and this effect is not subsumed by option-implied volatility. Finally, jumps
play little role in forecasting quantiles of future returns.

Turning to models for realized volatility, we find that the heterogeneous quantile autore-
gressive model captures the time variation in conditional quantiles of daily realized volatility
very well both in-sample as well as out-of-sample. The impact of contemporaneous realized

and implied volatilities on future volatility quantiles is much higher in the far right tail of



the distribution than in the left tail confirming the presence of a significant volatility-of-
volatility effect documented by Corsi, Mittnik, Pigorsch & Pigorsch (2008) and Bollerslev,
Kretschmer, Pigorsch & Tauchen (2009). Similar to return quantiles, we document that
recent realized downside semivariance possesses strong predictive power for future realized
volatility quantiles, leaving almost no role for realized upside semivariance. Finally, the
variation associated with jumps comes out insignificant in all models considered.

We complement our empirical analysis by applying the quantile regression models to the
WTI Crude Oil futures contract. Oil futures prices exhibit substantially higher volatility
and volatility of realized volatility than S&P 500 which provides us with an opportunity to
test our methodology on less well-behaved financial time series. We find that our quantile
models for oil futures perform equally well in terms of their ability to deliver accurate
quantile forecasts and find qualitatively similar results regarding the predictive power of
the various components of the overall quadratic variation for forecasting quantiles of future
returns and volatility.

To assess the relative performance of our linear quantile regressions, we use the Con-
ditional Autoregressive Value at Risk (CAViaR) model of Engle & Manganelli (2004) and
the ARFIMA-based lognormal-normal mixture of Andersen et al. (2003) as benchmarks.
Overall, we find that neither of the models dominate in terms of performance uniformly
across assets or quantiles. Putting realized measures into the CAViaR model does not drive
out the other variables in the CAViaR equation completely and it improves its performance.
The linear quantile regressions with realized measures, however, seem to perform no worse
than the realized CAViaR. The ARFIMA-based lognormal-normal mixture delivers gener-
ally poorer unconditional coverage but it often exhibits lower loss at the same time. For
multi-day realized volatility forecasts, we find that the linear quantile regression seems to
perform better, especially in the right tail of the distribution.

The rest of the paper unfolds as follows. Section [2] sets out the theoretical framework,
while Section [3| discusses conditional quantile estimation by regression quantiles. In Section
[ we study the implications of the measurement error induced by replacing the unobserved
volatility components by their sample counterparts and provide sufficient conditions ensur-
ing that the measurement error vanishes asymptotically. In Section [5| we briefly discuss a
couple of alternative models for conditional quantiles that we use for comparison with our
linear quantile regressions. Section [6] describes the methods we employe to evaluate the
performance of the conditional quantile models and Section [7] describes the data. Empirical

application is carried out in Section [§] and finally Section [9] concludes.



2 Theoretical Framework

We assume that the logarithmic price process obeys an It6 semimartingale

t t
Xt=Xo+/ usd8+/ oo dW, + i, (1)
0 0

where p is a predictable process, o is cadlag, W is standard Brownian motion and J is a
finite-activity pure jump process,
Jr = Z Kj,
j=1

where L is a counting process and the x;’s are random variables governing the size of jumps.
The process in equation is very general and allows for rich dynamics. In particular, it
accommodates stochastic volatility with possibly discontinuous sample paths (Todorov &
Tauchen, 2011), the leverage effect characterized by negative correlation between volatility
and price innovations (Bollerslev, Litvinova & Tauchen, 2006), time-varying jump intensity
and jump sizes (Chan & Maheu, 2002), etc. We do not make any parametric assumptions
about the respective processes when estimating the quantiles of the distribution of future
returns but rely instead on reduced-form semi-parametric quantile regression models coupled
with nonparametric measures of volatility and jumps variation.

Associated with the semimartingale in equation is a quadratic variation process

t
QV, = /agds+ E (AJ,)?,
0

0<s<t
= IVi+ JVi,

where IV, is the integrated variance, that is, the part of QV; due to the continuous part
of the log-price process and JV; is the jump variation due to the purely discontinuous part
of X;. As detailed by Andersen et al. (2003), quadratic variation is a natural measure of
variability in the logarithmic price and its individual components serve as important imputs
into many asset pricing models.

When studying the conditional distribution of future returns, we separate the contribu-
tion of the two components of the quadratic variation process, i.e. the continuous part from
the jump part. Recent evidence from the volatility forecasting literature (e.g. Andersen
et al., 2007, Corsi, Pirino & Reno, 2010) indicates that the two sources of variation in the
asset price possess substantially different time series properties and affect future volatility

in a different way. Anticipating that similar results obtain for the entire conditional distri-



bution, we now describe an approach to disentangling the integrated variance from jump
variation.

Suppose we obtain a sample of size T'(M + 1), corresponding to 7' days each having
M +1 intraday observations. Define A; X = Xy_ 1 (i11)/am — X¢—14i/m as the i-th intraday
return on day f. A consistent estimator of the overall quadratic variation is provided by
the well-known realized volatility, introduced into financial econometrics by Andersen &

Bollerslev (1998),
M—1

RViy = > (AXy)?,
i=0
with RV v B IV, + JV, as M — oo. To estimate the integrated volatility, IV;, in the
presence of jumps, we employ the median realized volatility introduced by Andersen, Dobrev
& Schaumburg (2012)E

M-3
M
MedRV; y = >

T
med(|A; X¢|, |Air1 Xe], |Aja X 2
6—4\/§+7T<M—2 ; (18 X4, [Aip1 Xel, [ A2 Xt)

We can now define consistent estimators of IV; and JV;, denoted by IV, and JV; ar,

respectively, as follows

IViy = MedRViy
JViv = RViy —1IVim

In addition to the IV — JV decomposition of the overall quadratic variation, Barndorff-
Nielsen, Kinnebrock & Shephard (2010) recently propose to decompose the realized volatil-
ity and jump variation into the part associated with negative intraday returns and the part

due to the positive intraday returns:

M-1

RSy = D (AX)Liax<op — 05IVi+ Y Liaz<op(AT,)
i=0 t—1<s<t
M-1

RS:’_M = (AiXt)Ql{AiXt>0} i} 0.51V; + Z 1{AJ5>0}(AJS>27
i=0 t—1<s<t

In an empirical application, the authors find that the realized downside semivariance (RS, ;)

seems to be much more informative than the realized upside semivariance (RS;r o) for the

!Other methods proposed in the literature include Barndorff-Nielsen & Shephard (2004), Corsi, Pirino
& Renod (2010), Mancini (2009).



purposes of forecasting future volatility. Similar results have been recently obtained by
Patton & Sheppard (2009).

3 Linear Quantile Regression Models

Having described the theoretical framework, we now propose simple linear semiparametric

models for the quantiles of future returns and volatility.

3.1 Models for returns

We assume that the a-quantile of the distribution of future returns, conditional on the
information set §2;, can be written as a linear function of the various components of the

current and past quadratic variation and weakly exogenous variables,

Ga(re+1|Q) = Bo(a) + Bu(a) v ar + B:(a) 2. (2)
where

rep1r = Xy — Xy,
1/2 1/2 1/2 1:,1/2 1/2 1/2

vin = (QVia QViliae o Vias IV g o TViars Vil ag )
z; is a vector of weakly exogenous variables and Sy («), B, (), B, («) are vectors of coefficients
to be estimated.
The equation is a linear quantile regression proposed by Koenker & Bassett (1978).
They show that the parameters can be estimated by minimizing the following objective

function,

T

Y palrent = Bol@) = Bo(@) v — Ba(a) z0), 3)

t=1

QR (Bla) = 7

where

pal) = (a = 1z < 0}z,

and B(«a) = (Bo(a), Bu(a), B.(a)’). Although the optimization problem does not admit
a closed-form solution, relatively simple and computationally fast algorithms for finding
the minimum are available, see Portnoy & Koenker (1997). A potential problem that may

arise in small samples is the so-called quantile crossing, i.e. the estimated quantiles are not



guaranteed to be monotonic in «. If this occurs, the recently developed approach due to
Chernozhukov, Ferndndez-Val & Galichon (2010) can be employed to establish monotonicity
of the estimated quantiles. In our empirical applications reported later in the paper, quantile

crossing never arises.

3.2 Models for Realized Volatility

Inspired by the success of the of the heterogenous autoregressive model (HAR) for realized
volatility developed by Corsi (2009) and extended by Andersen et al. (2007), we write the

conditional a-quantile of the realized quadratic variation RV;11  as

da(RVit1,m|Q) = Bo(a) + Bui (@) vinr + Bus () vy i—5 a1 + B2z (@) vy 120 + B () 2 (4)

where

T
L

Vt—j5,.M

el

Vtt—k,M =

<.
Il
o

is the average vy ar over the past k days, and as before z; a set of regressors. We call this
model the heterogenous autoregressive quantile model (HARQ). Note that for a particular
choice of regressors, namely v, ar = (RViar, RVi—1,m, ...,RVt,kyM)’ for some k, the model
falls into the class of quantile autoregression (QAR) studied by Koenker & Xiao (2006),
and the HARQ then simply becomes a restricted version of the QAR model. The general
model in equation is linear in parameters and hence estimation proceeds along the same

lines as described in the previous subsection.

4 Measurement Error Problem

The quantile regression models proposed in the previous section are based on realized mea-
sures rather than the true, unobserved components of price variation. Asymptotic theory
for the realized measures dictates that as the number of intraday observations grows with-
out bound, the realized measures approach their unobserved counterparts and, equivalently,
the measurement error associated with the realized measures approaches zero. Thus, under
certain conditions it may be feasible to obtain, asymptotically, conditional quantiles for the
true quadratic variation or any of its components. Whether or not this is desirable depends
on the application at hand. If, for example, the objective is to estimate value-at-risk for
variance swap positions, one need not worry about the measurement error problem, since

here the goal is to estimate the quantiles of the realized volatility calculated at a fixed



sampling frequency stipulated by the variance swap contract, i.e. go(RViy1,|S2) for some
fixed M. However, if the goal is to estimate the quantiles of future asset returns volatility,
one needs to make sure that the impact of the measurement error vanishes so that one in-
deed obtains quantiles for the true quadratic variation, g, (QVi4+1|Q:), rather than realized
volatility.

In this section, we provide sufficient conditions ensuring that the feasible objective
function, QRr y, based on the realized measures converges in probability to the infeasible
one, QRpr, based on the true unobserved components of quadratic variation, uniformly
on the parameter space. If these conditions are satisfied we obtain, asymptotically, the
desired quantiles of the quadratic variation, g, (QVi+1|€2), rather than the realized variance,
da(RVi+1|€2%). The sufficient conditions depend on the properties of the measurement errors
associated with the realized measures, which in turn depend on the behavior of the volatility
and jump processes driving the logarithmic price, and on the relative rate of growth of M
and T

To establish the asymptotic equivalence, we follow the double-asymptotic approach of
Corradi, Distaso & Swanson (2011), who study fully nonparametric estimators of conditional
distributions of integrated variance using realized measures. In doing so, they establish some
useful results regarding the rate of decay of moments of the measurement error associated
with a number of realized measures. We extend these results to the case of realized volatility
and median realized volatility in the presence of jumps and employ these to prove the
asymptotic negligibility of the measurement error for the estimation of conditional quantiles.

We will need the following assumptions:

(A1) The logarithmic price process follows (1) with p; = 0,

(A2) The volatility process {o;} is a strong mixing with size —2r/(r — 2),r > 2 satisfying

E[(c7)2*+7)] < 0o, and the jump sizes satisfy E[x**] < oo for some k > 2.
(A3) The counting process L; is a Poisson process with strictly stationary intensity.

Assumption Al specifies the data generating process. To simplify the proofs we assume
that the drift is equal to zero. Assumptions A2 and A3 ensure that the moments of the
measurement errors associated with I'V; as and JV; ps exist and decay sufficiently fast, as

the following Lemma shows.

Lemma 1 Under assumptions A1-A2, E[]Nt(j\)/[]k] = O(M~*/2). If, in addition, A3 holds
then B[Ny = O(M~+/2).



Proof See Appendix. [

The first result of the Lemma is the same as in Lemma 1 of Corradi et al. (2011), who
prove this for a number of different realized measures of integrated variance. Assuming, in
addition, A3 allows us to establish similar result for the measure of jump variation based
on the difference between realized variance and median realized variance. Given Lemma 1,

we then have the following:

Proposition 1 Under assumptions (A1) - (A3), 7jfTﬁZ\4*1/2 —0asT,M — oo and ©
is a compact parameter space, then supgeeg |QR1.0(8) — QRr(8)] 20.

Proof See Appendix. [J

The proposition shows that the number of intraday observations (M) has to grow faster
than a power of (7') for the contribution of the measurement error associated with the
realized measures of integrated variance and jump variation to degenerate in the limit.
How faster M must grow depends on the the number of moments the volatility and jump
processes possess. If all moments exist (i.e. k& = o0), we obtain the intuitive result that
the contribution of the measurement error is driven entirely by discretization (finite M),
i.e. it suffices to have M — oo regardless of how fast this happens relative to T" — oo.
The reason we cannot establish this intuitive result for any k£ > 2 is due to the fact that
the standard mean-value argument does not apply due to the non-differentiability of the
objective function. To circumvent this problem, we have to ensure that sup, [IV; » — IV}]
and sup, |JV; ar — JV;| decay sufficiently fast, and this in turn depends on k and the relative
rate of growth of M and T.

5 Competing conditional quantile models

To assess the relative performance of the linear quantile regression models proposed in
this paper, we consider a couple of well-established benchmark models. Following the
suggestions of the referees, we compare the return regressions with the CAViaR model
proposed by Engle and Manganelli (2004), augmented by the various realized measures and
option-implied volatility, and the lognormal-normal mixture of Andersen et al. (2003). We

also use the latter model as a benchmark for the realized volatility quantile regressions.
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5.1 CAViaR

Engle and Manganelli (2004) propose a dynamic non-linear quantile regression model, the
so-called CAViaR, for daily asset return quantiles, ¢;(0), where 8 is a vector of parameters
to be estimated. They consider four different specifications of ¢;(€), two of which we employ
here:

Symmetric absolute value:

G+1(0) = B1 + B2qi(0) + Ba|re| + ', (5)

Asymmetric slope:
4+1(0) = B + Baqr(0) + B3(re)™ + Ba(re)” +¥'®i1, (6)
where (r4)* = r1{ry > 0} and (r;)~ = r:1{r; < 0}. Two things are novel in our application

of the CAViaR model. First, we include the various realized measures and implied volatility
used in the linear regressions into the CAViaR equations, calling the augmented model
realized CAViaR. The idea is that these variables are much better proxies for the past return
volatility than the absolute return and should therefore improve the predictive performance
of the baseline CAViaR model with v = 0. Since the realized measures and the option-
implied volatility are significantly more persistent than the absolute return, including them
into the model might also reduce or completely drive out the affect of the lagged quantile,
q:(6).

Second, we use the realized CAViaR model to forecast not only daily returns, but also
to 5-day and 10-day returns. We employ the direct forecasting approach whereby we fit
the model to the 5-day and 10-day returns directly, rather than using the model for 1-day
returns to generate 5-day and 10-day quantile forecasts. That way, the multi-day forecasts
can be obtained directly from the realized CAViaR equations and we do not have to write
down and estimate separate equations for the various lagged variables entering the CAViaR
recursion. To the best of our knowledge, this is the first application of the CAViaR model
to multi-day quantile forecasting.

Similarly to the linear quantile regressions, the realized CAVIaR can be estimated by

minimizing the check function given by

1

T
Qr(0) = 7 > (= 1{re <a(0)})(re — 4:(9)). (7)
t=1

N
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However, due to the nonlinear nature of the model, no simple algorithm for this optimiza-
tion problem exists and we resort to the fairly elaborate procedure proposed by Engle and
Manganelli (2004). Computing standard errors for the CAViaR parameter estimates re-
quires a choice of bandwidth (see Engle and Manganelli, 2004) and there is currently no
procedure available for the optimal choice. We proceed by calculating standard errors for
a range of bandwidth values, select a region where the standard errors are relatively stable

and report standard errors corresponding to a bandwidth from this regionE]

5.2 Long-memory lognormal-normal mixture

Our second benchmark for the return models and a benchmark for the realized volatility

models is the lognormal-normal mixture model proposed by Andersen et al. (2003):

r = RV, e, (8)
(1—¢L)(1— L) logRVinr = (1— L)y (9)

where ¢ is 7id standard normal and wu; is 7id N(0,02) independent of ¢;. In this model,
the logarithmic realized volatility follows a Gaussian ARFIMA(1,d,0) process so that re-
alized volatility is unconditionally lognormally distributed, while returns are conditionally
Gaussian and unconditionally mixed-Gaussian.

We fit the model to daily returns and realized volatilities using maximum likelihood.
One-day ahead quantile forecasts for returns and realized volatility can be obtained analyt-
ically, but multi-day forecasts have to be simulated since the distribution function of a sum

of lognormal random variables is not available in closed form.

6 Evaluation of quantile forecasts

We evaluate the absolute performance of the various conditional quantile models using the
CAViaR test of Berkowitz, Christoffersen & Pelletier (2011), which is a version of the DQ
test of Engle & Manganelli (2004). In particular, we define a “hit” variable

Hitt+1 = 1{Tt+1 < Qa<rt+1|Qt)}7

which is a binary variable taking on the value of one if the conditional quantile is violated and

zero otherwise. If the conditional quantiles are correctly dynamically specified, the sequence

*We are grateful to Simone Manganelli for suggesting this approach.
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of hits should be did Bernoulli distributed with parameter a. To test this hypothesis,

Berkowitz et al. (2011) propose to estimate the following logistic regression

n n
Hity=c+ Y BuuHite i+ Y Boro(re—ir1|Q—r)} + . (10)
k=1 k=1
and use the likelihood ratio test for the null hypothesis that the § coefficients are zero and
P(Hit; = 1) = e°/(1+¢°) = a. We use Monte Carlo simulation to obtain exact finite-sample
critical values for the likelihood ratio test as suggested by Berkowitz et al. (2011).
This approach to evaluating absolute performance of quantile forecasts is only suitable

for one-step-ahead forecasts. To see this, define the h-period hits as
Hitypp = Hripr +rep2 + o+ 7e0n < qa(ree1 + 2+ +1e0n Q) ) (11)

where qo(re+1 + re42 + - + ren|Q) is the quantile forecast for the cumulative h-period
return given the information available at time ¢. Clearly, even if the quantiles are dynami-
cally correctly specified, the sequence of hits {H itt|t+h} is h-dependent, which violates the
assumptions underlying the likelihood ratio test in the logit model in equation . A so-
lution to this problem could be to test the null hypothesis in an OLS regression of Huty;y,
on a constant and Hity;_jp, j = 1,...,n, using a Wald test statistic with the Newey-West
variance. The latter would account for both heteroskedasticity and serial correlation in the
regression. We have experimented with this approach in a Monte Carlo simulation (available
on request) and find that while it works well in very large samples as dictated by asymptotic
theory, the finite-sample performance of the test is poor: the test is heavily oversized even
with 1,000 observations. To the best of our knowledge, there is currently no alternative,
reliable test for correct dynamic specification of multi-step conditional quantiles.

To assess the relative performance of the various quantile models, we follow Clements
et al. (2008) and focus on pairwise comparison based on the tick-loss function suggested by
Giacomini & Komujer (2005):

La(et41) = (o — e < 0})ertr, (12)

where €141 = 141 — ¢a(Tt+1]|2¢). To test for equal predictive ability we use the Diebold &
Mariano (1995) test with the Newey-West variance in the case of multi-step-ahead quantile

forecasts.
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7 Data Description and Preliminaries

We apply the conditional quantile models to returns and realized volatility of two assets:
S&P 500 and WTI Crude Oil futures.

We use high-frequency data on the S&P 500 futures contract obtained from Tick Data
for a period running from January, 1996 till June, 2008. We focus on transactions prices
pertaining to the most liquid (front) contract traded on the Chicago Mercantile Exchange
(CME) during the main trading hours of 9:30 - 16:00 EST. From the raw irregularly spaced
prices we extract 5-minute logarithmic returns using the last-tick method. The choice of
sampling frequency is guided by the volatility signature plot (Andersen, Bollerslev, Diebold
& Labys, 2000), and previous literature employing the same data (Andersen et al., 2007,
Corsi et al., 2010, among others).

In addition to historical volatility measures, we also explore the role of option implied
volatility. In particular, we employ the VIX index calculated by the Chicago Board of
Exchange (CBOE), which measures market expectations of one-month-ahead volatility of
the S&P 500 index implied by a portfolio of put and call options. The index is model-free in
the sense that it does not rely on any particular parametric option pricing model to extract
the implied volatility. Fernandes, Medeiros & Scharth (2013) provide a detailed description
of the construction of the index as well as its time-series properties. Although the maturity
of the options used to construct the index (30 calendar days) does not match our forecasting
horizons, the VIX index can still be used, and very successfully as we will see later, as a
proxy for future volatility.

The intraday WTI Crude Oil futures prices are obtained from Tick Data and cover the
period from September, 2001 till August 2008. Similar to the equity futures, we focus on
the front contract traded on the New York Mercantile Exchange (NYMEX) during the main
trading hours between 9:00 - 15:00 EST. We employ 5-minute logarithmic returns to avoid
issues with market microstructure noise.

The CBOE has recently introduced a crude oil volatility index (OVX), applying the
same methodology as in the case of VIX to calculate 30-day volatility implied by oil futures
options. The history of OVX only goes back to May 2007 and so is too short for our purposes.
We therefore construct our own model-free implied volatility index using settlement prices
for American-style futures options on oil traded on the CME, following the methodology of
Carr & Wu (2009) and Trolle & Schwartz (2009). The details are described in Appendix B.
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7.1 Returns, realized measures and implied volatility: S&P 500 futures

We construct the following measures of the various components of quadratic variation: real-
ized variance, realized upside semivariance, realized downside semivariance and the median
realized volatility. As mentioned before, the median realized volatility offers a number of
advantages over the alternative measures of integrated variance in the presence of infre-
quent jumps. It is less sensitive to the presence of occasional zero intraday returns and
enjoys smaller finite-sample bias induced by jumps, while being computationally simple to
implement. Table 2| reports the summary statistics for the daily open-to-close logarithmic
returns and the various measures of variation in the S&P 500 futures prices. The daily
returns, plotted in Figure[l] exhibit the usual stylized properties of financial returns: small,
insignificant mean, excess kurtosis and volatility clustering.

Turning to the realized variance and the upside and downside semivariances, we observe
that they are all highly positively skewed. A logarithmic transformation does not eliminate
the skewness entirely leading to the rejection of normality of logarithmic RV and hence log-
normality of the realized variance and semivariances. The realized upside variance seems
to be slightly more volatile than the realized downside variance and its distribution is also
much more positively skewed and heavy-tailed. The Ljung-Box test for no autocorrelation
up to lag 20 confirms the well-known long-memory features of realized volatility.

To estimate the contribution of jumps, we first test on a day-by-day basis for the presence
of jumps in the price process using a test based on the median realized Volatilityﬂ We set
the significance level to 0.1% as is usual in the literature. On days when jumps are detected
by the test, we set IV; py = MedRV; pr and JVi v = RVy v — MedRV; pr, while on days
when no jumps are found, we set IV; ;r = RV; pr and JV; pr = 0, thereby ensuring that the
continuous and discontinuous components always sum up to the overall quadratic variation.
This shrinkage approach follows, among others, Andersen et al. (2007) and Corsi et al.
(2010).

Similar to previous empirical results (Huang & Tauchen, 2005) we find that jumps are
relatively infrequent. The test identifies 66 days with significant jumps corresponding to
about 2.1% of days in our sample. The jumps contribute only about 1.3% to the overall
quadratic variation. It is clear from the plot of the time series of jump variation (Figure

that the properties of jumps have changed roughly in the middle of the sample period.

3 Although Andersen et al. (2012) do not derive a test for jumps based on MedRV, this can be easily done
by exploiting their joint Central Limit Theorem for RV and MedRV and following the steps of Barndorff-
Nielsen & Shephard (2006). Simulation evidence reported by Theodosiou & Zikes (2009) indicates that a
test based on the ration of MedRV and RV enjoys good finite sample properties and some robustness to
the presence of occasional zero intraday returns.
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While over the first 5-6 years of the sample the jumps were rare and large, it seems that
they have become smaller and more frequent in the second half of our sample period. Note
that this period is also associated with relatively small integrated variance as measured by
the median realized variance.

Finally, we look at the properties of the VIX index. The Ljung-Box @ statistic indicates
high degree of persistence, much higher than for the realized measures of ex-post variance.
The VIX implied volatility, however, pertains to a 30-calendar-day period and hence the
daily observations involve a great degree of overlap. It is thus not surprising to find such
high and slowly decaying autocorrelation. Note also that the mean implied volatility is
larger than the mean realized volatility, confirming the existence of a negative variance risk
premium, see e.g. Bollerslev, Tauchen & Zhou (2009) and the references therein for more

evidence.

7.2 Returns and realized measures and implied volatility: Crude oil fu-

tures

We now repeat the same exercise with the WTI Crude Oil futures prices. The summary
statistics for daily returns and the various realized measure are reported in Table [3|and their
time-series are plotted in Figure[2] We observe that the daily oil futures returns are highly
volatile, with the average daily realized variance at about 4% exceeding the average RV of
S&P 500 by more than four times. The volatility of realized volatility is also substantially
larger, while the Ljung-Box test statistics indicates smaller degree of serial correlation.
That the oil futures realized volatility is highly volatile and relatively less persistent is
also apparent from the time-series plot depicted in Figure 2] All realized measures exhibit
positively skewed and heavy-tailed unconditional distributions.

Similar to Trolle & Schwartz (2009) we find that the model-free implied volatility is, on
average, higher than realized volatility, confirming the existence of priced variance risk in
the oil market. The magnitude of the variance risk premium is smaller than in the equity
market. Applying the test for jumps on a day-by-day basis we identify 38 days when the oil
futures price jumped by a significant amount, corresponding to 2% of days in the sample.
The estimated contribution of jumps to the total variation is about 1.5%. Figure [2| shows

that the jumps are relatively large and rare.
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8 Empirical Results

8.1 Return quantiles
8.1.1 Estimation and in-sample fit

We begin by modeling and forecasting quantiles of daily returns, focusing on the 5%, 10%,
90% and 95% quantiles and the median since these are most interesting from an economic
point of view. Throughout, we employ realized volatilities rather than variances, i.e. we
take the square root of the realized measures discussed above. Estimation of linear quantile
regressions is carried out using the interior-point method of Portnoy & Koenker (1997) and
standard errors are obtained by moving-block bootstrap (Fitzenberger, 1997). For CAViaR
models we use the estimation approach of Engle and Manganelli (2004). The ARFIMA
models for logarithmic realized variances is estimated by maximum likelihood [

A large number of different specifications of the quantile regression models can be con-
sidered. To save space, we only report models that provide interesting insights into the
dynamics of conditional quantiles while at the same time deliver accurate out-of-sample
quantile forecasts. The estimation results are reported in the upper panels of Tables [4| and
for S&P 500 and WTI Crude Oil futures returns, respectively. We first discuss results for
the upper and lower tail quantiles and the median separately as the latter are very different

from the former.

Lower and upper tail conditional quantiles

For both assets, we find that the lagged realized volatility is highly statistically significant in
the linear quantile regressions (LQR) across the different quantiles. The estimated param-
eter have the expected sign: the left-tail (right-tail) quantiles vary negatively (positively)
with realized volatility. Turning to the symmetric absolute value (SAV) CAViaR model,
we find qualitatively similar parameters estimates as Engle and Manganelli (2004) in that
the lagged conditional quantile parameter is close to one and highly statistically significant,
while the lagged absolute return coeflicient is relatively small but also significant. Includ-
ing the lagged realized volatility into the CAViaR equation (Realized CAViaR) reduces the
coefficient associated with the lagged conditional quantile, but only slightly and without
affecting its statistical significance. In case of the S&P 500 futures, the lagged realized

volatility drives out the lagged absolute return in the lower-tail quantiles, but both vari-

4Linear quantile regressions are estimated using the RQ package for Ox Version 1.0 developed by Portnoy
& Koenker (1997). ARFIMA models are estimated by the ARFIMA package 1.04 for Ox by Doornik &
Ooms (2006). CAViaR models are estimated using the MATLAB and C++ routines by Simone Manganelli,
adapted to accommodate weakly exogenous variables.
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ables remain statistically significant in the upper-tail quantiles. In case of the WTI Crude
Oil, neither lagged RV nor absolute return turn out to be statistically significant at the 5%
level, owing perhaps to collinearity, though the lagged realized volatility tends to command
higher parameter estimates and t-statistics (in absolute value) than the lagged absolute
return.

Next, we decompose the realized variance into the continuous and jump parts and esti-
mate quantile regressions in which the measures of integrated variance and jump variations
enter separately. We also add the option-implied volatility into the conditional quantile
equations. The estimation results are reported in the middle panels of Tables [4 and bl We
find that jumps play essentially no role in the linear quantile regressions (LQR) as JV turns
out to be statistically insignificant across the board. Lagged integrated volatility comes out
highly significant in the S&P 500 regressions but insignificant in the WTI Crude oil regres-
sion. This is perhaps due to the effect of the option-implied volatility that clearly plays
a major role in the conditional quantiles of both asset returns; the associated parameter
estimates are relatively large in magnitude and highly significant.

Adding the IV, JV and implied volatility into the SAV CAViaR model (Realized
CAViaR) produces different results across the two assets. In case of S&P 500, we find
that the coeflicient of the lagged conditional quantile is now substantially reduced, perhaps
due to the strong predictive power of implied volatility, and becomes statistically insignif-
icant in the lower tail. The lagged integrated volatility remains statistically significant in
both tails, while the lagged VIX only in the lower tail. Interestingly, the lagged absolute
return is not driven out in the upper tail, although the associated coefficient estimates are
counter-intuitively negative. In case of WTI Crude Oil, we find that neither the lagged ab-
solute return nor the lagged integrated variance come out significant, while option-implied
volatility only appears to matter in the 95% quantile. Rather surprisingly, the jump varia-
tion becomes significant in the Realized CAViaR; the estimated coefficients have the right
sign and are relatively large in magnitude.

Finally, we decompose the realized variance into upside and downside semivariances and
allow these to enter the quantile regressions separately. We also include the option-implied
volatility. The lower panels of Tables |4 and |5| report the estimation results and Figure
illustrates the results graphically for a wider range of quantiles. The realized downside
volatility clearly dominates across all estimated quantiles and leaves virtually no role for the
upside volatility in the linear quantile regression. The information content of the downside
volatility is not subsumed by option-implied volatility, which itself turns out to be highly

statistically significant.
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These results are consistent with the estimates of the asymmetric slope (AS) CAViaR,
where only the coefficient associated with the lagged negative return are generally statis-
tically significant, as in Engle and Manganelli (2004). Adding the realized semivariances
and option-implied volatility into the AS CAViaR equations produces mixed results: the
parameter estimates tend to be insignificant and do not always have the expected sign. Our
conjecture is that this may be due to collinearity.

Having discussed the estimation results we now turn to evaluating the in-sample fit
of the alternative daily conditional quantile models using the methodology of Berkowitz
et al. (2011) as described in Section 6. The results are summarized in left-hand side panels
of Tables [0] and [7] For each model and quantile, we report the in-sample unconditional
coverage (&), the likelihood ratio test statistic (DQ) for the null hypothesis that all the
beta’s in the logistic regression are equal to zero and the associate Monte Carlo-based
p-value (p-val). We run the logistic regressions with 5 lags.

Starting with S&P500 futures we find that all models perform very well in the lower
tail, having the unconditional coverage very close to the nominal levels and comfortably
passing the Berkowitz et al. (2011) test. Some dynamic misspecification is indicated by the
test in the upper-tail quantiles for ARFIMA and the symmetric absolute value CAViaR
models with and without realized measures, especially for the 90% quantile. The DQ
test also rejects the correct specification of this quantile for the linear quantile regression
with lagged realized volatility as the only regressor (LQR1). The asymmetric CAViaR
specifications as well as the linear quantile regressions LQR2 and LQR3 do not seem to
suffer from any misspecification and perform very well in both tails in-sample. In case of
WTTI crude oil futures, we observe similar results for the 90% quantile and some rejection
for ARFIMA and CAViaR in the far left tail, although these appear to be marginal at the
5% level in the latter case. Thus we conclude that the daily semiparametric conditional
quantile models perform generally well in-sample, while the ARFIMA-based lognormal-
normal mixture appears to be slightly misspecified. Future work might therefore experiment

with alternative distributional assumptions in the latter model.

Conditional median

The results for the conditional median are substantially different from those for the far left
and right tails. This is hardly surprising given the vast body of evidence documenting the
lack of predictability of short horizon asset returns. Our estimation results show that the
variables we consider have generally little predictive power for the median, either because

the estimated coefficient are insignificant or their magnitude is small. The weak evidence
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for predictability that we find shows that the lagged absolute return and lagged realized
measures of volatility are sometimes negatively correlated with future median; see for exam-
ple the AS and RAS models for S&P 500 future and the LQR2 and RSAV1 models for WTI
Crude Oil futures. This is consistent with the findings of Barndorff-Nielsen et al. (2010),
and may be due to the leverage effect whereby an increase in volatility maybe followed by
a decline in asset prices. The relatively weak statistical significance of our results, however,
leads us to believe that a proper test of economic significance needs to be carried out before

any definitive conclusions can be drawn; we leave this for future work.

8.1.2 Owut-of-sample performance

We now assess the out-of-sample performance of the quantile models. We focus on one, five
and ten-step-ahead quantile forecasts and adopt the rolling approach, where we keep the
estimation window size fixed and forecast the last 500 daily, weekly or 10-day quantiles. The
multistep ahead forecasts are obtained from models fitted to the multiperiod returns directly
(direct forecasting), except for the ARFIMA-based forecasts, where we use the model fit
to the daily time-series to forecast quantiles at all horizons. The parameter estimates from
the semiparametric models fitted to the multiperiod returns are not reported to save space,
but are available on request. The estimation results for the ARFIMA models are reported
in Table [1

We start by assessing the absolute performance of the one-step-ahead forecasts using
the Berkowitz et al. (2011) approach as in the previous section, recalling that this approach
is not suitable for multi-step-ahead forecasts. The results are reported in the right-hand
side panels of Tables [6] and We find that all models perform well. The unconditional
coverage is close to the nominal levels and the DQ test signals significant misspecification
only in the case of the 90%-quantile SAV and RSAV1 models for S&P 500 futures returns.
Some minor misspecification is also indicated for the ARFIMA, SAV, RSAV1 and LQR1
models for the median of WTI Crude Oil futures returns.

Turning to the evaluation of relative performance, we report in Tables [8 and for each
a-quantile, model and forecast horizon, the out-of-sample unconditional coverage (&), the
value of the tick-loss function given in equation and the Diebold-Mariano test statistic
for the null hypothesis of equal predictive ability, where the benchmark model throughout
is the linear quantile regression model LQR2. Recall that this model includes the lagged
continuous and jump variations (IV and JV') and the option-implied volatility as regressors.

We use it as a benchmark since it belongs to the class of linear quantile regression models
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with realized measures, which we newly propose and advocate in this paper, and it performs
well both in-sample and out-of-sample for h = 1 in absolute terms as indicated by the D@
test.

Generally, we only find material difference across the competing models for the one-
step-ahead forecasts. First, the ARFIMA-based lognormal-normal mixture outperforms
the benchmark linear quantile regression LQR2 in the left tail of the distribution, delivering
significantly lower tick-loss at the 5% level despite relatively poorer unconditional coverage.
This is the case for both S&P 500 and WTI Crude Oil futures. A second interesting finding is
that the symmetric absolute value CAViaR model of Engle and Manganelli (2004) is beaten
by our benchmark linear model both in the left and right tails at the 5% level in the case of
S&P 500 futures. This is also true for the asymmetric CAViaR model and the 5% quantile.
However, by incorporating lagged realized measure or option-implied volatility restores the
performance of the CAViaR model such that it is statistically indistinguishable from our
benchmark. In terms of multi-step ahead forecasts, we find small differences between the
various models, both for S&P500 and WTI Crude Oil futures, and no uniform ranking of

the models emerges from our exercise.

8.2 Realized volatility quantiles

We now turn to modeling and forecasting the quantiles of realized volatility of S&P 500
futures. We focus on the median and 75%, 90% and 95% quantiles with the latter two
being of particular interest to traders or investors exposed to volatility risk. As in the case
of returns, we only report estimation results for three different model specifications that
we find particularly interesting, noting that a number of alternative model specifications
delivering equally accurate quantile forecast can be considered. The results are summarized
in Table [0l

We begin by discussing model HARQ1 where we quantile-regress realized volatility on
lagged realized volatility, and the average realized volatilities over the past 5 and 22 days.
This model is a quantile autoregression of Koenker & Xiao (2006) with 22 lags and restricted
parameters. We find that all three regressors are highly statistically significant in the models

for the median and 75% quantile, while only Rthﬁ and RV;l/ 2

-5 M Temain significant in the

models for the far right tail quantiles (90% and 95%). The quantiles of realized volatility
are therefore less persistent in the right tail of its distribution. Interestingly, the coefficient
estimates for R‘Qlﬁ increase steadily with a thereby capturing the volatility-of-volatility

effect observed among others by Corsi et al. (2008) and Bollerslev, Kretschmer, Pigorsch
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& Tauchen (2009). If the innovations were homoskedastic as in a pure location model,
the quantile regression coefficients would be constant (up to estimation error) across all
quantiles. We find quite the opposite: in periods of high volatility, the volatility of volatility
increases and this pushes a given conditional o quantile further to the right.

In the HARQ2 model, we augment the set of regressors by implied volatility and replace
the lagged realized volatility by upside and downside semi-volatilities. Similarly to the
models for daily returns, we find that the downside volatility completely dominates the
upside volatility, with the latter being statistically insignificant in all four quantile models
(see also Figure [4)). The option-implied volatility possesses significant predictive power for
the quantiles of future realized volatility as well and the coefficient estimates increase with
a as do the coefficients corresponding to the realized downside semivariance. This implies
that the volatility of realized volatility increases not only with historical realized volatility
but also with (risk-neutral) expectations of future volatility. Figure |4] illustrates this effect
graphically. The implied volatility also subsumes the effect of RV:!EQZ a in the median
and 75% quantile models. In the models for the 90% and 95% quantile, the coefficient
estimates on RVt}t/_2227 ) are negative but further investigation reveals that this is due to
the presence of insignificant variables in the model; once these are removed all remaining
parameter estimates turn out to be positive.

Finally, we study the role of jumps in the quantile models for realized volatility (HARQ3).
We find the jump variation variable insignificant on the 5% level for all quantiles. This result
holds irrespective of the presence of implied volatility or I Vt?t/_2227 s in the regressions.

The estimation results for regression quantiles of WTI Crude Oil futures realized volatil-
ity are presented in Table Interestingly, we find that the time series of daily realized
volatility exhibits a day-of-week pattern: realized volatility tends to be larger on Wednes-
days than on other days of the week. This feature is not induced by thin trading associated
with holiday periods since these have been removed from our dataset as we mentioned in
Section Nor is it a symptom of price jumps associated with new announcements that
are typically made on Wednesdays. The autocorrelation function of the median realized
volatility, which is robust to jumps, exhibits the same seasonal pattern as that of the real-
ized volatility. To account for the day-of-week effect, we include a dummy variable, D}V, for
Wednesday. As is apparent from Table the Wednesday dummy is statistically significant
across all models reported there.

The average realized volatility over the past month, RV;t/_Qm’ - appears to be less impor-
tant for the prediction of quantiles in the far right tail. Similar decrease in the persistence

of conditional quantiles was also observed for the S&P 500 futures. The difference between
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the downside and upside realized semivariances in term of predictive power seems to be less
pronounced. The coefficient estimates corresponding to RS~ are larger than those of RV ™
but the latter are also marginally statistically significant for 75% and 90% quantiles. The
jump variation comes out insignificant at conventional levels in all quantile models. Finally,
the model-free implied volatility is found to be highly informative for all quantiles of future
realized volatility.

Having covered the semiparametric models, we now turn to the fully parametric ARFIMA-
based lognormal-normal mixture described in section 5.2. Table [I] reports the parameter
estimates of ARFIMA(1,d,0) fitted to the time series of logarithmic realized volatilities of
S&P500 and WTI Crude Oil futures contracts. Consistent with previous empirical evidence
we find that both series are highly persistent with the long memory parameter d estimated
at 0.48 and 0.40, respectively. The first-order autogressive parameter estimates are negative
and statistically significant but relatively small.

As in the case of returns, we now assess the absolute in-sample performance of the
conditional quantile models using the Berkowitz et al. (2011) test. The results are reported
in the left-hand side panel of Table Starting with S&P 500, we find that the log-normal
ARFIMA does not fare very well despite having the empirical unconditional coverage close
to the nominal level; the D@ test clearly rejects the null hypothesis of correct dynamic
specification. The three linear quantile regressions also suffer from some form of dynamic
misspecification in case of the median and 75% quantiles, but exhibit excellent absolute
performance in the right tail (90% and 95% quantiles). Similar results are obtained for the
models for WTI Crude Oil, although here the D@ test indicates misspecification only in

the median regressions and at the 10% significance level.

8.2.1 Out-of-sample performance

Finally, we assess the relative out-of-sample performance of the conditional quantiles models
for realized volatility. We proceed in the same manner as in the case of returns. We focus
on forecasting the last 500 daily, 5-day and 10-day conditional quantiles using the rolling-
window approach and direct forecasting, except for the ARFIMA-based forecasts which are
based on the ARFIMA model for daily realized volatility and Monte Carlo simulation. For
each model, quantile and forecast horizon, we report the unconditional coverage, the value
of the tick-loss function and the Diebold-Mariano test statistic for the null hypothesis of
equal predictive ability with the benchmark linear quantile regression model HARQ3. We

choose this model as benchmark because it performs well in absolute terms in-sample across

23



the different quantiles.

The results are summarized in Table [I3] We find that despite having relatively poor
unconditional coverage, the ARFIMA forecasts significantly outperform the linear quantile
regressions at the one-day forecast horizon as indicated by the DM test, both the for
S&P500 and WTI Crude Oil. This superior performance, however, disappears at the 5
and 10-day horizons, where the ARFIMA performs on par with the quantile regressions
in a statistical sense (DM test), thought the quantile regressions seem to deliver better
unconditional coverage and lower value of the tick-loss function for the 90% and 95% quantile
forecasts, i.e. for the right tail of the realized volatility distribution. Together with the
simplicity of the direct forecasting method and the linearity of the model, as opposed to the
computationally intensive Monte Carlo, this implies that the linear quantile regressions may

be particularly useful in practice for medium-horizon quantile forecasts of realized volatility.

9 Conclusion

This paper proposes to use linear quantile regression together with realized measures of
volatility as covariates to model and forecast conditional quantiles of financial asset returns
and realized volatility. Relying on nonparametric measures of the various components of
the overall quadratic variation we avoid making restrictive parametric assumptions on the
dynamics of the price process. Thanks to the flexibility of quantile regression, we place no
assumptions on the distributions of return or volatility innovations, and we are not confined
to the class of location-scale models for either returns or realized volatility.

In an empirical application to S&P 500 futures prices, we document the role of different
components of historical volatility as well as option-implied volatility and find that either
individually or in a combination deliver accurate in-sample and out-of-sample fit. Applying
the methodology to a series of WTI Crude Oil future realized volatility shows that the
quantile regression models perform reasonably well even when applied to substantially more
volatile and less persistent data. The models can therefore serve as useful risk managements
tools for investors trading the futures contracts themselves or various derivative contracts
written on realized volatility.

In a comparison with two competing models, the CAViaR of Engle and Manganelli
(2004) and the lognormal-normal mixture of Andersen et al. (2003), we find that nei-
ther of the models dominate in terms of performance uniformly across different quantiles.
Putting realized measures into the CAViaR model does not drive out the other variables

in the CAViaR equation completely and it improves its performance. The linear quantile
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regressions with realized measures, however, seem to perform no worse than the realized
CAViaR. The ARFIMA-based lognormal-normal mixture delivers generally poorer uncon-
ditional coverage but it often exhibits lower tick-loss at the same time. For medium-horizon
realized volatility forecast, we find that the linear quantile regression seems to perform bet-
ter, especially in the right tail of the distribution. Needles to say, we have not considered
all potential competitors for our quantile regressions in this paper, so there may be other
models that rely on realized measures and deliver equal or even better quantile forecasts.

We leave a fully-fledged comparison for future work.
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A  Proofs

Proof of Lemma 1. The first part of the result is proved by Corradi et al. (2011) for bi-power and
tri-power variation of Barndorff-Nielsen & Shephard (2004). Using the same line of argument as in
Corradi et al. (2011), one can show that the same result holds for the median realized volatility as
well and we omit the proof to save space.

To prove the second result, write

[JVie — JVi| = |[RVi v — IV — TV,

<|RVipr — IV = JVi| + |1V — 1V,
= At7M +Bt,M~

B; ar was discussed above so we need to focus on A; .

A; Ly AL,

M ; 2
At,M:Z</t UudW‘f'Z/ﬂ) —/ttlaidu—lz:mf,
- =1

=1

M t 2 £ ALy
< Z(/ UudW> —/ o2du| + 22(/ Uuqu> ( m)‘
i=1 \Yti-1 ti-1 tia 1=1
ALy \ 2 AL
| (X)X
i=1 =1 =1

=Ciym + Dy + Er g

Now C} pr is the measurement error associated with realized volatility in the absence of jumps and
by Corradi et al. (2011) we have E(|Cys|*) = O(M~=*/2). Given Assumptions A2 (existence of
moments of jumps) and A3 (ﬁnite activity), we can proceed by assuming that there is at most one

jump in every time interval [t,_1,%;]. Then Ey pr = 0 and write Dy s as
ti
DtJ\/I = Uuqu
M t;
o, AWy |[ke [ Tga,L=1y +2 / (0w = o1, )AWa ||k, [L{a,L,=1}
i=11Vti—1

1 2
= D3 + D3

For simplicity we focus on the case of k = 2 noting that the case of k > 2 can be treated analogously.
Taking expectations,

(1) S tiy tiy
E =4 Z E Oty 10ty 1 / dw, / dw, |Ht7‘,1 |’€t7:2 =1}1{A,i2Lt=1}
i1=1ip=1 tig—1 tin_1
M M t b,
=4> > E|oy, o0 / qu/ #
11=11i2=1 tig—1 tig—1
x E[lﬂtil iy ]E[l{AilLt:1}1{Ai2Lt:1}]

By Holder inequality, the first expectation is O(M~!) provided that E[o2] < oo, while the sec-
ond expectation is O(M~2) if iy # iy and O(M ') if 4y = iy, provided that E[x3] < co. Thus,
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IEHDSXJP] = O(M~1'). Finally, E[|D§2}4\2] can not be of higher order than E[|Dt(1]\)/[|2}, see Corradi
et al. (2011) for details. O

Proof of Proposition 1. To save space, we prove the proposition for V; = {IV; pr, JV; pr} and
Bz = 0, noting that the others cases can be treated analogously. Simplifying notation we will write
B = B(«a) since « is fixed throughout. Define

241(8) = QVig1 — Po — B1IVy — B2 JV,

zZie,m(B) = RVigim — Bo — LiIVim — B2 Vi,
and write
|QRr :(B) — QRr(B)|
T—1 L 11
= |7 Z zep1,m (B)a — ez, m(8) < 0} — T zi1(B)la — H{z41(B) < 0}]
—0 t=0
T—1
= % Z(Zt+1,M(5) = zt+1(8)) (@ — H{zt41,m(B) < 0}) — (1{ze41,m(B) <0} — 1{z41(8) < 0})z41(B)
"
< D e (8) — 2 (B) §j|%+1 N1 {ze1,00(8) < 0} — 1{ze11(B) < 0}
=0
= Ar v+ Brou.
Now

Arm = = ZINtM BNy — BN Z\NtM\+51|Nt(CJ\)4|+52\Nt(UJI\)4\

t 1

where Ny pr = RViar — IV — JV;, B1 = max|B;1] and B2 = max |Ba|, which are well-defined since
© is compact. It follows by Markov inequality, stationarity and Lemma 1 that Ap pr = Op(M -1/ 2)
uniformly in 8.

Turning to By ar, we have

Brv = = Z 241(8)|[1{ 2041 (8) + Neas — BiNS Yy — B2N{Gy < 0} — 1{z141(8) < 0}

IN

—Zm JL{=sup [Ny ar] - ﬂlsupwff&f\—stupuvff?ﬂsZ«tH(ﬂ)}
xum4m<wmmm+@wmw%+&wm .

By Lemma 1, E|Nt(‘f\)/[| = O(M~*/?), and hence by Markov inequality

T

P{sngzflMl/ﬂNt(j)ﬂx] < ZP[T =T MY2ING) | > €
t=1
< Lri-a RN,
. :

= O(T' " #).
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and similarly for Nt(i\)4 and NV . It follows that there exists a constant ¢ such that with probability
approaching one as T, M — oo

T
1
Bra < 7 Sz (B) L {—beel =T M~Y2 < 2,1(B) < beeT =1 M1/}, (13)
t=1
= B£7M, (14)

where b = 1 + B; + B2. Thus, following Corradi et al. (2011) we can proceed by conditioning on a
set on which holds and focus on Bj ;. By Markov and Hélder inequalities,

T-1
1
(B > 1) <~ ST E(E(8))2P(—beeTFT MY < 244 (8) < beel =1 M~V2)12,
t=0

IS | =

Since © is compact, Assumption A2 implies that E(z7(3))/? < oo and if T#HTM-12 = 0 as
T,M — oo, we have IP’(—bceTﬁM_l/2 < z41(B) < bceT%M_lﬂ)l/2 — 0, uniformly in 3.
The statement in the proposition then follows. O
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B Constructing model-free implied volatility for oil

B.1 Theoretical Background

The methodology we employ for constructing model-free implied variance (ImV') for oil is based on
Carr & Wu (2009). The idea of Carr & Wu (2009) is to synthetise a variance swap contract using
European options and futures contracts. Since the oil options are American-style futures options,
further adjustments are required to account for the early exercise premium. Here we follow Trolle
& Schwartz (2009).

To fix ideas, let F; 1 denote the time-¢ futures price of maturity 7" > ¢, and let RV, 1, T1 < T,
denote the realized variance of the futures price between ¢ and T7. A variance swap with notional
dollar amount L is a contract that pays at maturity 77 to the long side the following amount

(RVt,Tl - SthTl )L
Since the value of the swap at inception is zero, absence of arbitrage requires that
SWir, = EXRV,1,) = ImVy1,,

i.e. the swap rate is equal to the risk-neutral market expectation of future realized variance, that is,
the ImV. Carr & Wu (2009) show that the ImV can be approximated by
2 For p(t, Ty, T, X) >~ Ct, Ty, T, X)
I N—_— — 7 dX — 7 dX 1
mVir,1 B (Tr —1) </0 e + - e ) (15)

where By p, is the time-¢ price of a zero-coupon bond maturing at time 7, and P(¢t,T1,7, X ) and
C(t,T1,T,X) denote the time-t price of a European put and call options, respectively, expiring at
time 77 with strike X written a a futures contract with maturity at 7. When the underlying futures
price trajectories are continuous, the relation is exact. In the presence of jumps, a jump error
arises but it is shown to be rather small in a simulation exercise by Carr & Wu (2009).

To account for the early exercise premium embedded in the American-style options, we resort to
the quadratic approximation formulas for American-style puts and call developed by Barone-Adesi
& Whaley (1987) (henceforth BAW). In particular, for each strike and maturity, we first invert the
BAW formula to obtain the implied volatility and then plug the implied volatility into Black (1976)
formula for pricing European-style futures options to obtain P(¢,71,T, X) and C(¢t,11,T, X).

B.2 Data and implementation

We use daily settlement prices for WTI Crude Oil futures traded on the New York Mercantile
Exchange (NYMEX) and the futures options traded on the Chicago Mercantile Exchange (CME).
To proxy for the risk-free interest rates we employ the zero curve supplied by OptionMetrics. The
sample period runs from September 4, 2001 till August 30, 2008.

Before calculating the implied volatility we perform some basic data cleaning. We remove options
which have less that 10 days to maturity to avoid possible distortions associated with near-maturity
microstructure effects. We also discard all options with prices smaller than 0.05 USD. Finally, we
only consider options satisfying the no-arbitrage bounds, see e.g. Hull (2000).

For each day in the sample, we construct the 30-day implied volatility using the two nearest
maturities, denoted by 77 and Ts, 71 < To < T. For each maturity, we first obtain the implied
volatility smile from the available out-of-the money put and call options by inverting the BAW
formula. We then linearly interpolate the implied volatilities at different moneyness levels k =
log(X/F). For strikes smaller than the lowest available strike, we use the lowest available strike.
Similarly for strikes higher than the highest available one. We thus obtain implied volatilities over
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a fine grid ranging from -10 to 410 standard deviations from the current futures prices and use the
Black (1976) formula to convert the implied volatilities into prices of out-of-the-money put and call
options. These prices are then used in to approximate ImV; 1, v and ImV; 1, v. Finally, to
obtain the 30-day variance swap rate, we linearly interpolate between the two available maturities:

1 Ith’TLT(Tl — t)(TQ — T*) + Ith’TQ,T(Tg — t)(T* — Tl)

ImVir = 7 T,— T

where T is such that T* — ¢t is 30 days.

Tables

Table 1: ARFIMA parameter estimates with t-statistics in parentheses.

S&P 500 WTTI Crude Oil

d 0.48 0.40
(32.3) (14.8)

o1 -0.07 -0.11
(-3.14) (-2.82)

Mean -0.37 1.10
o? 0.25 0.19
Log Lik  -1905.18 -726.06
AIC 1.44 1.17
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Mean Std. Dev. Skew. Kurt. Min Max JB LB9g
Ty 0.010  1.015  0.105 8843 -7.730 8.382 1579 35.10
RV, 0.992  1.368 8177 129.3 0.052 32.99 19865 7166
RVM* 0890 0445 2292 11.08 0.228 5.744 1673 17804
log RV; -0434  0.881 0283 0.109 -2.951 3.496 42.57 23807
RV, 0492  0.638 5345 4640 0.013 9.004 15037 7896
RV, 0499  0.841  13.70 3294 0.023 26.38 69983 3647
MedRV; 0919  1.248 6228 61.24 0.042 19.13 22046 9166
VIX, 1.278  0.834  1.621 3.657 0.267 5731 1795 48706

Table 2: Summary statistics for S&P 500 futures returns, realized measures and option-
implied volatility. JB denotes the Jarque-Bera test statistics for normality and LBy is
the Ljung-Box test statistics for serial correlation up to lag 20. All realized measures are
calculated from 5-minute prices obtained from irregularly-spaced transactions data using
the last-tick method. The sample period is from January 3, 1997 till June 30, 2008, yielding

3140 daily observations.

Mean Std. Dev. Skew. Kurt. Min Max JB LBy
T 0.022 2.026 -0.155  3.623 -12.53 14.43 477.9 33.02
RV, 4.066 4.222 3.620 16.54 0.464 37.58 7942 13478
Rth/z 1.734 0.545 1.689 5.802 0.681 5.573 601.9 5330
log RV} 1.015 0.574 0.387 0.548 -0.766 3.435 42.06 6159
RV, 2.101 2.374 3.522 15.83 0.089 21.42 7266 9997
RV," 1.965 2.205 4.517 28.28 0.217 23.61 10004 9457
MedRV; 3.812 3.916 3.769 19.46 0.194 43.78 7074 12641
ImV; 1.978 0.438 1.423 2.651 1.289 4.111 794.9 23968

Table 3: Summary statistics for WTI Crude Oil futures returns, realized measures and
option-implied volatility. JB denotes the Jarque-Bera test statistics for normality and LBog
is the Ljung-Box test statistics for serial correlation up to lag 20. All realized measures are
calculated from 5-minute prices obtained from irregularly-spaced transactions data using
the last-tick method. The sample period is from September 4, 2001 till August 30, 2008,
yielding 1870 daily observations.
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in-sample out-of-sample
a 005 010 050 090 0.95 0.0 0.10 0.50 090 0.95

ARFIMA & 0.050 0.102 0.482 0.880 0.935 0.066 0.116 0.478 0.904 0.950
D@ 1.831 2177 16.92 27.26 16.53 7.829 7.745 4.274 12.89 8.488
p-val 0.939 0.904 0.013 0.000 0.023 0.336 0.287 0.675 0.054 0.257

SAV & 0.050 0.100 0.501 0.900 0.950 0.050 0.092 0.506 0.926 0.966
D@ 5.217 8.195 12.14 20.39 16.16 5.789 7.104 4.169 2294 7.006
p-val 0.536 0.237 0.063 0.003 0.025 0.579 0.309 0.676 0.001 0.433

RSAV1 & 0.050 0.100 0.501 0.901 0.951 0.074 0.118 0.508 0.896 0.948
DQ 2.048 3.748 10.31 18.61 3.658 6.113 2.581 5.014 15.59 10.25
p-val 0901 0.717 0.115 0.007 0.725 0.540 0.864 0.568 0.027 0.122

RSAV2 & 0.050 0.100 0.501 0.901 0.952 0.070 0.116 0.510 0.896 0.948
D@ 6.033 3.762 11.03 18.43 3.225 5.805 2.711 3.181 6.246 9.235
p-val 0.436 0.699 0.096 0.007 0.773 0.581 0.868 0.800 0.429 0.182

AS & 0.050 0.100 0.502 0.900 0.949 0.054 0.094 0.488 0.910 0.952
D@ 6.493 2.011 1.266 10.81 8.185 6.409 4.768 1.538 5.365 7.915
p-val 0.402 0.911 0.970 0.103 0.239 0.512 0.601 0.951 0.517 0.323

RAS & 0.050 0.101 0.501 0.900 0.951 0.054 0.102 0.496 0.908 0.958
D@ 5.658 0.948 0.313 8.482 0.903 1.192 2.202 1.326 1249 6.290
p-val 0.463 0.990 1.000 0.225 0.989 0.987 0902 0.975 0.058 0.545

LQR1 & 0.050 0.100 0.500 0.900 0.950 0.056 0.096 0.496 0.918 0.964
D@ 6.183 3.063 1443 15.14 8.434 4515 6.179 3.225 9.359 7.750
p-val 0.398 0.802 0.025 0.023 0.226 0.760 0.399 0.780 0.191 0.331

LQR2 & 0.050 0.100 0.500 0.900 0.950 0.056 0.104 0.490 0.902 0.954
D@ 2.067 1.092 13.09 8.941 3.918 4581 4.357 3.611 10.67 7.513
p-val 0.929 0.983 0.037 0.176 0.681 0.744 0.616 0.721 0.126 0.393

LQR3 & 0.050 0.100 0.500 0.900 0.950 0.052 0.104 0.494 0.898 0.956
D@ 4.688 1.255 12.13 10.31 3.497 3.578 7499 3.319 6.723 6.576
p-val 0.591 0.975 0.050 0.109 0.771 0.862 0.313 0.761 0.387 0.503

Table 6: Absolute performance of alternative conditional quantile models for daily S&P500
futures returns. The left-hand side panel reports results for in-sample performance and
the right-hand side panel reports results for out-of-sample performance (one-step-ahead
forecasts). For each model and quantile (o) we report the unconditional coverage (&),
the Berkowitz et al. (2011) test statistic for correct dynamic specification (DQ) and the
corresponding Monte Carlo-based p-value (p-val).
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in-sample out-of-sample
a 005 010 050 090 0.95 0.0 0.10 0.50 090 0.95

ARFIMA & 0.030 0.075 0.485 0.898 0.951 0.050 0.102 0.484 0.871 0.942
D@ 19.01 1252 9.882 10.89 7.487 5.606 5.650 14.06 9.599 7.711
p-val 0.005 0.040 0.137 0.076 0.339 0.638 0.488 0.035 0.160 0.356

SAV & 0.048 0.099 0.500 0.900 0.951 0.050 0.098 0.506 0.880 0.932
D@ 13.84 4.236 6.056 14.13 4.002 5.406 9.114 13.92 7.815 7.993
p-val 0.049 0.635 0.419 0.031 0.709 0.662 0.181 0.043 0.298 0.303

RSAV1 & 0.049 0.099 0.502 0.901 0.952 0.048 0.112 0.490 0.861 0.924
DQ 1427 5840 6.684 13.71 5.441 5.001 6.057 13.65 10.64 11.14
p-val 0.045 0.464 0.364 0.032 0.545 0.720 0.449 0.037 0.118 0.091

RSAV2 & 0.052 0.099 0.500 0.899 0.951 0.048 0.116 0.508 0.871 0.940
D@ 6.951 7.863 5.089 17.46 8.358 5.001 10.05 6.583 8.673 4.680
p-val 0.397 0.239 0.542 0.009 0.301 0.725 0.140 0.370 0.203 0.744

AS & 0.049 0.099 0.499 0.902 0.952 0.048 0.100 0.512 0.876 0.938
D@ 1427 2.081 2311 13.21 7.755 5.001 5.334 9.258 8.169 4.529
p-val 0.043 0.914 0.900 0.055 0.308 0.711 0.507 0.164 0.246 0.747

RAS & 0.051 0.099 0.501 0.901 0.949 0.050 0.102 0.506 0.876 0.932
D@ 6.545 10.98 1975 5.518 5.394 4.937 3.300 7.547 5.625 7.589
p-val 0.402 0.081 0.944 0.470 0.521 0.694 0.792 0.253 0.494 0.338

LQR1 & 0.051 0.100 0.500 0.900 0.949 0.048 0.098 0.514 0.900 0.952
D@ 3.853 2197 18.79 12.70 3.935 2,586 6.070 11.60 3.277 6.096
p-val 0.723 0.905 0.008 0.049 0.700 0.932 0.469 0.068 0.812 0.568

LQR2 & 0.051 0.100 0.500 0.901 0.949 0.046 0.112 0.514 0.892 0.948
D@ 1.636 3.476 14.87 9.567 3.608 5.072 7.817 10.56 2.585 4.801
p-val 0.952 0.745 0.024 0.151 0.740 0.703 0.279 0.104 0.871 0.762

LQR3 & 0.051 0.100 0.500 0.899 0.949 0.046 0.116 0.508 0.898 0.950
DQ 2355 2.747 4.590 3.950 3.852 5.072 8.047 7.848 4.130 7.915
p-val 0.887 0.850 0.621 0.684 0.715 0.678 0.235 0.230 0.674 0.305

Table 7: Absolute performance of alternative conditional quantile models for daily WTI
Crude Oil futures returns. The left-hand side panel reports results for in-sample perfor-
mance and the right-hand side panel reports results for out-of-sample performance (one-
step-ahead forecasts). For each model and quantile («) we report the unconditional coverage
(&), the Berkowitz et al. (2011) test statistic for correct dynamic specification (DQ) and
the corresponding Monte Carlo-based p-value (p-val).
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in-sample out-of-sample
@ 0.5 075 090 0.95 0.5 075 090 0.95
A. S&P 500

ARFIMA a 0.534 0.780 0.907 0.948 0.522 0.837 0.954 0.978
D@ 25.08 29.13 24.53 33.08 46.73 51.52 31.01 15.67
p-val 0.001 0.000 0.000 0.000 0.000 0.000 0.000 0.007
LQR1 & 0.500 0.750 0.900 0.949 0.554 0.770 0.894 0.944
D@ 20.31 12.65 2.764 6.430 19.50 13.98 4.617 3.249
p-val 0.002 0.045 0.820 0.405 0.002 0.028 0.613 0.859
LQR2 & 0.500 0.750 0.900 0.950 0.540 0.750 0.864 0.928
D@ 18.93 2525 5.369 4.877 12.99 6.462 10.09 6.633
p-val 0.005 0.000 0.486 0.577 0.034 0.369 0.133 0.482
LQR3 & 0.500 0.750 0.900 0.950 0.538 0.750 0.862 0.928
D@ 36.50 29.10 5.574 6.529 9.771 11.69 9.858 7.796
p-val 0.000 0.000 0.475 0.368 0.134 0.068 0.178 0.334

B. WTT Crude Oil
ARFIMA & 0.553 0.781 0.892 0.937 0.510 0.825 0.948 0.974
DQ 47.61 26.63 22.36 13.97 13.33 21.03 19.52 13.71
p-val 0.000 0.000 0.003 0.040 0.039 0.002 0.003 0.028
LQR1 &a 0.501 0.750 0.901 0.949 0.524 0.734 0.884 0.948
D@ 8.308 8.639 0.935 4.332 7.497 5.594 1.929 8.149
p-val 0.207 0.189 0.989 0.649 0.274 0.486 0.923 0.278
LQR2 a 0.501 0.750 0.900 0.950 0.520 0.736 0.890 0.946
D@ 11.79 9.121 1.729 1.954 7.263 7.063 3.484 3.976
p-val 0.070 0.165 0.952 0.941 0.299 0.325 0.733 0.790
LQR3 & 0.501 0.750 0.900 0.949 0.524 0.730 0.900 0.950
D@ 11.68 9.313 1.593 2.162 9.959 5.950 5.085 12.80
p-val 0.071 0.175 0.950 0.916 0.148 0.435 0.559 0.033

Table 12: Absolute performance of alternative conditional quantile models for daily S&P500
and WTI Crude Oil futures realized volatility. The left-hand side panel reports results
for in-sample performance and the right-hand side panel reports results for out-of-sample
performance (one-step-ahead forecasts). For each model and quantile () we report the
unconditional coverage (&), the Berkowitz et al. (2011) test statistic for correct dynamic
specification (DQ) and the corresponding Monte Carlo-based p-value (p-val).
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Figure 1: Time series of daily returns, realized variance, median realized variance and jump
variation for the S&P 500 futures contract. All realized measures are calculated from 5-
minute prices obtained from irregularly-spaced transactions data using the last-tick method.
The sample period is from January 3, 1997 till June 30, 2008.
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Figure 2: Time series of daily returns, realized variance, median realized variance and jump
variation for the WTI Crude Oil futures contract. All realized measures are calculated
from 5-minute prices obtained from irregularly-spaced transactions data using the last-tick
method. The sample period is from September 4, 2001 till August 30, 2008.
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Figure 3: Estimated quantile regression process for model LQR3 in Table M for S&P
500 futures returns. For each a-quantile ranging from 0.05 to 0.95, we plot the estimated
parameters in the quantile regression (B(a)) together with pointwise 95% bootstrapped
confidence intervals.
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Figure 4: Estimated Quantile regression process for model HARQ2 in Table for S&P
500 realized volatility. For each a-quantile ranging from 0.5 to 0.95, we plot the estimated
parameters in the quantile regression (B(a)) together with pointwise 95% bootstrapped
confidence intervals.
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