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Abstract

This paper investigates how the conditional quantiles of future returns and volatility

of financial assets vary with various measures of ex-post variation in asset prices as well

as option-implied volatility. We work in the flexible quantile regression framework

and rely on recently developed model-free measures of integrated variance, upside and

downside semivariance, and jump variation. Our results for the S&P 500 and WTI

Crude Oil futures contracts show that simple linear quantile regressions for returns

and heterogenous quantile autoregressions for realized volatility perform very well in

capturing the dynamics of the respective conditional distributions, both in absolute

terms as well as relative to a couple of well-established benchmark models. The models

can therefore serve as useful risk management tools for investors trading the futures

contracts themselves or various derivative contracts written on realized volatility.
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1 Introduction

A fast growing recent literature in financial econometrics focuses on measuring, modeling

and forecasting volatility using high-frequency data (Andersen, Bollerslev & Diebold, 2009).

Yet, a number of important financial decisions require the specification and estimation of

the entire distribution of future price changes and volatility, or at least of a few quantiles.

Prime examples include portfolio selection when returns are non-Gaussian, risk measure-

ment and management (Value-at-Risk), and market-timing strategies where the sign of

future prices changes is to be predicted (Christoffersen & Diebold, 2006). Forecasting the

conditional distribution of future returns or its quantiles based on the use of intraday data

and nonparametric measures of ex-post variation in asset prices has so far attracted much

less attention than forecasting realized volatility. Notable exceptions include Andersen,

Bollerslev, Diebold & Labys (2003), Giot & Laurent (2004) and Clements, Galvao & Kim

(2008), who all combine time-series models for realized volatility with either parametric

or nonparametric estimators of conditional distributions, and the recent contributions by

Brownlees & Gallo (2009), Shephard & Sheppard (2009) and Maheu & McCurdy (2010),

who base their predictive densities on parametric return-based volatility models.

This paper follows a different route and proposes to couple the flexible semiparametric

quantile regression framework with nonparametric measures of the various components of

ex-post variation in asset prices to study the properties of conditional quantiles of daily

asset returns and realized volatility, and forecast their future values. The use of quantile

regression in financial econometrics is not new (Koenker & Zhao, 1996, Chernozhukov &

Umantsev, 2001, Engle & Manganelli, 2004, Cenesizoglu & Timmerman, 2008), but to the

best of our knowledge, it has not yet been applied in combination with realized volatility

and related measures.

Our approach has a number of advantages. First, by relying on nonparametric measures

of volatility we avoid making restrictive assumptions on the dynamics of the underlying con-

ditional distributions. Second, by decomposing the overall ex-post variation in the prices

process into the continuous (diffusion) and discontinuous parts (jumps), we are able to

study the predictive power of these two components separately. Given the recent evidence

on the predictive power of contemporaneous jumps for future volatility (Andersen, Boller-

slev & Diebold, 2007, Corsi, Pirino & Renò, 2010) and the finding of Todorov & Tauchen

(2011) that prices and volatility tend to jump together seems to suggests that jumps may

perhaps contain information about quantiles of future returns and volatility as well. Third,

the semiparametric nature of quantile regression avoids confining attention to the relatively
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restrictive class of location-scale models (Chernozhukov & Umantsev, 2001). Last but not

least, our models are very simple to estimate yet capture, through the highly persistent re-

alized volatility measures, the persistent dynamics of the conditional quantiles documented

by Engle & Manganelli (2004) for equity returns.

In addition to the information contained in the historical high-frequency returns, we

also investigate the predictive power of the (risk-neutral) expectations of future volatility

embedded in options prices. The benefits of including implied volatility into the information

set used for forecasting future volatility has been recently documented, among others, by

Giot & Laurent (2007) and Bush, Christensen & Nielsen (2011). See also Bollerslev, Tauchen

& Zhou (2009), who find the ability of the variance risk premium to forecast future medium-

horizon stock returns. Christofferesen & Mazzota (2005) show that volatility implied by

foreign exchange options help to predict, albeit imperfectly, future distributions of spot

exchange rates. Cenesizoglu & Timmerman (2008) obtain similar results for conditional

quantiles of monthly equity index returns. Motivated by this empirical work, we include

implied volatility as an additional covariate into the quantile regression models.

Besides modeling conditional quantiles of future returns, we propose simple models

for the quantiles of future realized volatility. We follow Andersen, Bollerslev & Diebold

(2007) and Bush et al. (2011) and consider a heterogeneous quantile autoregressive model

(HQAR) with jumps and implied volatility. This model can be viewed as an extension

of the heterogeneous autoregression, originally proposed by Corsi (2009) for modeling the

conditional mean of realized volatility, to conditional quantiles. A particular version of this

model falls into the class of quantile autoregressions studied by Koenker & Xiao (2006).

Our empirical study of the S&P 500 futures prices between January 1997 and June

2008 reveals some interesting features of the conditional distribution. First, we find that

both realized as well as implied volatility possess significant predictive power for quantiles

of future returns. Second, upon decomposing realized volatility into realized downside and

upside semivariance (Barndorff-Nielsen, Kinnebrock & Shephard, 2010), we find that it is

almost exclusively downside semivariance that drives both left and right tail quantiles. Thus

the past negative intraday returns contain more information about future quantiles than

the positive ones and this effect is not subsumed by option-implied volatility. Finally, jumps

play little role in forecasting quantiles of future returns.

Turning to models for realized volatility, we find that the heterogeneous quantile autore-

gressive model captures the time variation in conditional quantiles of daily realized volatility

very well both in-sample as well as out-of-sample. The impact of contemporaneous realized

and implied volatilities on future volatility quantiles is much higher in the far right tail of
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the distribution than in the left tail confirming the presence of a significant volatility-of-

volatility effect documented by Corsi, Mittnik, Pigorsch & Pigorsch (2008) and Bollerslev,

Kretschmer, Pigorsch & Tauchen (2009). Similar to return quantiles, we document that

recent realized downside semivariance possesses strong predictive power for future realized

volatility quantiles, leaving almost no role for realized upside semivariance. Finally, the

variation associated with jumps comes out insignificant in all models considered.

We complement our empirical analysis by applying the quantile regression models to the

WTI Crude Oil futures contract. Oil futures prices exhibit substantially higher volatility

and volatility of realized volatility than S&P 500 which provides us with an opportunity to

test our methodology on less well-behaved financial time series. We find that our quantile

models for oil futures perform equally well in terms of their ability to deliver accurate

quantile forecasts and find qualitatively similar results regarding the predictive power of

the various components of the overall quadratic variation for forecasting quantiles of future

returns and volatility.

To assess the relative performance of our linear quantile regressions, we use the Con-

ditional Autoregressive Value at Risk (CAViaR) model of Engle & Manganelli (2004) and

the ARFIMA-based lognormal-normal mixture of Andersen et al. (2003) as benchmarks.

Overall, we find that neither of the models dominate in terms of performance uniformly

across assets or quantiles. Putting realized measures into the CAViaR model does not drive

out the other variables in the CAViaR equation completely and it improves its performance.

The linear quantile regressions with realized measures, however, seem to perform no worse

than the realized CAViaR. The ARFIMA-based lognormal-normal mixture delivers gener-

ally poorer unconditional coverage but it often exhibits lower loss at the same time. For

multi-day realized volatility forecasts, we find that the linear quantile regression seems to

perform better, especially in the right tail of the distribution.

The rest of the paper unfolds as follows. Section 2 sets out the theoretical framework,

while Section 3 discusses conditional quantile estimation by regression quantiles. In Section

4, we study the implications of the measurement error induced by replacing the unobserved

volatility components by their sample counterparts and provide sufficient conditions ensur-

ing that the measurement error vanishes asymptotically. In Section 5 we briefly discuss a

couple of alternative models for conditional quantiles that we use for comparison with our

linear quantile regressions. Section 6 describes the methods we employe to evaluate the

performance of the conditional quantile models and Section 7 describes the data. Empirical

application is carried out in Section 8 and finally Section 9 concludes.
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2 Theoretical Framework

We assume that the logarithmic price process obeys an Itô semimartingale

Xt = X0 +

∫ t

0
µsds+

∫ t

0
σsdWs + Jt, (1)

where µ is a predictable process, σ is cadlag, W is standard Brownian motion and J is a

finite-activity pure jump process,

Jt =

Lt∑
j=1

κj ,

where L is a counting process and the κj ’s are random variables governing the size of jumps.

The process in equation (1) is very general and allows for rich dynamics. In particular, it

accommodates stochastic volatility with possibly discontinuous sample paths (Todorov &

Tauchen, 2011), the leverage effect characterized by negative correlation between volatility

and price innovations (Bollerslev, Litvinova & Tauchen, 2006), time-varying jump intensity

and jump sizes (Chan & Maheu, 2002), etc. We do not make any parametric assumptions

about the respective processes when estimating the quantiles of the distribution of future

returns but rely instead on reduced-form semi-parametric quantile regression models coupled

with nonparametric measures of volatility and jumps variation.

Associated with the semimartingale in equation (1) is a quadratic variation process

QVt =

∫ t

0
σ2
sds+

∑
0≤s≤t

(∆Js)
2,

≡ IVt + JVt,

where IVt is the integrated variance, that is, the part of QVt due to the continuous part

of the log-price process and JVt is the jump variation due to the purely discontinuous part

of Xt. As detailed by Andersen et al. (2003), quadratic variation is a natural measure of

variability in the logarithmic price and its individual components serve as important imputs

into many asset pricing models.

When studying the conditional distribution of future returns, we separate the contribu-

tion of the two components of the quadratic variation process, i.e. the continuous part from

the jump part. Recent evidence from the volatility forecasting literature (e.g. Andersen

et al., 2007, Corsi, Pirino & Renò, 2010) indicates that the two sources of variation in the

asset price possess substantially different time series properties and affect future volatility

in a different way. Anticipating that similar results obtain for the entire conditional distri-
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bution, we now describe an approach to disentangling the integrated variance from jump

variation.

Suppose we obtain a sample of size T (M + 1), corresponding to T days each having

M + 1 intraday observations. Define ∆iXt = Xt−1+(i+1)/M −Xt−1+i/M as the i-th intraday

return on day t. A consistent estimator of the overall quadratic variation is provided by

the well-known realized volatility, introduced into financial econometrics by Andersen &

Bollerslev (1998),

RVt,M =
M−1∑
i=0

(∆iXt)
2,

with RVt,M
p→ IVt + JVt as M → ∞. To estimate the integrated volatility, IVt, in the

presence of jumps, we employ the median realized volatility introduced by Andersen, Dobrev

& Schaumburg (2012)1:

MedRVt,M =
π

6− 4
√

3 + π

(
M

M − 2

)M−3∑
i=0

med(|∆iXt|, |∆i+1Xt|, |∆i+2Xt|)2

We can now define consistent estimators of IVt and JVt, denoted by IVt,M and JVt,M ,

respectively, as follows

IVt,M = MedRVt,M

JVt,M = RVt,M − IVt,M

In addition to the IV −JV decomposition of the overall quadratic variation, Barndorff-

Nielsen, Kinnebrock & Shephard (2010) recently propose to decompose the realized volatil-

ity and jump variation into the part associated with negative intraday returns and the part

due to the positive intraday returns:

RS−t,M =

M−1∑
i=0

(∆iXt)
21{∆iXt<0}

p−→ 0.5IVt +
∑

t−1≤s≤t
1{∆Js<0}(∆Js)

2,

RS+
t,M =

M−1∑
i=0

(∆iXt)
21{∆iXt>0}

p−→ 0.5IVt +
∑

t−1≤s≤t
1{∆Js>0}(∆Js)

2,

In an empirical application, the authors find that the realized downside semivariance (RS−t,M )

seems to be much more informative than the realized upside semivariance (RS+
t,M ) for the

1Other methods proposed in the literature include Barndorff-Nielsen & Shephard (2004), Corsi, Pirino
& Renò (2010), Mancini (2009).
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purposes of forecasting future volatility. Similar results have been recently obtained by

Patton & Sheppard (2009).

3 Linear Quantile Regression Models

Having described the theoretical framework, we now propose simple linear semiparametric

models for the quantiles of future returns and volatility.

3.1 Models for returns

We assume that the α-quantile of the distribution of future returns, conditional on the

information set Ωt, can be written as a linear function of the various components of the

current and past quadratic variation and weakly exogenous variables,

qα(rt+1|Ωt) = β0(α) + βv(α)′vt,M + βz(α)′zt. (2)

where

rt+1 = Xt+1 −Xt,

vt,M = (QV
1/2
t,M , QV

1/2
t−1,M , ..., IV

1/2
t,M , IV

1/2
t−1,M , ..., JV

1/2
t,M , JV

1/2
t−1,M , ...)

′,

zt is a vector of weakly exogenous variables and β0(α),βv(α),βz(α) are vectors of coefficients

to be estimated.

The equation (2) is a linear quantile regression proposed by Koenker & Bassett (1978).

They show that the parameters can be estimated by minimizing the following objective

function,

QRT,M (β(α)) ≡ 1

T

T∑
t=1

ρα(rt+1 − β0(α)− βv(α)′vt,M − βz(α)′zt), (3)

where

ρα(x) = (α− 1{x < 0})x,

and β(α) = (β0(α),βv(α)′,βz(α)′)′. Although the optimization problem does not admit

a closed-form solution, relatively simple and computationally fast algorithms for finding

the minimum are available, see Portnoy & Koenker (1997). A potential problem that may

arise in small samples is the so-called quantile crossing, i.e. the estimated quantiles are not
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guaranteed to be monotonic in α. If this occurs, the recently developed approach due to

Chernozhukov, Fernández-Val & Galichon (2010) can be employed to establish monotonicity

of the estimated quantiles. In our empirical applications reported later in the paper, quantile

crossing never arises.

3.2 Models for Realized Volatility

Inspired by the success of the of the heterogenous autoregressive model (HAR) for realized

volatility developed by Corsi (2009) and extended by Andersen et al. (2007), we write the

conditional α-quantile of the realized quadratic variation RVt+1,M as

qα(RVt+1,M |Ωt) = β0(α)+βv1(α)′vt,M +βv5(α)′vt,t−5,M +βv22(α)′vt,t−22,M +β′z(α)′zt (4)

where

vt,t−k,M =
1

k

k−1∑
j=0

vt−j,M

is the average vt,M over the past k days, and as before zt a set of regressors. We call this

model the heterogenous autoregressive quantile model (HARQ). Note that for a particular

choice of regressors, namely vt,M = (RVt,M , RVt−1,M , ..., RVt−k,M )′ for some k, the model

falls into the class of quantile autoregression (QAR) studied by Koenker & Xiao (2006),

and the HARQ then simply becomes a restricted version of the QAR model. The general

model in equation (4) is linear in parameters and hence estimation proceeds along the same

lines as described in the previous subsection.

4 Measurement Error Problem

The quantile regression models proposed in the previous section are based on realized mea-

sures rather than the true, unobserved components of price variation. Asymptotic theory

for the realized measures dictates that as the number of intraday observations grows with-

out bound, the realized measures approach their unobserved counterparts and, equivalently,

the measurement error associated with the realized measures approaches zero. Thus, under

certain conditions it may be feasible to obtain, asymptotically, conditional quantiles for the

true quadratic variation or any of its components. Whether or not this is desirable depends

on the application at hand. If, for example, the objective is to estimate value-at-risk for

variance swap positions, one need not worry about the measurement error problem, since

here the goal is to estimate the quantiles of the realized volatility calculated at a fixed
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sampling frequency stipulated by the variance swap contract, i.e. qα(RVt+1,M |Ωt) for some

fixed M . However, if the goal is to estimate the quantiles of future asset returns volatility,

one needs to make sure that the impact of the measurement error vanishes so that one in-

deed obtains quantiles for the true quadratic variation, qα(QVt+1|Ωt), rather than realized

volatility.

In this section, we provide sufficient conditions ensuring that the feasible objective

function, QRT,M , based on the realized measures converges in probability to the infeasible

one, QRT , based on the true unobserved components of quadratic variation, uniformly

on the parameter space. If these conditions are satisfied we obtain, asymptotically, the

desired quantiles of the quadratic variation, qα(QVt+1|Ωt), rather than the realized variance,

qα(RVt+1|Ωt). The sufficient conditions depend on the properties of the measurement errors

associated with the realized measures, which in turn depend on the behavior of the volatility

and jump processes driving the logarithmic price, and on the relative rate of growth of M

and T .

To establish the asymptotic equivalence, we follow the double-asymptotic approach of

Corradi, Distaso & Swanson (2011), who study fully nonparametric estimators of conditional

distributions of integrated variance using realized measures. In doing so, they establish some

useful results regarding the rate of decay of moments of the measurement error associated

with a number of realized measures. We extend these results to the case of realized volatility

and median realized volatility in the presence of jumps and employ these to prove the

asymptotic negligibility of the measurement error for the estimation of conditional quantiles.

We will need the following assumptions:

(A1) The logarithmic price process follows (1) with µt ≡ 0,

(A2) The volatility process {σt} is a strong mixing with size −2r/(r − 2), r > 2 satisfying

E[(σ2
t )

2(k+r)] <∞, and the jump sizes satisfy E[κ2k] <∞ for some k ≥ 2.

(A3) The counting process Lt is a Poisson process with strictly stationary intensity.

Assumption A1 specifies the data generating process. To simplify the proofs we assume

that the drift is equal to zero. Assumptions A2 and A3 ensure that the moments of the

measurement errors associated with IVt,M and JVt,M exist and decay sufficiently fast, as

the following Lemma shows.

Lemma 1 Under assumptions A1-A2, E[|N (c)
t,M |k] = O(M−k/2). If, in addition, A3 holds

then E[|N (d)
t,M |k] = O(M−k/2).

9



Proof See Appendix. �

The first result of the Lemma is the same as in Lemma 1 of Corradi et al. (2011), who

prove this for a number of different realized measures of integrated variance. Assuming, in

addition, A3 allows us to establish similar result for the measure of jump variation based

on the difference between realized variance and median realized variance. Given Lemma 1,

we then have the following:

Proposition 1 Under assumptions (A1) - (A3), if T
2

2k−1M−1/2 → 0 as T,M →∞ and Θ

is a compact parameter space, then supβ∈Θ |QRT,M (β)−QRT (β)| p→ 0.

Proof See Appendix. �

The proposition shows that the number of intraday observations (M) has to grow faster

than a power of (T ) for the contribution of the measurement error associated with the

realized measures of integrated variance and jump variation to degenerate in the limit.

How faster M must grow depends on the the number of moments the volatility and jump

processes possess. If all moments exist (i.e. k = ∞), we obtain the intuitive result that

the contribution of the measurement error is driven entirely by discretization (finite M),

i.e. it suffices to have M → ∞ regardless of how fast this happens relative to T → ∞.

The reason we cannot establish this intuitive result for any k ≥ 2 is due to the fact that

the standard mean-value argument does not apply due to the non-differentiability of the

objective function. To circumvent this problem, we have to ensure that supt |IVt,M − IVt|
and supt |JVt,M −JVt| decay sufficiently fast, and this in turn depends on k and the relative

rate of growth of M and T .

5 Competing conditional quantile models

To assess the relative performance of the linear quantile regression models proposed in

this paper, we consider a couple of well-established benchmark models. Following the

suggestions of the referees, we compare the return regressions with the CAViaR model

proposed by Engle and Manganelli (2004), augmented by the various realized measures and

option-implied volatility, and the lognormal-normal mixture of Andersen et al. (2003). We

also use the latter model as a benchmark for the realized volatility quantile regressions.
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5.1 CAViaR

Engle and Manganelli (2004) propose a dynamic non-linear quantile regression model, the

so-called CAViaR, for daily asset return quantiles, qt(θ), where θ is a vector of parameters

to be estimated. They consider four different specifications of qt(θ), two of which we employ

here:

Symmetric absolute value:

qt+1(θ) = β1 + β2qt(θ) + β3|rt|+ γ ′xt, (5)

Asymmetric slope:

qt+1(θ) = β1 + β2qt(θ) + β3(rt)
+ + β4(rt)

− + γ ′xt−1, (6)

where (rt)
+ = rt1{rt ≥ 0} and (rt)

− = rt1{rt < 0}. Two things are novel in our application

of the CAViaR model. First, we include the various realized measures and implied volatility

used in the linear regressions into the CAViaR equations, calling the augmented model

realized CAViaR. The idea is that these variables are much better proxies for the past return

volatility than the absolute return and should therefore improve the predictive performance

of the baseline CAViaR model with γ ≡ 0. Since the realized measures and the option-

implied volatility are significantly more persistent than the absolute return, including them

into the model might also reduce or completely drive out the affect of the lagged quantile,

qt(θ).

Second, we use the realized CAViaR model to forecast not only daily returns, but also

to 5-day and 10-day returns. We employ the direct forecasting approach whereby we fit

the model to the 5-day and 10-day returns directly, rather than using the model for 1-day

returns to generate 5-day and 10-day quantile forecasts. That way, the multi-day forecasts

can be obtained directly from the realized CAViaR equations and we do not have to write

down and estimate separate equations for the various lagged variables entering the CAViaR

recursion. To the best of our knowledge, this is the first application of the CAViaR model

to multi-day quantile forecasting.

Similarly to the linear quantile regressions, the realized CAVIaR can be estimated by

minimizing the check function given by

QT (θ) =
1

T

T∑
t=1

(α− 1{rt < qt(θ)})(rt − qt(θ)). (7)
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However, due to the nonlinear nature of the model, no simple algorithm for this optimiza-

tion problem exists and we resort to the fairly elaborate procedure proposed by Engle and

Manganelli (2004). Computing standard errors for the CAViaR parameter estimates re-

quires a choice of bandwidth (see Engle and Manganelli, 2004) and there is currently no

procedure available for the optimal choice. We proceed by calculating standard errors for

a range of bandwidth values, select a region where the standard errors are relatively stable

and report standard errors corresponding to a bandwidth from this region.2

5.2 Long-memory lognormal-normal mixture

Our second benchmark for the return models and a benchmark for the realized volatility

models is the lognormal-normal mixture model proposed by Andersen et al. (2003):

rt = RV
−1/2
t,M εt, (8)

(1− φL)(1− L)d logRVt,M = (1− ψL)ut (9)

where εt is iid standard normal and ut is iid N(0, σ2
u) independent of εt. In this model,

the logarithmic realized volatility follows a Gaussian ARFIMA(1,d,0) process so that re-

alized volatility is unconditionally lognormally distributed, while returns are conditionally

Gaussian and unconditionally mixed-Gaussian.

We fit the model to daily returns and realized volatilities using maximum likelihood.

One-day ahead quantile forecasts for returns and realized volatility can be obtained analyt-

ically, but multi-day forecasts have to be simulated since the distribution function of a sum

of lognormal random variables is not available in closed form.

6 Evaluation of quantile forecasts

We evaluate the absolute performance of the various conditional quantile models using the

CAViaR test of Berkowitz, Christoffersen & Pelletier (2011), which is a version of the DQ

test of Engle & Manganelli (2004). In particular, we define a “hit” variable

Hitt+1 = 1{rt+1 ≤ qα(rt+1|Ωt)},

which is a binary variable taking on the value of one if the conditional quantile is violated and

zero otherwise. If the conditional quantiles are correctly dynamically specified, the sequence

2We are grateful to Simone Manganelli for suggesting this approach.
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of hits should be iid Bernoulli distributed with parameter α. To test this hypothesis,

Berkowitz et al. (2011) propose to estimate the following logistic regression

Hitt = c+
n∑
k=1

β1kHitt−k +
n∑
k=1

β2kqα(rt−k+1|Ωt−k)}+ ut. (10)

and use the likelihood ratio test for the null hypothesis that the β coefficients are zero and

P(Hitt = 1) = ec/(1+ec) = α. We use Monte Carlo simulation to obtain exact finite-sample

critical values for the likelihood ratio test as suggested by Berkowitz et al. (2011).

This approach to evaluating absolute performance of quantile forecasts is only suitable

for one-step-ahead forecasts. To see this, define the h-period hits as

Hitt|t+h = 1{rt+1 + rt+2 + · · ·+ rt+h ≤ qα(rt+1 + rt+2 + · · ·+ rt+h|Ωt)}, (11)

where qα(rt+1 + rt+2 + · · · + rt+h|Ωt) is the quantile forecast for the cumulative h-period

return given the information available at time t. Clearly, even if the quantiles are dynami-

cally correctly specified, the sequence of hits {Hitt|t+h} is h-dependent, which violates the

assumptions underlying the likelihood ratio test in the logit model in equation (10). A so-

lution to this problem could be to test the null hypothesis in an OLS regression of Hitt|t+h

on a constant and Hitt|t−jh, j = 1, ..., n, using a Wald test statistic with the Newey-West

variance. The latter would account for both heteroskedasticity and serial correlation in the

regression. We have experimented with this approach in a Monte Carlo simulation (available

on request) and find that while it works well in very large samples as dictated by asymptotic

theory, the finite-sample performance of the test is poor: the test is heavily oversized even

with 1,000 observations. To the best of our knowledge, there is currently no alternative,

reliable test for correct dynamic specification of multi-step conditional quantiles.

To assess the relative performance of the various quantile models, we follow Clements

et al. (2008) and focus on pairwise comparison based on the tick-loss function suggested by

Giacomini & Komujer (2005):

Lα(et+1) = (α− 1{et+1 < 0})et+1, (12)

where et+1 = rt+1 − qα(rt+1|Ωt). To test for equal predictive ability we use the Diebold &

Mariano (1995) test with the Newey-West variance in the case of multi-step-ahead quantile

forecasts.
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7 Data Description and Preliminaries

We apply the conditional quantile models to returns and realized volatility of two assets:

S&P 500 and WTI Crude Oil futures.

We use high-frequency data on the S&P 500 futures contract obtained from Tick Data

for a period running from January, 1996 till June, 2008. We focus on transactions prices

pertaining to the most liquid (front) contract traded on the Chicago Mercantile Exchange

(CME) during the main trading hours of 9:30 - 16:00 EST. From the raw irregularly spaced

prices we extract 5-minute logarithmic returns using the last-tick method. The choice of

sampling frequency is guided by the volatility signature plot (Andersen, Bollerslev, Diebold

& Labys, 2000), and previous literature employing the same data (Andersen et al., 2007,

Corsi et al., 2010, among others).

In addition to historical volatility measures, we also explore the role of option implied

volatility. In particular, we employ the VIX index calculated by the Chicago Board of

Exchange (CBOE), which measures market expectations of one-month-ahead volatility of

the S&P 500 index implied by a portfolio of put and call options. The index is model-free in

the sense that it does not rely on any particular parametric option pricing model to extract

the implied volatility. Fernandes, Medeiros & Scharth (2013) provide a detailed description

of the construction of the index as well as its time-series properties. Although the maturity

of the options used to construct the index (30 calendar days) does not match our forecasting

horizons, the VIX index can still be used, and very successfully as we will see later, as a

proxy for future volatility.

The intraday WTI Crude Oil futures prices are obtained from Tick Data and cover the

period from September, 2001 till August 2008. Similar to the equity futures, we focus on

the front contract traded on the New York Mercantile Exchange (NYMEX) during the main

trading hours between 9:00 - 15:00 EST. We employ 5-minute logarithmic returns to avoid

issues with market microstructure noise.

The CBOE has recently introduced a crude oil volatility index (OVX), applying the

same methodology as in the case of VIX to calculate 30-day volatility implied by oil futures

options. The history of OVX only goes back to May 2007 and so is too short for our purposes.

We therefore construct our own model-free implied volatility index using settlement prices

for American-style futures options on oil traded on the CME, following the methodology of

Carr & Wu (2009) and Trolle & Schwartz (2009). The details are described in Appendix B.
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7.1 Returns, realized measures and implied volatility: S&P 500 futures

We construct the following measures of the various components of quadratic variation: real-

ized variance, realized upside semivariance, realized downside semivariance and the median

realized volatility. As mentioned before, the median realized volatility offers a number of

advantages over the alternative measures of integrated variance in the presence of infre-

quent jumps. It is less sensitive to the presence of occasional zero intraday returns and

enjoys smaller finite-sample bias induced by jumps, while being computationally simple to

implement. Table 2 reports the summary statistics for the daily open-to-close logarithmic

returns and the various measures of variation in the S&P 500 futures prices. The daily

returns, plotted in Figure 1, exhibit the usual stylized properties of financial returns: small,

insignificant mean, excess kurtosis and volatility clustering.

Turning to the realized variance and the upside and downside semivariances, we observe

that they are all highly positively skewed. A logarithmic transformation does not eliminate

the skewness entirely leading to the rejection of normality of logarithmic RV and hence log-

normality of the realized variance and semivariances. The realized upside variance seems

to be slightly more volatile than the realized downside variance and its distribution is also

much more positively skewed and heavy-tailed. The Ljung-Box test for no autocorrelation

up to lag 20 confirms the well-known long-memory features of realized volatility.

To estimate the contribution of jumps, we first test on a day-by-day basis for the presence

of jumps in the price process using a test based on the median realized volatility3. We set

the significance level to 0.1% as is usual in the literature. On days when jumps are detected

by the test, we set IVt,M = MedRVt,M and JVt,M = RVt,M −MedRVt,M , while on days

when no jumps are found, we set IVt,M = RVt,M and JVt,M = 0, thereby ensuring that the

continuous and discontinuous components always sum up to the overall quadratic variation.

This shrinkage approach follows, among others, Andersen et al. (2007) and Corsi et al.

(2010).

Similar to previous empirical results (Huang & Tauchen, 2005) we find that jumps are

relatively infrequent. The test identifies 66 days with significant jumps corresponding to

about 2.1% of days in our sample. The jumps contribute only about 1.3% to the overall

quadratic variation. It is clear from the plot of the time series of jump variation (Figure

1) that the properties of jumps have changed roughly in the middle of the sample period.

3Although Andersen et al. (2012) do not derive a test for jumps based on MedRV , this can be easily done
by exploiting their joint Central Limit Theorem for RV and MedRV and following the steps of Barndorff-
Nielsen & Shephard (2006). Simulation evidence reported by Theodosiou & Žikeš (2009) indicates that a
test based on the ration of MedRV and RV enjoys good finite sample properties and some robustness to
the presence of occasional zero intraday returns.
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While over the first 5-6 years of the sample the jumps were rare and large, it seems that

they have become smaller and more frequent in the second half of our sample period. Note

that this period is also associated with relatively small integrated variance as measured by

the median realized variance.

Finally, we look at the properties of the VIX index. The Ljung-Box Q statistic indicates

high degree of persistence, much higher than for the realized measures of ex-post variance.

The VIX implied volatility, however, pertains to a 30-calendar-day period and hence the

daily observations involve a great degree of overlap. It is thus not surprising to find such

high and slowly decaying autocorrelation. Note also that the mean implied volatility is

larger than the mean realized volatility, confirming the existence of a negative variance risk

premium, see e.g. Bollerslev, Tauchen & Zhou (2009) and the references therein for more

evidence.

7.2 Returns and realized measures and implied volatility: Crude oil fu-

tures

We now repeat the same exercise with the WTI Crude Oil futures prices. The summary

statistics for daily returns and the various realized measure are reported in Table 3 and their

time-series are plotted in Figure 2. We observe that the daily oil futures returns are highly

volatile, with the average daily realized variance at about 4% exceeding the average RV of

S&P 500 by more than four times. The volatility of realized volatility is also substantially

larger, while the Ljung-Box test statistics indicates smaller degree of serial correlation.

That the oil futures realized volatility is highly volatile and relatively less persistent is

also apparent from the time-series plot depicted in Figure 2. All realized measures exhibit

positively skewed and heavy-tailed unconditional distributions.

Similar to Trolle & Schwartz (2009) we find that the model-free implied volatility is, on

average, higher than realized volatility, confirming the existence of priced variance risk in

the oil market. The magnitude of the variance risk premium is smaller than in the equity

market. Applying the test for jumps on a day-by-day basis we identify 38 days when the oil

futures price jumped by a significant amount, corresponding to 2% of days in the sample.

The estimated contribution of jumps to the total variation is about 1.5%. Figure 2 shows

that the jumps are relatively large and rare.
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8 Empirical Results

8.1 Return quantiles

8.1.1 Estimation and in-sample fit

We begin by modeling and forecasting quantiles of daily returns, focusing on the 5%, 10%,

90% and 95% quantiles and the median since these are most interesting from an economic

point of view. Throughout, we employ realized volatilities rather than variances, i.e. we

take the square root of the realized measures discussed above. Estimation of linear quantile

regressions is carried out using the interior-point method of Portnoy & Koenker (1997) and

standard errors are obtained by moving-block bootstrap (Fitzenberger, 1997). For CAViaR

models we use the estimation approach of Engle and Manganelli (2004). The ARFIMA

models for logarithmic realized variances is estimated by maximum likelihood.4

A large number of different specifications of the quantile regression models can be con-

sidered. To save space, we only report models that provide interesting insights into the

dynamics of conditional quantiles while at the same time deliver accurate out-of-sample

quantile forecasts. The estimation results are reported in the upper panels of Tables 4 and

5 for S&P 500 and WTI Crude Oil futures returns, respectively. We first discuss results for

the upper and lower tail quantiles and the median separately as the latter are very different

from the former.

Lower and upper tail conditional quantiles

For both assets, we find that the lagged realized volatility is highly statistically significant in

the linear quantile regressions (LQR) across the different quantiles. The estimated param-

eter have the expected sign: the left-tail (right-tail) quantiles vary negatively (positively)

with realized volatility. Turning to the symmetric absolute value (SAV) CAViaR model,

we find qualitatively similar parameters estimates as Engle and Manganelli (2004) in that

the lagged conditional quantile parameter is close to one and highly statistically significant,

while the lagged absolute return coefficient is relatively small but also significant. Includ-

ing the lagged realized volatility into the CAViaR equation (Realized CAViaR) reduces the

coefficient associated with the lagged conditional quantile, but only slightly and without

affecting its statistical significance. In case of the S&P 500 futures, the lagged realized

volatility drives out the lagged absolute return in the lower-tail quantiles, but both vari-

4Linear quantile regressions are estimated using the RQ package for Ox Version 1.0 developed by Portnoy
& Koenker (1997). ARFIMA models are estimated by the ARFIMA package 1.04 for Ox by Doornik &
Ooms (2006). CAViaR models are estimated using the MATLAB and C++ routines by Simone Manganelli,
adapted to accommodate weakly exogenous variables.
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ables remain statistically significant in the upper-tail quantiles. In case of the WTI Crude

Oil, neither lagged RV nor absolute return turn out to be statistically significant at the 5%

level, owing perhaps to collinearity, though the lagged realized volatility tends to command

higher parameter estimates and t-statistics (in absolute value) than the lagged absolute

return.

Next, we decompose the realized variance into the continuous and jump parts and esti-

mate quantile regressions in which the measures of integrated variance and jump variations

enter separately. We also add the option-implied volatility into the conditional quantile

equations. The estimation results are reported in the middle panels of Tables 4 and 5. We

find that jumps play essentially no role in the linear quantile regressions (LQR) as JV turns

out to be statistically insignificant across the board. Lagged integrated volatility comes out

highly significant in the S&P 500 regressions but insignificant in the WTI Crude oil regres-

sion. This is perhaps due to the effect of the option-implied volatility that clearly plays

a major role in the conditional quantiles of both asset returns; the associated parameter

estimates are relatively large in magnitude and highly significant.

Adding the IV , JV and implied volatility into the SAV CAViaR model (Realized

CAViaR) produces different results across the two assets. In case of S&P 500, we find

that the coefficient of the lagged conditional quantile is now substantially reduced, perhaps

due to the strong predictive power of implied volatility, and becomes statistically insignif-

icant in the lower tail. The lagged integrated volatility remains statistically significant in

both tails, while the lagged VIX only in the lower tail. Interestingly, the lagged absolute

return is not driven out in the upper tail, although the associated coefficient estimates are

counter-intuitively negative. In case of WTI Crude Oil, we find that neither the lagged ab-

solute return nor the lagged integrated variance come out significant, while option-implied

volatility only appears to matter in the 95% quantile. Rather surprisingly, the jump varia-

tion becomes significant in the Realized CAViaR; the estimated coefficients have the right

sign and are relatively large in magnitude.

Finally, we decompose the realized variance into upside and downside semivariances and

allow these to enter the quantile regressions separately. We also include the option-implied

volatility. The lower panels of Tables 4 and 5 report the estimation results and Figure

3 illustrates the results graphically for a wider range of quantiles. The realized downside

volatility clearly dominates across all estimated quantiles and leaves virtually no role for the

upside volatility in the linear quantile regression. The information content of the downside

volatility is not subsumed by option-implied volatility, which itself turns out to be highly

statistically significant.
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These results are consistent with the estimates of the asymmetric slope (AS) CAViaR,

where only the coefficient associated with the lagged negative return are generally statis-

tically significant, as in Engle and Manganelli (2004). Adding the realized semivariances

and option-implied volatility into the AS CAViaR equations produces mixed results: the

parameter estimates tend to be insignificant and do not always have the expected sign. Our

conjecture is that this may be due to collinearity.

Having discussed the estimation results we now turn to evaluating the in-sample fit

of the alternative daily conditional quantile models using the methodology of Berkowitz

et al. (2011) as described in Section 6. The results are summarized in left-hand side panels

of Tables 6 and 7. For each model and quantile, we report the in-sample unconditional

coverage (α̂), the likelihood ratio test statistic (DQ) for the null hypothesis that all the

beta’s in the logistic regression (10) are equal to zero and the associate Monte Carlo-based

p-value (p-val). We run the logistic regressions with 5 lags.

Starting with S&P500 futures we find that all models perform very well in the lower

tail, having the unconditional coverage very close to the nominal levels and comfortably

passing the Berkowitz et al. (2011) test. Some dynamic misspecification is indicated by the

test in the upper-tail quantiles for ARFIMA and the symmetric absolute value CAViaR

models with and without realized measures, especially for the 90% quantile. The DQ

test also rejects the correct specification of this quantile for the linear quantile regression

with lagged realized volatility as the only regressor (LQR1). The asymmetric CAViaR

specifications as well as the linear quantile regressions LQR2 and LQR3 do not seem to

suffer from any misspecification and perform very well in both tails in-sample. In case of

WTI crude oil futures, we observe similar results for the 90% quantile and some rejection

for ARFIMA and CAViaR in the far left tail, although these appear to be marginal at the

5% level in the latter case. Thus we conclude that the daily semiparametric conditional

quantile models perform generally well in-sample, while the ARFIMA-based lognormal-

normal mixture appears to be slightly misspecified. Future work might therefore experiment

with alternative distributional assumptions in the latter model.

Conditional median

The results for the conditional median are substantially different from those for the far left

and right tails. This is hardly surprising given the vast body of evidence documenting the

lack of predictability of short horizon asset returns. Our estimation results show that the

variables we consider have generally little predictive power for the median, either because

the estimated coefficient are insignificant or their magnitude is small. The weak evidence
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for predictability that we find shows that the lagged absolute return and lagged realized

measures of volatility are sometimes negatively correlated with future median; see for exam-

ple the AS and RAS models for S&P 500 future and the LQR2 and RSAV1 models for WTI

Crude Oil futures. This is consistent with the findings of Barndorff-Nielsen et al. (2010),

and may be due to the leverage effect whereby an increase in volatility maybe followed by

a decline in asset prices. The relatively weak statistical significance of our results, however,

leads us to believe that a proper test of economic significance needs to be carried out before

any definitive conclusions can be drawn; we leave this for future work.

8.1.2 Out-of-sample performance

We now assess the out-of-sample performance of the quantile models. We focus on one, five

and ten-step-ahead quantile forecasts and adopt the rolling approach, where we keep the

estimation window size fixed and forecast the last 500 daily, weekly or 10-day quantiles. The

multistep ahead forecasts are obtained from models fitted to the multiperiod returns directly

(direct forecasting), except for the ARFIMA-based forecasts, where we use the model fit

to the daily time-series to forecast quantiles at all horizons. The parameter estimates from

the semiparametric models fitted to the multiperiod returns are not reported to save space,

but are available on request. The estimation results for the ARFIMA models are reported

in Table 1.

We start by assessing the absolute performance of the one-step-ahead forecasts using

the Berkowitz et al. (2011) approach as in the previous section, recalling that this approach

is not suitable for multi-step-ahead forecasts. The results are reported in the right-hand

side panels of Tables 6 and 7. We find that all models perform well. The unconditional

coverage is close to the nominal levels and the DQ test signals significant misspecification

only in the case of the 90%-quantile SAV and RSAV1 models for S&P 500 futures returns.

Some minor misspecification is also indicated for the ARFIMA, SAV, RSAV1 and LQR1

models for the median of WTI Crude Oil futures returns.

Turning to the evaluation of relative performance, we report in Tables 8 and for each

α-quantile, model and forecast horizon, the out-of-sample unconditional coverage (α̂), the

value of the tick-loss function given in equation (12) and the Diebold-Mariano test statistic

for the null hypothesis of equal predictive ability, where the benchmark model throughout

is the linear quantile regression model LQR2. Recall that this model includes the lagged

continuous and jump variations (IV and JV ) and the option-implied volatility as regressors.

We use it as a benchmark since it belongs to the class of linear quantile regression models
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with realized measures, which we newly propose and advocate in this paper, and it performs

well both in-sample and out-of-sample for h = 1 in absolute terms as indicated by the DQ

test.

Generally, we only find material difference across the competing models for the one-

step-ahead forecasts. First, the ARFIMA-based lognormal-normal mixture outperforms

the benchmark linear quantile regression LQR2 in the left tail of the distribution, delivering

significantly lower tick-loss at the 5% level despite relatively poorer unconditional coverage.

This is the case for both S&P 500 and WTI Crude Oil futures. A second interesting finding is

that the symmetric absolute value CAViaR model of Engle and Manganelli (2004) is beaten

by our benchmark linear model both in the left and right tails at the 5% level in the case of

S&P 500 futures. This is also true for the asymmetric CAViaR model and the 5% quantile.

However, by incorporating lagged realized measure or option-implied volatility restores the

performance of the CAViaR model such that it is statistically indistinguishable from our

benchmark. In terms of multi-step ahead forecasts, we find small differences between the

various models, both for S&P500 and WTI Crude Oil futures, and no uniform ranking of

the models emerges from our exercise.

8.2 Realized volatility quantiles

We now turn to modeling and forecasting the quantiles of realized volatility of S&P 500

futures. We focus on the median and 75%, 90% and 95% quantiles with the latter two

being of particular interest to traders or investors exposed to volatility risk. As in the case

of returns, we only report estimation results for three different model specifications that

we find particularly interesting, noting that a number of alternative model specifications

delivering equally accurate quantile forecast can be considered. The results are summarized

in Table 10.

We begin by discussing model HARQ1 where we quantile-regress realized volatility on

lagged realized volatility, and the average realized volatilities over the past 5 and 22 days.

This model is a quantile autoregression of Koenker & Xiao (2006) with 22 lags and restricted

parameters. We find that all three regressors are highly statistically significant in the models

for the median and 75% quantile, while only RV
1/2
t,M and RV

1/2
t,t−5,M remain significant in the

models for the far right tail quantiles (90% and 95%). The quantiles of realized volatility

are therefore less persistent in the right tail of its distribution. Interestingly, the coefficient

estimates for RV
1/2
t,M increase steadily with α thereby capturing the volatility-of-volatility

effect observed among others by Corsi et al. (2008) and Bollerslev, Kretschmer, Pigorsch
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& Tauchen (2009). If the innovations were homoskedastic as in a pure location model,

the quantile regression coefficients would be constant (up to estimation error) across all

quantiles. We find quite the opposite: in periods of high volatility, the volatility of volatility

increases and this pushes a given conditional α quantile further to the right.

In the HARQ2 model, we augment the set of regressors by implied volatility and replace

the lagged realized volatility by upside and downside semi-volatilities. Similarly to the

models for daily returns, we find that the downside volatility completely dominates the

upside volatility, with the latter being statistically insignificant in all four quantile models

(see also Figure 4). The option-implied volatility possesses significant predictive power for

the quantiles of future realized volatility as well and the coefficient estimates increase with

α as do the coefficients corresponding to the realized downside semivariance. This implies

that the volatility of realized volatility increases not only with historical realized volatility

but also with (risk-neutral) expectations of future volatility. Figure 4 illustrates this effect

graphically. The implied volatility also subsumes the effect of RV
1/2
t,t−22,M in the median

and 75% quantile models. In the models for the 90% and 95% quantile, the coefficient

estimates on RV
1/2
t,t−22,M are negative but further investigation reveals that this is due to

the presence of insignificant variables in the model; once these are removed all remaining

parameter estimates turn out to be positive.

Finally, we study the role of jumps in the quantile models for realized volatility (HARQ3).

We find the jump variation variable insignificant on the 5% level for all quantiles. This result

holds irrespective of the presence of implied volatility or IV
1/2
t,t−22,M in the regressions.

The estimation results for regression quantiles of WTI Crude Oil futures realized volatil-

ity are presented in Table 11. Interestingly, we find that the time series of daily realized

volatility exhibits a day-of-week pattern: realized volatility tends to be larger on Wednes-

days than on other days of the week. This feature is not induced by thin trading associated

with holiday periods since these have been removed from our dataset as we mentioned in

Section 7. Nor is it a symptom of price jumps associated with new announcements that

are typically made on Wednesdays. The autocorrelation function of the median realized

volatility, which is robust to jumps, exhibits the same seasonal pattern as that of the real-

ized volatility. To account for the day-of-week effect, we include a dummy variable, DW
t , for

Wednesday. As is apparent from Table 11, the Wednesday dummy is statistically significant

across all models reported there.

The average realized volatility over the past month, RV
1/2
t,t−22,M , appears to be less impor-

tant for the prediction of quantiles in the far right tail. Similar decrease in the persistence

of conditional quantiles was also observed for the S&P 500 futures. The difference between
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the downside and upside realized semivariances in term of predictive power seems to be less

pronounced. The coefficient estimates corresponding to RS− are larger than those of RV +

but the latter are also marginally statistically significant for 75% and 90% quantiles. The

jump variation comes out insignificant at conventional levels in all quantile models. Finally,

the model-free implied volatility is found to be highly informative for all quantiles of future

realized volatility.

Having covered the semiparametric models, we now turn to the fully parametric ARFIMA-

based lognormal-normal mixture described in section 5.2. Table 1 reports the parameter

estimates of ARFIMA(1,d,0) fitted to the time series of logarithmic realized volatilities of

S&P500 and WTI Crude Oil futures contracts. Consistent with previous empirical evidence

we find that both series are highly persistent with the long memory parameter d estimated

at 0.48 and 0.40, respectively. The first-order autogressive parameter estimates are negative

and statistically significant but relatively small.

As in the case of returns, we now assess the absolute in-sample performance of the

conditional quantile models using the Berkowitz et al. (2011) test. The results are reported

in the left-hand side panel of Table 12. Starting with S&P 500, we find that the log-normal

ARFIMA does not fare very well despite having the empirical unconditional coverage close

to the nominal level; the DQ test clearly rejects the null hypothesis of correct dynamic

specification. The three linear quantile regressions also suffer from some form of dynamic

misspecification in case of the median and 75% quantiles, but exhibit excellent absolute

performance in the right tail (90% and 95% quantiles). Similar results are obtained for the

models for WTI Crude Oil, although here the DQ test indicates misspecification only in

the median regressions and at the 10% significance level.

8.2.1 Out-of-sample performance

Finally, we assess the relative out-of-sample performance of the conditional quantiles models

for realized volatility. We proceed in the same manner as in the case of returns. We focus

on forecasting the last 500 daily, 5-day and 10-day conditional quantiles using the rolling-

window approach and direct forecasting, except for the ARFIMA-based forecasts which are

based on the ARFIMA model for daily realized volatility and Monte Carlo simulation. For

each model, quantile and forecast horizon, we report the unconditional coverage, the value

of the tick-loss function and the Diebold-Mariano test statistic for the null hypothesis of

equal predictive ability with the benchmark linear quantile regression model HARQ3. We

choose this model as benchmark because it performs well in absolute terms in-sample across
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the different quantiles.

The results are summarized in Table 13. We find that despite having relatively poor

unconditional coverage, the ARFIMA forecasts significantly outperform the linear quantile

regressions at the one-day forecast horizon as indicated by the DM test, both the for

S&P500 and WTI Crude Oil. This superior performance, however, disappears at the 5

and 10-day horizons, where the ARFIMA performs on par with the quantile regressions

in a statistical sense (DM test), thought the quantile regressions seem to deliver better

unconditional coverage and lower value of the tick-loss function for the 90% and 95% quantile

forecasts, i.e. for the right tail of the realized volatility distribution. Together with the

simplicity of the direct forecasting method and the linearity of the model, as opposed to the

computationally intensive Monte Carlo, this implies that the linear quantile regressions may

be particularly useful in practice for medium-horizon quantile forecasts of realized volatility.

9 Conclusion

This paper proposes to use linear quantile regression together with realized measures of

volatility as covariates to model and forecast conditional quantiles of financial asset returns

and realized volatility. Relying on nonparametric measures of the various components of

the overall quadratic variation we avoid making restrictive parametric assumptions on the

dynamics of the price process. Thanks to the flexibility of quantile regression, we place no

assumptions on the distributions of return or volatility innovations, and we are not confined

to the class of location-scale models for either returns or realized volatility.

In an empirical application to S&P 500 futures prices, we document the role of different

components of historical volatility as well as option-implied volatility and find that either

individually or in a combination deliver accurate in-sample and out-of-sample fit. Applying

the methodology to a series of WTI Crude Oil future realized volatility shows that the

quantile regression models perform reasonably well even when applied to substantially more

volatile and less persistent data. The models can therefore serve as useful risk managements

tools for investors trading the futures contracts themselves or various derivative contracts

written on realized volatility.

In a comparison with two competing models, the CAViaR of Engle and Manganelli

(2004) and the lognormal-normal mixture of Andersen et al. (2003), we find that nei-

ther of the models dominate in terms of performance uniformly across different quantiles.

Putting realized measures into the CAViaR model does not drive out the other variables

in the CAViaR equation completely and it improves its performance. The linear quantile
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regressions with realized measures, however, seem to perform no worse than the realized

CAViaR. The ARFIMA-based lognormal-normal mixture delivers generally poorer uncon-

ditional coverage but it often exhibits lower tick-loss at the same time. For medium-horizon

realized volatility forecast, we find that the linear quantile regression seems to perform bet-

ter, especially in the right tail of the distribution. Needles to say, we have not considered

all potential competitors for our quantile regressions in this paper, so there may be other

models that rely on realized measures and deliver equal or even better quantile forecasts.

We leave a fully-fledged comparison for future work.

25



References

Andersen, T. G. & Bollerslev, T. (1998). Answering the skeptics: Yes, standard volatility

models do provide accurate forecasts, International Economic Review 39(4): 885–905.

Andersen, T. G., Bollerslev, T. & Diebold, F. X. (2007). Roughing it up: Including jump

components in the measurement, modeling and forecasting of return volatility, The

Review of Economics and Statistics 89(4): 701–720.

Andersen, T. G., Bollerslev, T. & Diebold, F. X. (2009). Parametric and nonparamet-

ric volatility measurement, In: L.P. Hansen and Y. Ait-Sahalia (eds.). Handbook of

Financial Econometrics. Amsterdam: North-Holland .

Andersen, T. G., Bollerslev, T., Diebold, F. X. & Labys, P. (2000). Exchange rate returns

standardized by realized volatility are (nearly) gaussian, Multinational Finance Journal

4: 159–179.

Andersen, T. G., Bollerslev, T., Diebold, F. X. & Labys, P. (2003). Modeling and forecasting

realized volatility, Econometrica 71(2): 579–625.

Andersen, T. G., Dobrev, D. & Schaumburg, E. (2012). Jump-robust volatility estimation

using nearest neighbor truncation, Journal of Econometrics 169(1): 75–93.

Barndorff-Nielsen, O. E., Kinnebrock, S. & Shephard, N. (2010). Measuring downside risk:

Realized semivariance, in M. Watson, T. Bollerslev & J. Russell (eds), Volatility and

Time Series Econometrics: Essays in Honor of Robert Engle, Oxford University Press.

Barndorff-Nielsen, O. E. & Shephard, N. (2004). Power and bipower variation with stochas-

tic volatility and jumps, Journal of Financial Econometrics 2(1): 1–48.

Barndorff-Nielsen, O. E. & Shephard, N. (2006). Econometrics of testing for jumps in finan-

cial economics using bipower variation, Journal of Financial Econometrics 4(1): 1–30.

Barone-Adesi, G. & Whaley, R. (1987). Efficient analytic approximation of american option

values, Journal of Finance 42: 45–54.

Berkowitz, J., Christoffersen, P. & Pelletier, D. (2011). Evaluting value-at-risk models with

desk-level data, Management Science 52(12): 2213–2227.

Black, F. (1976). The pricing of commodity contracts, Journal of Financial Economics

3: 167–179.

26



Bollerslev, T., Kretschmer, U., Pigorsch, C. & Tauchen, G. (2009). A discrete-time model

for daily S&P500 returns and realized variations: Jumps and leverage effects, Journal

of Econometrics 150(2): 151–166.

Bollerslev, T., Litvinova, J. & Tauchen, G. (2006). Leverage and volatility feedback effect

in high-frequency data, Journal of Financial Econometrics 4(3): 353–384.

Bollerslev, T., Tauchen, G. & Zhou, H. (2009). Expected stock returns and variance risk

premia, Review of Financial Studies 22(11): 4463–4492.

Brownlees, C. T. & Gallo, G. M. (2009). Comparison of volatility measures: a risk man-

agement perspective, Journal of Financial Econometrics 8(1): 29–56.

Bush, T., Christensen, B. J. & Nielsen, M. . (2011). The role of implied volatility in

forecasting future realized volatility and jumps in foreign exchange, stock, and bond

markets, Journal of Econometrics 160(1): 48–57.

Carr, P. & Wu, L. (2009). Variance risk premiums, Review of Financial Studies 22(3): 1311–

1341.

Cenesizoglu, T. & Timmerman, A. (2008). Is the distribution of stock returns predictable?

University of California at San Diego.

Chan, W. H. & Maheu, J. M. (2002). Conditional jump dynamics in stock market returns,

Journal of Business and Economic Statistics 79: 377–389.

Chernozhukov, V., Fernández-Val, I. & Galichon, A. (2010). Quantile and probability curves

without crossing, Econometrica 78(3): 1093–1125.

Chernozhukov, V. & Umantsev, L. (2001). Conditional value-at-risk: Aspects of modeling

and estimation, Empirical Economics 26: 271–292.

Christofferesen, P. & Mazzota, S. (2005). The accuracy of density forecasts from foreign

exchange options, Journal of Financial Econometrics 3(4): 578–605.

Christoffersen, P. F. & Diebold, F. X. (2006). Financial asset returns, direction-of-change

forecasting and volatility dynamics, Management Science 52(8): 1273–1287.

Clements, M. P., Galvao, A. B. & Kim, J. H. (2008). Quantile forecasts of daily ex-

change rate returns from forecasts of realized volatility, Journal of Empirical Finance

15(4): 729–750.

27



Corradi, V., Distaso, W. & Swanson, N. R. (2011). Predictive inference for integrated

volatility, Journal of the American Statistical Association 106: 1496–1512.

Corsi, F. (2009). A simple approximate long-memory model of realized volatility, Journal

of Financial Econometrics 7(2): 174–196.

Corsi, F., Mittnik, S., Pigorsch, C. & Pigorsch, U. (2008). The volatility of realized volatility,

Econometric Reviews 27(1): 46–78.
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A Proofs

Proof of Lemma 1. The first part of the result is proved by Corradi et al. (2011) for bi-power and
tri-power variation of Barndorff-Nielsen & Shephard (2004). Using the same line of argument as in
Corradi et al. (2011), one can show that the same result holds for the median realized volatility as
well and we omit the proof to save space.

To prove the second result, write

|JVt,M − JVt| = |RVt,M − IVt,M − JVt|,
≤ |RVt,M − IVt − JVt|+ |IVt,M − IVt|,
≡ At,M +Bt,M .

Bt,M was discussed above so we need to focus on At,M .

At,M =

∣∣∣∣∣∣
M∑
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σudWu +
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)2

−
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udu−
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κ2
l
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≤
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σudWu
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−
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udu
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)(
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κl
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−
∆iLt∑
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κ2
l

∣∣∣∣∣∣
≡ Ct,M +Dt,M + Et,M .

Now Ct,M is the measurement error associated with realized volatility in the absence of jumps and
by Corradi et al. (2011) we have E(|Ct,M |k) = O(M−k/2). Given Assumptions A2 (existence of
moments of jumps) and A3 (finite-activity), we can proceed by assuming that there is at most one
jump in every time interval [ti−1, ti]. Then Et,M = 0 and write Dt,M as

Dt,M = 2

M∑
i=1

∣∣∣∣∫ ti

ti−1

σudWu
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t,M +D

(2)
t,M .

For simplicity we focus on the case of k = 2 noting that the case of k > 2 can be treated analogously.
Taking expectations,

E[|D(1)
t,M |

2] = 4

M∑
i1=1

M∑
i2=1

E

[
σti1−1

σti2−1

∣∣∣∣∫ ti1

ti1−1

dWu

∣∣∣∣∣∣∣∣∫ ti2

ti2−1

dWu

∣∣∣∣|κti1 ||κti2 |1{∆i1
Lt=1}1{∆i2

Lt=1}

]

= 4

M∑
i1=1

M∑
i2=1

E

[
σti1−1

σti2−1

∣∣∣∣∫ ti1

ti1−1

dWu

∣∣∣∣∣∣∣∣∫ ti2

ti2−1

dWu

∣∣∣∣
]

× E[|κti1 ||κti2 |]E[1{∆i1
Lt=1}1{∆i2

Lt=1}]

By Hölder inequality, the first expectation is O(M−1) provided that E[σ2
u] < ∞, while the sec-

ond expectation is O(M−2) if i1 6= i2 and O(M−1) if i1 = i2, provided that E[κ2
j ] < ∞. Thus,
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E[|D(1)
t,M |2] = O(M−1). Finally, E[|D(2)

t,M |2] can not be of higher order than E[|D(1)
t,M |2], see Corradi

et al. (2011) for details. �

Proof of Proposition 1. To save space, we prove the proposition for Vt = {IVt,M , JVt,M} and
βZ = 0, noting that the others cases can be treated analogously. Simplifying notation we will write
β = β(α) since α is fixed throughout. Define

zt+1(β) = QVt+1 − β0 − β1IVt − β2JVt,

zt+1,M (β) = RVt+1,M − β0 − β1IVt,M − β2JVt,M ,

and write

|QRT,M (β)−QRT (β)|

=
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where Nt,M = RVt,M − IVt − JVt, β̄1 = max |β1| and β̄2 = max |β2|, which are well-defined since
Θ is compact. It follows by Markov inequality, stationarity and Lemma 1 that AT,M = Op(M−1/2)
uniformly in β.

Turning to Bt,M , we have
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By Lemma 1, E|N (d)
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and similarly for N
(c)
t,M and Nt,M . It follows that there exists a constant c such that with probability

approaching one as T,M →∞

BT,M ≤ 1

T

T∑
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|zt(β)|1{−bcεT
2

2k−1M−1/2 ≤ zt+1(β) ≤ bcεT
2

2k−1M−1/2}, (13)

≡ B′t,M , (14)

where b = 1 + β̄1 + β̄2. Thus, following Corradi et al. (2011) we can proceed by conditioning on a
set on which (13) holds and focus on B′t,M . By Markov and Hölder inequalities,

P(B′T,M > η) ≤ 1

η

1

T

T−1∑
t=0

E(z2
t (β))1/2P(−bcεT

2
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2
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Since Θ is compact, Assumption A2 implies that E(z2
t (β))1/2 < ∞ and if T

2
2k−1M−1/2 → 0 as

T,M → ∞, we have P(−bcεT
2

2k−1M−1/2 ≤ zt+1(β) ≤ bcεT
2

2k−1M−1/2)1/2 → 0, uniformly in β.
The statement in the proposition then follows. �
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B Constructing model-free implied volatility for oil

B.1 Theoretical Background

The methodology we employ for constructing model-free implied variance (ImV ) for oil is based on
Carr & Wu (2009). The idea of Carr & Wu (2009) is to synthetise a variance swap contract using
European options and futures contracts. Since the oil options are American-style futures options,
further adjustments are required to account for the early exercise premium. Here we follow Trolle
& Schwartz (2009).

To fix ideas, let Ft,T denote the time-t futures price of maturity T > t, and let RVt,T1
, T1 ≤ T ,

denote the realized variance of the futures price between t and T1. A variance swap with notional
dollar amount L is a contract that pays at maturity T1 to the long side the following amount

(RVt,T1
− SWt,T1

)L.

Since the value of the swap at inception is zero, absence of arbitrage requires that

SWt,T1 = EQ(RVt,T1) = ImVt,T1 ,

i.e. the swap rate is equal to the risk-neutral market expectation of future realized variance, that is,
the ImV. Carr & Wu (2009) show that the ImV can be approximated by

ImVt,T1,T ≈
2

Bt,T1(T1 − t)

(∫ Ft,T

0

P(t, T1, T,X)

X2
dX +

∫ ∞
Ft,T

C(t, T1, T,X)

X2
dX

)
, (15)

where Bt,T1
is the time-t price of a zero-coupon bond maturing at time T1, and P(t, T1, T,X) and

C(t, T1, T,X) denote the time-t price of a European put and call options, respectively, expiring at
time T1 with strike X written a a futures contract with maturity at T . When the underlying futures
price trajectories are continuous, the relation (15) is exact. In the presence of jumps, a jump error
arises but it is shown to be rather small in a simulation exercise by Carr & Wu (2009).

To account for the early exercise premium embedded in the American-style options, we resort to
the quadratic approximation formulas for American-style puts and call developed by Barone-Adesi
& Whaley (1987) (henceforth BAW). In particular, for each strike and maturity, we first invert the
BAW formula to obtain the implied volatility and then plug the implied volatility into Black (1976)
formula for pricing European-style futures options to obtain P(t, T1, T,X) and C(t, T1, T,X).

B.2 Data and implementation

We use daily settlement prices for WTI Crude Oil futures traded on the New York Mercantile
Exchange (NYMEX) and the futures options traded on the Chicago Mercantile Exchange (CME).
To proxy for the risk-free interest rates we employ the zero curve supplied by OptionMetrics. The
sample period runs from September 4, 2001 till August 30, 2008.

Before calculating the implied volatility we perform some basic data cleaning. We remove options
which have less that 10 days to maturity to avoid possible distortions associated with near-maturity
microstructure effects. We also discard all options with prices smaller than 0.05 USD. Finally, we
only consider options satisfying the no-arbitrage bounds, see e.g. Hull (2000).

For each day in the sample, we construct the 30-day implied volatility using the two nearest
maturities, denoted by T1 and T2, T1 < T2 < T . For each maturity, we first obtain the implied
volatility smile from the available out-of-the money put and call options by inverting the BAW
formula. We then linearly interpolate the implied volatilities at different moneyness levels k =
log(X/F ). For strikes smaller than the lowest available strike, we use the lowest available strike.
Similarly for strikes higher than the highest available one. We thus obtain implied volatilities over
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a fine grid ranging from -10 to +10 standard deviations from the current futures prices and use the
Black (1976) formula to convert the implied volatilities into prices of out-of-the-money put and call
options. These prices are then used in (15) to approximate ImVt,T1,T and ImVt,T2,T . Finally, to
obtain the 30-day variance swap rate, we linearly interpolate between the two available maturities:

ImVt,T∗ =
1

(T ∗ − t)

[
ImVt,T1,T (T1 − t)(T2 − T ∗) + ImVt,T2,T (T2 − t)(T ∗ − T1)

T2 − T1

]
where T ∗ is such that T ∗ − t is 30 days.

Tables

S&P 500 WTI Crude Oil

d 0.48 0.40
(32.3) (14.8)

φ1 -0.07 -0.11
(-3.14) (-2.82)

Mean -0.37 1.10
σ2 0.25 0.19

Log Lik -1905.18 -726.06
AIC 1.44 1.17

Table 1: ARFIMA parameter estimates with t-statistics in parentheses.
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Mean Std. Dev. Skew. Kurt. Min Max JB LB20

rt -0.010 1.015 0.105 8.843 -7.730 8.382 1579 35.10
RVt 0.992 1.368 8.177 129.3 0.052 32.99 19865 7166

RV
1/2
t 0.890 0.445 2.292 11.08 0.228 5.744 1673 17894

logRVt -0.434 0.881 0.283 0.109 -2.951 3.496 42.57 23807
RV −t 0.492 0.638 5.345 46.40 0.013 9.004 15037 7896
RV +

t 0.499 0.841 13.70 329.4 0.023 26.38 69983 3647
MedRVt 0.919 1.248 6.228 61.24 0.042 19.13 22046 9166
V IXt 1.278 0.834 1.621 3.657 0.267 5.731 1795 48706

Table 2: Summary statistics for S&P 500 futures returns, realized measures and option-
implied volatility. JB denotes the Jarque-Bera test statistics for normality and LB20 is
the Ljung-Box test statistics for serial correlation up to lag 20. All realized measures are
calculated from 5-minute prices obtained from irregularly-spaced transactions data using
the last-tick method. The sample period is from January 3, 1997 till June 30, 2008, yielding
3140 daily observations.

Mean Std. Dev. Skew. Kurt. Min Max JB LB20

rt 0.022 2.026 -0.155 3.623 -12.53 14.43 477.9 33.02
RVt 4.066 4.222 3.620 16.54 0.464 37.58 7942 13478

RV
1/2
t 1.734 0.545 1.689 5.802 0.681 5.573 601.9 5330

logRVt 1.015 0.574 0.387 0.548 -0.766 3.435 42.06 6159
RV −t 2.101 2.374 3.522 15.83 0.089 21.42 7266 9997
RV +

t 1.965 2.205 4.517 28.28 0.217 23.61 10004 9457
MedRVt 3.812 3.916 3.769 19.46 0.194 43.78 7074 12641
ImVt 1.978 0.438 1.423 2.651 1.289 4.111 794.9 23968

Table 3: Summary statistics for WTI Crude Oil futures returns, realized measures and
option-implied volatility. JB denotes the Jarque-Bera test statistics for normality and LB20

is the Ljung-Box test statistics for serial correlation up to lag 20. All realized measures are
calculated from 5-minute prices obtained from irregularly-spaced transactions data using
the last-tick method. The sample period is from September 4, 2001 till August 30, 2008,
yielding 1870 daily observations.
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in-sample out-of-sample

α 0.05 0.10 0.50 0.90 0.95 0.05 0.10 0.50 0.90 0.95

ARFIMA α̂ 0.050 0.102 0.482 0.880 0.935 0.066 0.116 0.478 0.904 0.950
DQ 1.831 2.177 16.92 27.26 16.53 7.829 7.745 4.274 12.89 8.488
p-val 0.939 0.904 0.013 0.000 0.023 0.336 0.287 0.675 0.054 0.257

SAV α̂ 0.050 0.100 0.501 0.900 0.950 0.050 0.092 0.506 0.926 0.966
DQ 5.217 8.195 12.14 20.39 16.16 5.789 7.104 4.169 22.94 7.006
p-val 0.536 0.237 0.063 0.003 0.025 0.579 0.309 0.676 0.001 0.433

RSAV1 α̂ 0.050 0.100 0.501 0.901 0.951 0.074 0.118 0.508 0.896 0.948
DQ 2.048 3.748 10.31 18.61 3.658 6.113 2.581 5.014 15.59 10.25
p-val 0.901 0.717 0.115 0.007 0.725 0.540 0.864 0.568 0.027 0.122

RSAV2 α̂ 0.050 0.100 0.501 0.901 0.952 0.070 0.116 0.510 0.896 0.948
DQ 6.033 3.762 11.03 18.43 3.225 5.805 2.711 3.181 6.246 9.235
p-val 0.436 0.699 0.096 0.007 0.773 0.581 0.868 0.800 0.429 0.182

AS α̂ 0.050 0.100 0.502 0.900 0.949 0.054 0.094 0.488 0.910 0.952
DQ 6.493 2.011 1.266 10.81 8.185 6.409 4.768 1.538 5.365 7.915
p-val 0.402 0.911 0.970 0.103 0.239 0.512 0.601 0.951 0.517 0.323

RAS α̂ 0.050 0.101 0.501 0.900 0.951 0.054 0.102 0.496 0.908 0.958
DQ 5.658 0.948 0.313 8.482 0.903 1.192 2.202 1.326 12.49 6.290
p-val 0.463 0.990 1.000 0.225 0.989 0.987 0.902 0.975 0.058 0.545

LQR1 α̂ 0.050 0.100 0.500 0.900 0.950 0.056 0.096 0.496 0.918 0.964
DQ 6.183 3.063 14.43 15.14 8.434 4.515 6.179 3.225 9.359 7.750
p-val 0.398 0.802 0.025 0.023 0.226 0.760 0.399 0.780 0.191 0.331

LQR2 α̂ 0.050 0.100 0.500 0.900 0.950 0.056 0.104 0.490 0.902 0.954
DQ 2.067 1.092 13.09 8.941 3.918 4.581 4.357 3.611 10.67 7.513
p-val 0.929 0.983 0.037 0.176 0.681 0.744 0.616 0.721 0.126 0.393

LQR3 α̂ 0.050 0.100 0.500 0.900 0.950 0.052 0.104 0.494 0.898 0.956
DQ 4.688 1.255 12.13 10.31 3.497 3.578 7.499 3.319 6.723 6.576
p-val 0.591 0.975 0.050 0.109 0.771 0.862 0.313 0.761 0.387 0.503

Table 6: Absolute performance of alternative conditional quantile models for daily S&P500
futures returns. The left-hand side panel reports results for in-sample performance and
the right-hand side panel reports results for out-of-sample performance (one-step-ahead
forecasts). For each model and quantile (α) we report the unconditional coverage (α̂),
the Berkowitz et al. (2011) test statistic for correct dynamic specification (DQ) and the
corresponding Monte Carlo-based p-value (p-val).
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in-sample out-of-sample

α 0.05 0.10 0.50 0.90 0.95 0.05 0.10 0.50 0.90 0.95

ARFIMA α̂ 0.030 0.075 0.485 0.898 0.951 0.050 0.102 0.484 0.871 0.942
DQ 19.01 12.52 9.882 10.89 7.487 5.606 5.650 14.06 9.599 7.711
p-val 0.005 0.040 0.137 0.076 0.339 0.638 0.488 0.035 0.160 0.356

SAV α̂ 0.048 0.099 0.500 0.900 0.951 0.050 0.098 0.506 0.880 0.932
DQ 13.84 4.236 6.056 14.13 4.002 5.406 9.114 13.92 7.815 7.993
p-val 0.049 0.635 0.419 0.031 0.709 0.662 0.181 0.043 0.298 0.303

RSAV1 α̂ 0.049 0.099 0.502 0.901 0.952 0.048 0.112 0.490 0.861 0.924
DQ 14.27 5.840 6.684 13.71 5.441 5.001 6.057 13.65 10.64 11.14
p-val 0.045 0.464 0.364 0.032 0.545 0.720 0.449 0.037 0.118 0.091

RSAV2 α̂ 0.052 0.099 0.500 0.899 0.951 0.048 0.116 0.508 0.871 0.940
DQ 6.951 7.863 5.089 17.46 8.358 5.001 10.05 6.583 8.673 4.680
p-val 0.397 0.239 0.542 0.009 0.301 0.725 0.140 0.370 0.203 0.744

AS α̂ 0.049 0.099 0.499 0.902 0.952 0.048 0.100 0.512 0.876 0.938
DQ 14.27 2.081 2.311 13.21 7.755 5.001 5.334 9.258 8.169 4.529
p-val 0.043 0.914 0.900 0.055 0.308 0.711 0.507 0.164 0.246 0.747

RAS α̂ 0.051 0.099 0.501 0.901 0.949 0.050 0.102 0.506 0.876 0.932
DQ 6.545 10.98 1.975 5.518 5.394 4.937 3.300 7.547 5.625 7.589
p-val 0.402 0.081 0.944 0.470 0.521 0.694 0.792 0.253 0.494 0.338

LQR1 α̂ 0.051 0.100 0.500 0.900 0.949 0.048 0.098 0.514 0.900 0.952
DQ 3.853 2.197 18.79 12.70 3.935 2.586 6.070 11.60 3.277 6.096
p-val 0.723 0.905 0.008 0.049 0.700 0.932 0.469 0.068 0.812 0.568

LQR2 α̂ 0.051 0.100 0.500 0.901 0.949 0.046 0.112 0.514 0.892 0.948
DQ 1.636 3.476 14.87 9.567 3.608 5.072 7.817 10.56 2.585 4.801
p-val 0.952 0.745 0.024 0.151 0.740 0.703 0.279 0.104 0.871 0.762

LQR3 α̂ 0.051 0.100 0.500 0.899 0.949 0.046 0.116 0.508 0.898 0.950
DQ 2.355 2.747 4.590 3.950 3.852 5.072 8.047 7.848 4.130 7.915
p-val 0.887 0.850 0.621 0.684 0.715 0.678 0.235 0.230 0.674 0.305

Table 7: Absolute performance of alternative conditional quantile models for daily WTI
Crude Oil futures returns. The left-hand side panel reports results for in-sample perfor-
mance and the right-hand side panel reports results for out-of-sample performance (one-
step-ahead forecasts). For each model and quantile (α) we report the unconditional coverage
(α̂), the Berkowitz et al. (2011) test statistic for correct dynamic specification (DQ) and
the corresponding Monte Carlo-based p-value (p-val).
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in-sample out-of-sample

α 0.5 0.75 0.90 0.95 0.5 0.75 0.90 0.95

A. S&P 500
ARFIMA α̂ 0.534 0.780 0.907 0.948 0.522 0.837 0.954 0.978

DQ 25.08 29.13 24.53 33.08 46.73 51.52 31.01 15.67
p-val 0.001 0.000 0.000 0.000 0.000 0.000 0.000 0.007

LQR1 α̂ 0.500 0.750 0.900 0.949 0.554 0.770 0.894 0.944
DQ 20.31 12.65 2.764 6.430 19.50 13.98 4.617 3.249
p-val 0.002 0.045 0.820 0.405 0.002 0.028 0.613 0.859

LQR2 α̂ 0.500 0.750 0.900 0.950 0.540 0.750 0.864 0.928
DQ 18.93 25.25 5.369 4.877 12.99 6.462 10.09 6.633
p-val 0.005 0.000 0.486 0.577 0.034 0.369 0.133 0.482

LQR3 α̂ 0.500 0.750 0.900 0.950 0.538 0.750 0.862 0.928
DQ 36.50 29.10 5.574 6.529 9.771 11.69 9.858 7.796
p-val 0.000 0.000 0.475 0.368 0.134 0.068 0.178 0.334

B. WTI Crude Oil
ARFIMA α̂ 0.553 0.781 0.892 0.937 0.510 0.825 0.948 0.974

DQ 47.61 26.63 22.36 13.97 13.33 21.03 19.52 13.71
p-val 0.000 0.000 0.003 0.040 0.039 0.002 0.003 0.028

LQR1 α̂ 0.501 0.750 0.901 0.949 0.524 0.734 0.884 0.948
DQ 8.308 8.639 0.935 4.332 7.497 5.594 1.929 8.149
p-val 0.207 0.189 0.989 0.649 0.274 0.486 0.923 0.278

LQR2 α̂ 0.501 0.750 0.900 0.950 0.520 0.736 0.890 0.946
DQ 11.79 9.121 1.729 1.954 7.263 7.053 3.484 3.976
p-val 0.070 0.165 0.952 0.941 0.299 0.325 0.733 0.790

LQR3 α̂ 0.501 0.750 0.900 0.949 0.524 0.730 0.900 0.950
DQ 11.68 9.313 1.593 2.162 9.959 5.950 5.085 12.80
p-val 0.071 0.175 0.950 0.916 0.148 0.435 0.559 0.033

Table 12: Absolute performance of alternative conditional quantile models for daily S&P500
and WTI Crude Oil futures realized volatility. The left-hand side panel reports results
for in-sample performance and the right-hand side panel reports results for out-of-sample
performance (one-step-ahead forecasts). For each model and quantile (α) we report the
unconditional coverage (α̂), the Berkowitz et al. (2011) test statistic for correct dynamic
specification (DQ) and the corresponding Monte Carlo-based p-value (p-val).
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Figures

Figure 1: Time series of daily returns, realized variance, median realized variance and jump
variation for the S&P 500 futures contract. All realized measures are calculated from 5-
minute prices obtained from irregularly-spaced transactions data using the last-tick method.
The sample period is from January 3, 1997 till June 30, 2008.
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Figure 2: Time series of daily returns, realized variance, median realized variance and jump
variation for the WTI Crude Oil futures contract. All realized measures are calculated
from 5-minute prices obtained from irregularly-spaced transactions data using the last-tick
method. The sample period is from September 4, 2001 till August 30, 2008.
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Figure 3: Estimated quantile regression process for model LQR3 in Table 4 for S&P
500 futures returns. For each α-quantile ranging from 0.05 to 0.95, we plot the estimated
parameters in the quantile regression (β̂(α)) together with pointwise 95% bootstrapped
confidence intervals.
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Figure 4: Estimated Quantile regression process for model HARQ2 in Table 10 for S&P
500 realized volatility. For each α-quantile ranging from 0.5 to 0.95, we plot the estimated
parameters in the quantile regression (β̂(α)) together with pointwise 95% bootstrapped
confidence intervals.
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