
Chapter 1
Wavelet–based correlation analysis of the key
traded assets

Jozef Barunı́k and Evžen Kočenda and Lukas Vacha

Abstract This chapter reveals the time-frequency dynamics of the dependence
among key traded assets – gold, oil, and stocks, in the long run, over a period of
26 years. Using both intra-day and daily data and employing a variety of method-
ologies, including a novel time-frequency approach combining wavelet-based cor-
relation analysis with high-frequency data, we provide interesting insights into the
dynamic behavior of the studied assets. We account for structural breaks and re-
veal a radical change in correlations after 2007-2008 in terms of time-frequency
behavior. Our results confirm different levels of dependence at various investment
horizons indicating heterogeneity in stock market participants’ behavior, which has
not been documented previously. While these key assets formerly had the potential
to serve as items in a well-diversified portfolio, the events of 2007-2008 changed
this situation dramatically.
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CERGE-EI, Charles University and the Czech Academy of Sciences, Politickych veznu 7, 11121
Prague, Czech Republic
CESifo, Munich; IOS Regensburg
The William Davidson Institute at the University of Michigan Business School
CEPR, London; and the Euro Area Business Cycle Network. e-mail: evzen.kocenda@cerge-ei.cz

Lukas Vacha (corresponding author)
Theory and Automation, Academy of Sciences of the Czech Republic, Pod Vodarenskou Vezi 4,
182 00, Prague, Czech Republic
Institute of Economic Studies, Charles University, Opletalova 21, 110 00, Prague, Czech Republic,
e-mail: vachal@utia.cas.cz

1
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1.1 Introduction, motivation, and related literature

In this chapter, we contribute to the literature by studying the dynamic relationship
among gold, oil, and stocks in a time–frequency domain by employing a wavelet–
based methodology. Considering the time-frequency domain offers new perspec-
tives on the relationships among the assets and differentiates our contribution from
much of the related literature. The time–frequency approach also enables us to un-
cover patterns underpinned by the investment potential derived from the ongoing
financialization of commodities.

Traders in financial markets make their decisions over various horizons, for ex-
ample, minutes, hours, days, or even longer periods such as months and years, as
discussed by Ramsey (2002). Nevertheless, majority of the empirical literature stud-
ies the relationships in the time domain only aggregating the behavior across all
investment horizons. Our analysis includes both time and time–frequency meth-
ods. The time domain tools we apply to measure correlations are the parametric
DCC GARCH and nonparametric realized volatility. Although these two methods
are fundamentally different, they both average the relationships over the full range
of available frequencies and suffer from restricted application when analyzing non-
stationary time series. In contrast, wavelets allow us to analyze time series within
a time-frequency domain framework that allows for various forms of localization.
Thus, when analyzing non-homogeneous and non-stationary time series, wavelet
analysis is preferred because it is more flexible. For example, when considering
stock markets, we can work with prices and thus study the dynamics of the depen-
dencies at various investment horizons or frequencies at the same moment, where
the lowest frequency will contain the trend component of the data. Therefore, we
can determine short and long–term dependence structures. Wavelets are able to de-
liver valuable and unorthodox inferences in the fields of economics and finance,
as evinced in recent applications, for example, by Faÿ et al (2009), Gallegati et al
(2011), Vacha and Barunik (2012), Aguiar-Conraria et al (2012), or Graham et al
(2013).

Our analysis is performed using data from a long period, 26 years, from 1987
to 2012. We conduct a thorough, wavelet-based analysis and uncover rich time-
frequency dynamics in the relationships among gold, oil, and stocks. The selection
of the three assets is motivated by the fact that gold and oil are the most actively
traded commodities in the world. Similarly, to represent stocks, we use the S&P500,
which is one of the most actively traded and comprehensive stock indices in the
world. Gold is traditionally perceived as a store of wealth, especially with respect
to periods of political and economic insecurity (Aggarwal and Lucey, 2007). How-
ever, gold is both a commodity and a monetary asset. Approximately 40% of newly
mined gold is used for investment (Thompson Reuters GFSM, 2012). Unlike gold,
oil is essential component of contemporary industrial economies, as reflected by
the 88 million barrels consumed daily worldwide. As oil is a vital production in-
put, its price is driven by distinct demand and supply shocks (Hamilton, 2009). Oil
has also become financialized over time, as documented in Büyükşahin and Robe
(2013). Fratzscher et al (2013) show that oil was not correlated with stocks until
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2001, but as oil began to be used as a financial asset, the link between oil and other
assets strengthened. Finally, stocks reflect the economic and financial development
of firms and market perceptions of a companys standing; they also represent invest-
ment opportunities and a link to perceptions of aggregate economic development.
Further, stock prices provide helpful information on financial stability and can serve
as an indicator of crises (Gadanecz and Jayaram, 2009). Thus, a broad market index
can be used to convey information on the status and stability of the economy. In our
analysis, we consider the S&P 500, which is frequently used as a benchmark for the
overall U.S. stock market. In our analysis, stocks complement the commodities of
gold and oil to represent the financial assets traded by the modern financial industry.

What motivates our analysis of the links among the three assets above? The lit-
erature analyzing the dynamic correlations among assets proposes a number of im-
portant reasons that the issue should be investigated. An obvious motivation for an-
alyzing co-movements is that substantial correlations among assets greatly reduce
their potential to be included in a portfolio from the perspective of risk diversifica-
tion. Even if assets in a portfolio initially exhibit low correlation, a potential change
in correlation patterns represents an imperative to redesign such a portfolio. Both
issues are also linked to the Modern Portfolio Theory (MPT) of Markowitz (1952).
MPT assumes, among other things, that correlations between assets are constant
over time. However, correlations between assets may well depend on the systemic
relationships between them and change when these relationships change. Thus, ev-
idence of time-varying correlations between assets substantially undermines MPT
results and, more important, its use to protect investors from risk.

Empirical evidence on co-movements among assets may well depend on the
choice of assets, technique employed, and the period under study. In a seminal
study on co-movements in the monthly prices of unrelated commodities, Pindyck
and Rotemberg (1990) find excess co-movement among seven major commodities,
including gold and oil. However, the co-movements are measured in a rather sim-
ple manner as individual cross-correlations over the entire period (1960–1985). The
excess co-movements were attributed to irrational or herding behavior in markets.
Using a concordance measure, Cashin et al (1999) analyze the same set of commodi-
ties over the same period as Pindyck and Rotemberg (1990) and find no evidence
for co-movements in the prices of the analyzed commodities. When they extend the
period to 1957–1999, the co-movements are again absent and they contend that the
entire notion of co-movements in the prices of unrelated commodities is a myth. A
single exception is the co-movement in gold and oil prices that Cashin et al (1999)
credit to inflation expectations and further provide evidence that booms in oil and
gold prices often occur at the same time (Cashin et al, 2002). Still, it has to be noted
that gold may well be traded independently from other assets on the pretext of be-
ing a store of value during downward market swings. Hence, it does not necessarily
co-move with related or unrelated commodities.

An extension of the co-movement analysis to the time-frequency domain offers
the potential for an interesting comparison of how investment horizons influence
the diversification of market risk. The importance of various investment horizons
for portfolio selection has been recognized by Samuelson (1989). In this respect,



4 Jozef Barunı́k and Evžen Kočenda and Lukas Vacha

Marshall (1994) demonstrates that investor preferences for risk are inversely related
to time and different investment horizons have direct implications for portfolio se-
lection. Graham et al (2013) provide empirical evidence related to the issues studied
in this chapter by studying the co-movements of various assets using wavelet co-
herence and demonstrating that at the long-term investment horizon co-movement
among stocks and commodities increased at the onset of the 2007–2008 financial
crisis. Thus, the diversification benefits of using these assets are rather limited.

With the above motivations and findings in mind, in this chapter we adopt a com-
prehensive approach and contribute to the literature by analyzing the prices of three
assets that have unique economic and financial characteristics: the key commodities
gold and oil and important stocks represented by the S&P 500 index. To this end, we
consider a long period (1987–2012) at both intra-day and daily frequencies and an
array of investment horizons to deliver a comprehensive study in the time-frequency
domain based on wavelet analysis. Our key empirical results can be summarized as
follows: (i) correlations among the three assets are low or even negative at the be-
ginning of our sample but subsequently increase, and the change in the patterns
becomes most pronounced after decisive structural breaks take place (breaks occur
during the 2006–2009 period at different dates for specific asset pairs); (ii) correla-
tions before the 2007–2008 crisis exhibit different patterns at different investment
horizons; (iii) during and after the crisis, the correlations exhibit large swings and
their differences at shorter and longer investment horizons become negligible. This
finding indicates vanishing potential for risk diversification based on these assets:
after the structural change, gold, oil, and stocks could not be combined to yield
effective risk diversification during the post-break period studied.

The chapter is organized as follows. In Sect.1.2, we introduce the theoretical
framework for the wavelet methodology we use to perform our analysis. Our large
data set is described in detail in Sect.1.3 with a number of relevant commentaries.
We present our empirical results in Sect.1.4. Sect.1.5 briefly concludes.

1.2 Theoretical framework for the methodologies employed

In the following section, we introduce the methodologies employed. While stan-
dard approaches (e.g., DCC GARCH and realized volatility) allow us to study the
covariance matrix solely in the time domain, we are interested in studying its time-
frequency dynamics. In other words, we are interested in determining how the cor-
relations vary over time and various investment horizons. We are able to do so by
using the innovative time-frequency approach of wavelet analysis. Wavelets are a
relatively new method in economics, despite their potential benefits to economists
(Ramsey, 2002; Gençay et al, 2002).

We continue with a brief introduction of the methodologies used to estimate the
dynamic correlations, namely: (i) the parametric DCC GARCH approach; (ii) non-
parametric realized measures; and (iii) a time-frequency approach in the form of a
wavelet analysis.
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1.2.1 Time-varying correlations: DCC GARCH methodology

In this section, we introduce the Dynamic Conditional Correlation Generalized Au-
toregressive Conditional Heteroscedasticity (DCC GARCH) model for estimating
dynamic correlations in a multivariate setting. The DCC GARCH was proposed by
Engle (2002) and is a logical extension of Bollerslevs constant conditional corre-
lation (CCC) model (Bollerslev, 1990), in which the volatilities of each asset were
allowed to vary over time but the correlations were time invariant. The DCC version,
however, also allows for dynamics in the correlations.

Engle (2002) defines the covariance matrix as:

Ht=DtRtDt . (1.1)

where Rt is the conditional correlation matrix and Dt = diag{
√

hi,t} is a diagonal
matrix of time varying standard variation from the i-th univariate (G)ARCH(p,q)
processes hi,t . Parameter n represents the number of assets at time t= 1, . . . ,T . The
correlation matrix is then given by the transformation

Rt=diag(
√

q11,t , . . . ,
√

qnn,t)Qtdiag(
√

q11,t , . . . ,
√

qnn,t), (1.2)

where Qt= (qi j,t) is

Qt= (1−α−β )Q+αηt−1η
′
t−1+βQt−1, (1.3)

where ηt = εi,t/
√

hi,t denotes the standardized residuals from the (G)ARCH model,
Q=T−1

∑ηtη
′
t is a n×n unconditional covariance matrix of ηt , and α and β are

non-negative scalars such that α+β<1.
We estimate the DCC GARCH using the standard quasi-maximum likelihood

method proposed by Engle (2002). Further, we assume Gaussian innovations. The
DCC model can be estimated consistently by estimating the univariate GARCH
models in the first stage and the conditional correlation matrix in the second stage.
The parameters are also estimated in stages. This two-step approach avoids the di-
mensionality problem encountered in most multivariate GARCH models (Engle,
2002; Engle and Sheppard, 2001).1 Furthermore, the DCC model is parsimonious
and ensures that time-varying correlation matrices between the stock exchange re-
turns are positive definite.

1.2.2 Time-varying correlations: Realized Volatility approach

Due to increased availability of high–frequency data, a simple technique for estimat-
ing the covariance matrix was recently developed. In contrast to the DCC GARCH,

1 Bauwens and Laurent (2005) demonstrate that the one-step and two-step methods provide very
similar estimates.
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this method is non-parametric. It is based on the estimating the covariance matrix
analogously to the realized variation by taking the outer product of the observed
high-frequency return over the period considered. Following Andersen et al (2003)
and Barndorff-Nielsen and Shephard (2004) we define the realized covariance over
the time interval [t−h, t] for 0≤ h≤ t ≤ T as

R̂Ct,h=
M

∑
i=1

rt−h+( i
M )hr′t−h+( i

M )h, (1.4)

where M denotes the number of observations in the interval [t−h, t]. Andersen et al
(2003) and Barndorff-Nielsen and Shephard (2004) demonstrate that the ex-post
realized covariance R̂Ct,h is an unbiased estimator of the ex-ante expected covari-
ation. Furthermore, given increasing sampling frequency, i.e. h > 0 and M → ∞,
the realized covariance is a consistent estimator of the covariation. In practice, we
only observe discrete prices, hence discretization bias is unavoidable. More serious
damage to the estimator is also caused by market microstructure effects such as the
bid-ask bounce, price discreteness, and the bid-ask spread. The literature advises
employing rather sparse sampling when applying the estimator in practice; however
this entails discarding a large amount of the available data. Following the suggestion
by Andersen and Benzoni (2007) to obtain the best trade-off between reduced bias
and information loss, we use 5-minute data to calculate the realized covariances.2

An Important assumption regarding the price processes is that the data are synchro-
nized, which implies collecting the prices simultaneously. However, this is not an
issue in our analysis, as all three examined assets are paired using equal time-stamps
matching.

1.2.3 Time-frequency dynamics in correlations: Wavelet approach

As we are interested in how the correlations vary over time and at different in-
vestment horizons, we need to conduct a wavelet analysis that allows us to work
simultaneously in the time and frequency domains. The DCC GARCH and realized
volatility methods outlined above do not allow the researcher to extend the analysis
to the frequency domain; hence we are only able to study the covariance matrix in
the time domain.

Wavelet time–frequency domain analysis is very powerful tool when we expect
changes in economic relationships such as structural breaks. Wavelet analysis can
react to these changes because the wavelet transform uses a localized function with
finite support for the decomposition – a wavelet. In contrast, when using a pure
frequency approach, represented by the Fourier transform, one obtains information
on all of the frequency components, but because the amplitude is fixed throughout

2 This is the optimal sampling frequency determined based on the substantial research on the noise-
to-signal ratio. The literature is well surveyed by Hansen and Lunde (2006), Bandi and Russell
(2006), McAleer and Medeiros (2008), and Andersen and Benzoni (2007).
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the period considered, the time information is completely lost. Thus, in the event
of sudden changes in economic relationships or the presence of breaks during the
period studied, one is unable to locate precisely where this change occurs. Addition-
ally, due to the non-stationarity induced by such breaks, Fourier transform-based
estimates may not be precise. Therefore, the wavelet transform has substantial ad-
vantages over the Fourier transform when the time series is non-stationary or is only
locally stationary (Roueff and Sachs, 2011).

An important feature of wavelet analysis is the decomposition of the economic
relationship into time-frequency components. Wavelet analysis often uses scale in-
stead of frequency, as scale typically characterizes frequency bands. The set of
wavelet scales can be further interpreted as investment horizons at which we can
study the economic relationships separately. Thus, every scale describes the devel-
opment of the economic relationship at a particular frequency while retaining the
time dynamics. Subsequently, the wavelet decomposition generally provides a more
complex picture compared to the time domain approach, which aggregates all in-
vestment horizons. Therefore, if we expect that economic relationships follow dif-
ferent patterns at various investment horizons, then a wavelet analysis can uncover
interesting characteristics of the data that would otherwise remain hidden. An in-
troduction to the wavelet methodology with a remarkable application to economics
and finance is provided in Gençay et al (2002) and Ramsey (2002).

1.2.4 Wavelet transform

While we use a discrete version of the wavelet transform, we begin our introduction
with the continuous wavelet transform (CWT), as it is the cornerstone of the wavelet
methodology. Next, we continue by describing a special form of discrete wavelet
transform named the “maximal overlap discrete wavelet transform” (MODWT).
Following standard notation, we define the continuous wavelet transform Wx( j,s)

as a projection of a wavelet function3 ψ j,s (t)= 1√
j ψ

(
t−s

j

)
∈ L2(R) onto the time

series x(t) ∈ L2(R),

Wx( j,s) =
∫

∞

∞

x(t)
1√

j
ψ

(
t−s

j

)
dt, (1.5)

where s determines the position of the wavelet in time. The scaling, or dilatation
parameter j controls how the wavelet is stretched or dilated. If the scaling parameter
j is low (high), then the wavelet is more (less) compressed and able to detect high
(low) frequencies. One of the most important conditions a wavelet must fulfill is the
admissibility condition: Cψ=

∫
∞

0
|Ψ( f )|2

f d f<∞, where Ψ( f ) is the Fourier transform
of a wavelet ψ(.). The decomposed time series x(t) can be subsequently recovered
using the wavelet coefficients as follows

3 We use the least asymmetric wavelet with length L=8, denoted as LA(8).
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x(t) =
1

Cψ

∫
∞

0

[∫
∞

−∞

Wx( j,s)ψ j,s(t)ds
]

d j
j2 , s>0. (1.6)

Further, the continuous wavelet transform preserves the energy or variance of the
analyzed time series; hence

x2=
1

Cψ

∫
∞

0

[∫
∞

−∞

|Wx( j,s)|2ds
]

d j
j2 . (1.7)

Equation 1.7 is an important property that allows us to work with the wavelet
variance, covariance and the wavelet correlation. For a more detailed introduction
to continuous wavelet transform and wavelets, see Daubechies (1992), Chui (1992),
and Percival and Walden (2000).

As we study discrete time series, we only require a limited number of scales, and
some form of discretization is needed. The counterpart of the continuous wavelet
transform in discrete time is the discrete wavelet transform,4 which is a parsimo-
nious form of the continuous transform, but it has some limiting properties that make
its application to real time series relatively difficult. These limitations primarily con-
cern the restriction of the sample size to the power of two and the sensitivity to the
starting point of the transform. Therefore, in our analysis, we use a modified ver-
sion of the discrete wavelet transform—MODWT—which has some advantageous
properties that are summarized below.

In contrast to the DWT, the MODWT does not use downsampling, as a conse-
quence the vectors of the wavelet coefficients at all scales have equal length, cor-
responding to the length of transformed time series. Thus, the MODWT is not re-
stricted to sample sizes that are powers of two. However, the MODWT wavelet
coefficients are no longer orthogonal to each other at any scale. Additionally, the
MODWT is a translation-invariant type of transform; therefore, it is not sensitive
to the choice of the starting point of the examined process. Both the DWT and
MODWT wavelet and scaling coefficients can be used for energy decomposition
and analysis of variance of a time series in the time-frequency domain, however
Percival (1995) demonstrates the dominance of the MODWT estimator of variance
over the DWT estimator. Furthermore, Serroukh et al (2000) analyze the statistical
properties of the MODWT variance estimator for non-stationary and non-Gaussian
processes and show its statistical properties. For additional details on the MODWT,
see Mallat (1998) and Percival and Walden (2000).

1.2.5 Maximal overlap discrete wavelet transform

This section demonstrates an application of the pyramid algorithm to obtain the
MODWT wavelet and scaling coefficients. The method is based on filtering time

4 For a definition and detailed discussion of the discrete wavelet transform, see Mallat (1998),
Percival and Walden (2000), and Gençay et al (2002).
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series with MODWT wavelet filters; the output after filtering is then filtered again
in a subsequent stage to obtain other wavelet scales.

Let us begin with the first stage. The wavelet coefficients at the first scale ( j = 1)
are obtained via circular filtering of time series xt using the MODWT wavelet and
scaling filters h1,l and g1,l (Percival and Walden, 2000) :

Wx (1,s)≡
L−1

∑
l=0

h1,lx(s−l modN), Vx(1,s)≡
L−1

∑
l=0

g1,lx(s−l modN). (1.8)

The second step of the algorithm uses the scaling coefficients Vx(1,s) instead of xt .
The wavelet and scaling filters have a width L j = 2 j−1 (L−1)+1; therefore, for the
second scale, the length of the filter is L2 = 15. After filtering, we obtain the wavelet
coefficients at scale j = 2:

Wx(2,s)≡
L−1

∑
l=0

h2,lVx(1,s−l modN), Vx(2,s)≡
L−1

∑
l=0

g2,lVx(1,s−l modN). (1.9)

After the two steps of the algorithm we have two vectors of the MODWT wavelet co-
efficients at scale j = 1 and j = 2; Wx (1,s) ,Wx (2,s) and one vector of the MODWT
wavelet scaling coefficients at scale two Vx (2,s), where s = 0,1, . . . ,N − 1 is the
same for all vectors. The vector Wx (1,s) represents wavelet coefficients that re-
flect variations at the frequency band f [1/4,1/2], Wx (2,s): f [1/8,1/4] and Vx (2,s):
f [0,1/8].

The transfer function of the filter hl : l = 0,1, . . . ,L− 1, where L is the width
of the filter, is denoted as H(.). The pyramid algorithm exploits the fact that if we
increase the width of the filter to 2 j−1 (L−1)+ 1, then the filter with the impulse
response sequence in the form:5

{h0, 0, . . . ,0︸ ︷︷ ︸
2 j−1−1 zeros

,h1, 0, . . . ,0︸ ︷︷ ︸
2 j−1−1 zeros

,hL−2, 0, . . . ,0︸ ︷︷ ︸
2 j−1−1 zeros

,hL}, (1.10)

has a transfer function defined as H
(
2 j−1 f

)
. Using this feature of the filters, we can

write the pyramid algorithm simply in the following form

Wx ( j,s)≡
L−1

∑
l=0

hlVx
(

j−1,s−2 j−1l modN
)
, s= 0,1, . . . ,N−1, (1.11)

Vx ( j,s)≡
L−1

∑
l=0

glVx
(

j−1,s−2 j−1l modN
)
, s= 0,1, . . . ,N−1, (1.12)

5 The number of zeros between filter coefficients is 2 j−1−1, i.e., for the filter at the first stage, we
have no zeros, and for the second stage there is just one zero between each coefficient; hence the
width of the filter is 15.
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where for the first stage we set x = Vx (0,s). Thus, after performing the MODWT,
we obtain Jm≤ log2(N) vectors of wavelet coefficients and one vector of scaling co-
efficients. The j-th level wavelet coefficients in vector Wx ( j,s) represent frequency
bands f [1/2 j+1,1/2 j], while the j-th level scaling coefficients in vector Vx ( j,s) rep-
resent f [0,1/2 j+1]. In the subsequent analysis of the wavelet correlations we apply
the MODWT with the wavelet filter LA(8), with reflecting boundary conditions.

1.2.6 Wavelet correlation

Applying the wavelet transform allows for a scale-by-scale decomposition of a time
series, where every scale represents an investment horizon. In the bivariate case,
where we decompose two time series, we can study correlations at investment hori-
zons represented by scales. The method is called wavelet correlation and offers an
alternative means of studying the dependence between two time series, as it can
uncover different dependencies across available scales.

When the MODWT is used, all vectors of the wavelet coefficients have the same
length. Thus, for a time series xt , t = 1,2, . . . ,N, we obtain j= 1, . . . ,Jm vectors of
wavelet coefficients and one vector of scaling coefficients of length N. The maximal
level of wavelet decomposition is denoted Jm, Jm ≤ log2(N). The wavelet correla-
tion ρxy( j) between time series xt and yt at scale j is then defined as (Whitcher et al,
2000):

ρxy ( j)=
cov(Wx( j,s)Wy( j,s))

[Var (Wx( j,s))var (Wy( j,s))]
1
2
≡

γxy ( j)
νx ( j)νy ( j)

, (1.13)

where ν2
x ( j) and γxy( j) denote wavelet variance and covariance, respectively. Ad-

ditional details on wavelet variance and covariance are provided in Appendix 1.6
and 1.7. The wavelet correlation estimator directly uses the definition of the wavelet
correlation Eq.1.13, thus we can write:

ρ̂xy( j)≡
γ̂xy( j)

ν̂x( j)ν̂y( j)
, (1.14)

where γ̂xy( j) denotes the wavelet covariance estimator and ν̂x( j)2 and ν̂y( j)2 are es-
timators of wavelet variance at scale j for time series xt and yt . Whitcher et al (1999)
established the central limit theorem for estimator Eq.1.14, as well as the approx-
imate confidence intervals; empirical values are reported in Sect.1.4.1. Additional
details on this topic can be found in Serroukh et al (2000).
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1.3 Data

In the empirical section, we analyze the prices of gold, oil, and a representative U.S.
stock market index, the S&P 500. The data set contains the tick prices of the S&P
500 and the futures prices of gold and oil, where we use the most active rolling con-
tracts from the pit (floor traded) session. All of the assets are traded on the platforms
of the Chicago Mercantile Exchange (CME).6

We restrict our study to the intraday 5-minute and daily data sampled during the
business hours of the New York Stock Exchange (NYSE), as most of the liquidity of
the S&P 500 comes from the period when the U.S. markets are open. The sample pe-
riod runs from January 2, 1987 until December 31, 2012.7 To synchronize the data,
we employ Greenwich Mean Time (GMT) stamp matching. Further, we exclude
transactions executed on Saturdays and Sundays, U.S. federal holidays, December
24 to 26, and December 31 to January 2, as the low activity on these days could
lead to estimation bias. Therefore, we use data from 6472 trading days. Descriptive
statistics of the intra-day and daily returns of the data that form our sample are pre-
sented in Tab.1.1. Overall, the statistics are standard with the remarkable exception
of a very high excess kurtosis of 104.561 for oil. This is mainly a consequence of a
single positive price change of 16.3% (January 19, 1991), when the worst deliberate
environmental damage in history was caused by Iraqi leader Saddam Hussein, who
ordered a large amount of oil to be spilled into the Persian Gulf (Khordagui and
Al-Ajmi, 1993).

Figure 1.1 depicts the development of the prices of the three assets, in which sev-
eral recessions and crisis periods can be detected. Following the National Bureau
of Economic Research (NBER),8 there were three recessions in the U.S. during the
period studied: July 1990 to March 1991, March 2001 to November 2001, and De-
cember 2007 to June 2009. These recessions are highlighted by gray bands. Further-
more, black lines depict one-day crashes associated with large price drops. Specif-
ically, Black Monday (October 19, 1987), the Asian crisis (October 27, 1997), the
Russian ruble devaluation (August 17, 1998), the dot-com bubble burst (March 10,
2000), the World Trade Center attacks (September 11, 2001), the Lehman Brothers
Holdings bankruptcy (September 15, 2008), and the Flash Crash (March 6, 2010).
The largest one-day drops in the studied sample occurred on the following dates,
with percentage declines given in parentheses: October 19, 1987 (20.47%), October
26, 1987 (8.28%), September 29, 2008 (8.79%), October 9, 2008 (7.62%), October
15, 2008 (9.03%), and December 1, 2008 (8.93%).

The above crashes differ in nature, and we discuss them briefly below. On Mon-
day, October 19, 1987, known as Black Monday, stock markets around the world

6 Oil (Light Crude) is traded on the New York Mercantile Exchange (NYMEX) platform, gold is
traded on the Commodity Exchange, Inc. (COMEX), a division of NYMEX, and the S&P 500 is
traded at the CME in Chicago. All data were acquired from Tick Data, Inc.
7 The CME introduced the Globex(R) electronic trading platform in December 2006 and began to
offer nearly continuous trading.
8 US Business Cycle Expansions and Contractions, NBER, accessed April 5, 2013
(http://www.nber.org/cycles.html).
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Fig. 1.1: Normalized prices of gold (thin black), oil (black), and stocks (gray). The figure highlights
several important recession periods in gray (described in greater detail in the text), and crashes
using black lines: (a) Black Monday; (b) the Asian crisis; (c) the Russian ruble devaluation; (d) the
dot-com bubble burst; (e) the WTC 9/11 attacks; (f) the Lehman Brothers Holdings bankruptcy;
and (g) the Flash Crash

dropped in a very short time and recorded the largest one-day crash in history. After
this extreme event, many expected the most troubled years since the 1930s. Never-
theless, stock markets quickly recovered from the losses and closed 1987 in positive
territory. There is still no consensus on the cause of the crash; potential reasons
include illiquidity, program trading, overvaluation and market psychology.9

For many consecutive years stock markets did not record large shocks until 1996
when the Asian financial crisis emerged. Investors were leaving emerging over-
heated Asian shares that on October 27, 1997 resulted in a mini-crash of the U.S.
markets. On August 17, 1998 the Russian government devalued the ruble, defaulted
on domestic debt and declared a moratorium on payment to foreign creditors, which
also caused an international crash. The 1996 and 1997 crashes are believed to be ex-
ogenous shocks to U.S. stock markets. The inflation of the so-called dot-com bubble
emerged in the period 1997–2000, when several internet-based companies entered
the markets and fascinated many investors confident in their future profits, while
overlooking the companies’ fundamental value. Ultimately, this resulted in a grad-
ual collapse, or bubble burst, during the years 2000–2001. The World Trade Centre
was attacked on September 11, 2001. Although markets recorded a sudden drop,
the shock was exogenous and should not be attributed to internal market forces. The
recent financial crisis of 2007–2008, also called as the global financial crisis (for a
detailed treatment, see Bartram and Bodnar (2009)), was initiated by the bursting
of the U.S. housing-market bubble. Consequently, in September and October 2008,
stock markets experienced large declines. On May 6, 2010, financial markets wit-
nessed the largest intraday drop in history known as the Flash Crash or The Crash
of 2:45. The Dow Jones Industrial Average declined by approximately 1000 points
(9%), but the loss was recovered within a few minutes. The crash was likely caused
by high-frequency trading or large directional bets.

9 For additional information on the crash, see Waldrop (1987) and Carlson (2007)
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Table 1.1: Descriptive Statistics for high-frequency and daily gold, oil and, stock (S&P 500) returns
over the sample period extending from January 2, 1987 until December 31, 2012

High-frequency data Daily data

Gold Oil Stocks Gold Oil Stocks

Mean 1.00e-06 3.19e-06 -2.46e-06 2.22e-04 2.42e-04 2.70e-04
St. dev. 0.001 0.002 0.001 0.010 0.023 0.012
Skewness -0.714 1.065 0.326 -0.147 -1.063 -0.392
Kurtosis 47.627 104.561 32.515 10.689 19.050 11.474
Minimum -0.042 -0.045 -0.024 -0.077 -0.384 -0.098
Maximum 0.023 0.163 0.037 0.103 0.136 0.107

1.4 Empirical Analysis of the relationships among Gold, Oil, and
Stocks

1.4.1 Dynamic correlations

Dynamic correlations for each pair of assets are depicted in Figs.1.2–1.4. Each fig-
ure consists of two panels that plot correlations obtained by the three methods de-
scribed in Sect.1.2. The upper panels of the figures display realized volatility-based
correlations computed on 5-minute returns for each day and daily correlations from
the parametric DCC GARCH(1,1) estimates. The lower panels depict the evolu-
tion of time–frequency correlations obtained through a wavelet decomposition of
5-minute data.10 The panel displays only four investment horizons as examples: 10
minutes, 40 minutes, 160 minutes and 1.6 days are depicted in the figures.

The correlations between asset pairs exhibit stable and similar patterns, where
majority of time the correlations are low or even negative, until 2001 between gold
and stocks, until 2004 between oil and stocks, and until 2005 between gold and oil.
After these stable years, the pattern of the correlations fundamentally changes. The
general pattern of dynamic correlations between the pairs of variables is the same re-
gardless of what method is used. Nevertheless, there are noticeable differences. Cor-
relations based on realized volatility provide very rough evidence. More contoured
correlation patterns are inferred from the DCC GARCH method. The wavelet corre-
lations illustrate the methods advantages over the two previous methods, as it allows
us to observe individual correlation patterns for a number of investment horizons,
providing time-frequency research output.11

In addition to the graphical illustration, the dynamic correlation results are sum-
marized in Tabs. 1.2-1.4. The correlations for each asset pair are presented in indi-
vidual tables containing the summarized correlations over a period of one year. The

10 For the sake of clarity in the plot, we report monthly correlations, computed on monthly price
time series.
11 While the wavelet method is superior to the other two methods in terms of dynamic correlation
analysis, we employ the other two methods as a benchmark.
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tables have two main parts: the results in the left panels are based on high-frequency
intraday data for different investment horizons ranging from 10 ( j = 1) to 80 ( j = 4)
minutes, whereas the right panels contain daily correlations with investment hori-
zons ranging from 2 to 32 days. Both panels also include a low-frequency compo-
nent (approximately one year). With the aim of supporting the results, we compute
confidence intervals around the reported point correlation estimates. The 95% confi-
dence intervals of the estimates are nearly symmetric, with maximum values ranging
from ±0.014 for the first scale j = 1 up to ±0.04 for the last scale j = 4.12 Thus,
based on the 95% confidence intervals, all reported correlation point estimates are
statistically significant.

1.4.1.1 Gold–oil

The analysis of the intraday data for the gold-oil pair reveals a short period (1990–
1991) of higher correlations, corresponding to the spike visible in Figs.1.2–1.4,
which should be associated with the economic downturn in the U.S. from July 1990
to March 1991. During the period 1992–2005, the intraday correlations are remark-
ably low at short and longer horizons; see Tab.1.2. In 2006, a significant increase
in correlation begins, reaching its maximum in 2012 at all investment horizons. In
contrast to the period 1990–1991, the recent financial crisis changed the correlation
structure of the gold and oil pair, indicating the existence of an important structural
break in the correlation structure. This result is in line with the detected structural
break on September 8, 2006 (Sect.1.4.2). Therefore, in terms of risk diversifica-
tion, the situation changed dramatically for traders active at short-term investment
horizons, as there is a significant increase in correlation after 2008 at all available
investment horizons.

Dynamic correlations based on daily data reveal a more complex pattern. From
1987 until just before the global financial crisis erupted, correlations at diverse in-
vestment horizons seem quite heterogeneous (Tab.1.2). We observe very low cor-
relations at short investment horizons measured in days, whereas at longer invest-
ment horizons of approximately one month, the correlations are higher. Beginning
in 2008, the pattern changes significantly. Markets become quite homogeneous in
perceptions of time because correlations at shorter and longer investment horizons
become less diversified. Thus, the differences between short and long investment
horizons diminish. One of the possible explanations is increased uncertainty in fi-
nancial markets and poor economic performance in many developed countries dur-
ing that period.

12 For the sake of brevity, we do not report confidence intervals for all estimates. These results are
available from the authors upon request.
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Fig. 1.2: Dynamics in gold-oil correlations. The upper plot of the panel contains the realized corre-
lation for each day of the sample and daily correlations estimated from the DCC GARCH model.
The lower plot contains time-frequency correlations based on the wavelet correlation estimates
from high-frequency data for each month separately. We report correlation dynamics at 10-minute,
40-minute, 2.66 hour (approximate), and 1.6-day (approximate) horizons depicted by the thick
black to thin black lines. The plots highlight several important recession periods in gray (described
in greater detail in the text), and crashes using black lines: (a) Black Monday; (b) the Asian crisis;
(c) the Russian ruble devaluation; (d) the dot-com bubble burst; (e) the WTC 9/11 attacks; (f) the
Lehman Brothers Holdings bankruptcy; and (g) the Flash Crash

1.4.1.2 Gold–stocks and Oil–stocks

In comparison to the gold-oil pair, the gold-stocks and oil-stocks pairs provide a
rather different picture (Tab.1.3 and Tab.1.4). During the period 1991–1992, nega-
tive correlations dominate, especially at longer horizons. The negative correlations
are quite frequent for the two pairs, but they occur more frequently for the gold-
stocks pair. Since 2001, the gold-stocks pair exhibits very rich correlation dynamics.
The period of negative correlation begins in 2001, reaching its minimum in 2003,
followed by a steady increase. After 2005, this pair exhibits significantly higher cor-
relation, except for two short periods in 2008 and 2009.13 In the 2012, we observe a
significant increase in the correlation between gold and stocks at all available scales.
There is an increase in magnitude that is three times larger relative to the previous

13 On an annual basis, there was only a small decrease in 2011, as shown in Tab. 3.
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year. This finding indicates a very limited possibility to diversify risk between stocks
and gold in 2012.

The correlations of the oil-stocks pair also increased after the recent financial
crisis began. Nevertheless, unlike the other two pairs, the correlation between oil
and stocks before the crisis was considerably lower than after the crisis. This implies
that the developments in 2008 had the strongest impact on the correlation structure
of this pair. Further, from 2008 on, this pair has the highest correlation of the three
examined pairs and highly homogeneous correlations at all scales. Therefore, after
2008 until the end of our sample, we only observe a negligible possibility for risk
diversification in the sense of various investment horizons.

Fig. 1.3: Dynamics in gold-stocks correlations. The upper plot of the panel contains the realized
correlation for each day of the sample and daily correlations estimated from the DCC GARCH
model. The lower plot contains time-frequency correlations based on the wavelet correlation es-
timates from high-frequency data for each month separately. We report correlation dynamics at
10-minute, 40-minute, 2.66 hour (approximate), and 1.6-day (approximate) horizons depicted by
the thick black to thin black lines. The plots highlight several important recession periods in gray
(described in greater detail in the text), and crashes using black lines: (a) Black Monday; (b) the
Asian crisis; (c) the Russian ruble devaluation; (d) the dot-com bubble burst; (e) the WTC 9/11
attacks; (f) the Lehman Brothers Holdings bankruptcy; and (g) the Flash Crash
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Fig. 1.4: Dynamics in oil-stocks correlations. The upper plot of the panel contains the realized
correlation for each day of the sample and daily correlations estimated from the DCC GARCH
model. The lower plot contains time-frequency correlations based on the wavelet correlation es-
timates from high-frequency data for each month separately. We report correlation dynamics at
10-minute, 40-minute, 2.66 hour (approximate), and 1.6-day (approximate) horizons depicted by
the thick black to thin black lines. The plots highlight several important recession periods in gray
(described in greater detail in the text), and crashes using black lines: (a) Black Monday; (b) the
Asian crisis; (c) the Russian ruble devaluation; (d) the dot-com bubble burst; (e) the WTC 9/11
attacks; (f) the Lehman Brothers Holdings bankruptcy; and (g) the Flash Crash

1.4.2 Risk diversification

A wavelet methodology allows us to decompose mutual dependencies into different
investment horizons; subsequently, we are able to generalize inferences related to
risk diversification. When correlations are heterogeneous in their magnitudes at var-
ious investment horizons, market participants are able to diversify risk across these
investment horizons, represented by scales. However, negligible or even no differ-
ences in correlation magnitudes at different investment horizons prevent effective
risk diversification. For our set of assets, there was room for risk diversification
until 2001; whereas problems with risk diversification arise after 2001.

Structural breaks cause important change with respect to the heterogeneity of
correlations. In our analysis, we test for structural breaks in the correlations by
employing the supF test (Hansen, 1992; Andrews, 1993; Andrews and Ploberger,
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Table 1.2: Time-frequency correlation estimates for the gold–oil pair. The high-frequency set con-
tains Wavelet correlation estimates based on high-frequency data. The daily set contains Wavelet
correlation estimates based on daily data

High-frequency data (minutes) Daily data (days)

10 20 40 80 160-y. 2 4 8 16 32 64- y.

1987 0.02 0.03 0.08 0.15 0.80 0.12 0.00 0.14 0.07 -0.13 0.77
1988 0.11 0.19 0.19 0.23 0.42 0.23 0.25 0.32 0.38 0.55 0.93
1989 0.02 0.03 0.06 0.06 0.53 0.02 0.11 0.05 0.09 0.74 -0.14
1990 0.16 0.27 0.30 0.29 0.43 0.51 0.47 0.40 0.33 0.76 0.69
1991 0.21 0.32 0.31 0.32 0.63 0.01 0.00 0.47 0.48 -0.31 -0.47
1992 0.02 0.08 0.03 0.01 -0.56 0.06 0.01 -0.18 0.25 -0.05 -0.41
1993 0.00 0.01 0.04 0.02 0.60 0.12 0.04 0.20 0.30 -0.26 -0.77
1994 0.02 0.02 0.03 0.03 -0.13 0.16 0.37 0.22 -0.09 -0.28 0.33
1995 0.01 0.00 0.03 0.07 0.05 0.23 0.17 0.07 -0.02 0.16 0.39
1996 0.01 0.02 0.00 0.04 -0.62 -0.09 -0.03 0.13 -0.34 -0.31 -0.68
1997 0.00 -0.01 0.00 0.06 0.33 0.00 -0.22 0.04 -0.13 0.09 0.57
1998 0.00 -0.02 -0.01 -0.01 0.65 0.14 0.28 0.40 0.21 0.65 0.18
1999 0.01 0.01 -0.01 0.02 -0.58 -0.02 0.12 0.31 -0.17 0.17 -0.80
2000 0.00 0.00 0.01 0.07 -0.68 0.16 0.03 0.32 -0.12 0.01 0.44
2001 0.00 0.01 0.01 0.02 -0.83 0.23 0.04 0.11 -0.25 -0.10 0.10
2002 -0.01 -0.01 0.04 0.07 0.62 0.10 0.03 -0.17 0.08 -0.64 0.86
2003 0.01 0.02 0.04 0.06 0.68 0.24 0.05 -0.08 0.12 0.47 0.54
2004 0.04 0.08 0.10 0.11 0.40 0.17 0.38 0.23 0.13 -0.58 -0.74
2005 0.01 0.07 0.09 0.11 -0.42 0.08 0.07 0.22 0.42 0.27 0.40
2006 0.11 0.17 0.30 0.35 0.74 0.37 0.53 0.47 0.58 0.57 0.92
2007 0.26 0.30 0.33 0.35 0.29 0.49 0.38 0.07 0.41 0.42 0.48
2008 0.32 0.35 0.39 0.39 0.74 0.44 0.45 0.55 0.67 0.41 0.27
2009 0.19 0.21 0.22 0.22 -0.21 0.19 0.20 0.53 -0.03 -0.12 0.45
2010 0.33 0.34 0.36 0.37 -0.30 0.29 0.35 0.48 0.57 0.07 -0.37
2011 0.26 0.27 0.31 0.29 0.22 0.20 0.18 0.20 0.37 0.62 0.72
2012 0.40 0.42 0.42 0.41 -0.36 0.37 0.40 0.63 0.43 -0.19 0.71

1994) with p-values computed based on Hansen (1997); the results are summarized
in Tab.1.5. An illustrative example of a pre-structural break period is the gold-oil
pair, with the break detected on September 8, 2006. We can observe a significant in-
crease in the overall correlation estimated by the DCC GARCH during the periods
1994–1996 and 1998–2000. The DCC GARCH estimates aggregate the correlation
over all investment horizons. However, using wavelet correlations, we obtain addi-
tional information that this increase might be caused particularly by the long-term
correlations, as the correlations at short investment horizons are close to zero. Simi-
lar patterns are observed for the gold-stocks and oil-stocks pairs, for which structural
breaks were detected on May 5, 2009 and September 26, 2008, respectively.

Thus, we observe that the correlations between asset pairs were very heteroge-
neous across investment horizons before the structural break. Conversely, after the
structural break, the correlation pattern became mostly homogeneous, which im-
plies that gold, oil and stocks could no longer be simultaneously included in a sin-
gle portfolio for risk diversification purposes. This finding contradicts the results of
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Table 1.3: Time-frequency correlation estimates for the gold–stocks pair. The high-frequency
set contains Wavelet correlation estimates based on high-frequency data. The daily set contains
Wavelet correlation estimates based on daily data

High-frequency data (minutes) Daily data (days)

10 20 40 80 160-y. 2 4 8 16 32 64- y.

1987 0.05 -0.04 -0.11 -0.22 -0.54 -0.22 -0.22 -0.24 -0.39 -0.58 0.64
1988 -0.02 -0.05 -0.14 -0.22 -0.21 -0.25 0.08 -0.06 -0.17 -0.12 -0.54
1989 -0.03 -0.11 -0.19 -0.15 -0.59 0.03 -0.26 -0.23 0.06 -0.67 -0.92
1990 -0.04 -0.15 -0.20 -0.25 -0.77 -0.32 -0.33 -0.28 -0.10 -0.36 -0.84
1991 -0.01 -0.07 -0.10 -0.09 -0.55 -0.16 -0.14 0.11 0.18 0.14 -0.59
1992 -0.03 -0.04 -0.03 -0.10 0.52 0.01 -0.01 -0.21 -0.28 0.37 0.21
1993 -0.02 -0.06 -0.10 -0.13 0.49 -0.24 -0.15 -0.23 0.03 -0.12 0.43
1994 -0.02 -0.10 -0.17 -0.21 0.41 -0.26 -0.18 0.05 0.00 0.38 0.31
1995 -0.01 -0.04 0.01 -0.04 -0.37 -0.17 -0.06 -0.02 0.01 -0.39 0.71
1996 -0.04 -0.12 -0.08 -0.13 -0.26 -0.20 -0.27 -0.24 0.47 0.57 -0.77
1997 -0.03 -0.06 -0.07 -0.11 -0.49 -0.15 -0.17 -0.26 -0.05 0.03 -0.93
1998 -0.05 -0.07 -0.13 -0.11 0.80 -0.03 0.17 0.28 -0.05 0.49 0.43
1999 -0.01 -0.01 -0.04 0.01 0.54 -0.03 0.10 0.05 0.15 0.45 -0.75
2000 -0.03 -0.07 -0.10 -0.20 0.54 -0.03 0.00 0.24 0.32 -0.25 -0.80
2001 -0.01 -0.01 0.00 0.01 -0.49 -0.24 -0.11 0.07 0.04 0.16 0.43
2002 -0.27 -0.34 -0.38 -0.37 -0.58 -0.21 -0.24 -0.37 -0.28 -0.34 -0.66
2003 -0.26 -0.35 -0.38 -0.42 0.46 -0.42 -0.12 -0.07 -0.51 -0.49 0.18
2004 -0.07 -0.09 -0.08 -0.09 0.65 0.03 0.14 0.38 0.14 0.17 0.29
2005 -0.02 -0.02 0.02 0.00 0.08 -0.08 0.11 0.09 -0.02 0.40 0.13
2006 0.05 0.11 0.17 0.20 0.30 0.10 -0.01 0.20 0.34 0.65 0.16
2007 0.20 0.26 0.29 0.27 -0.18 0.39 0.28 0.42 0.42 0.85 0.39
2008 0.11 0.14 0.10 0.09 0.87 -0.03 -0.16 -0.09 -0.16 -0.68 -0.89
2009 0.14 0.13 0.15 0.17 -0.17 0.01 -0.05 0.28 0.31 -0.05 -0.38
2010 0.25 0.25 0.28 0.29 0.06 0.14 0.29 0.46 0.38 -0.08 -0.20
2011 0.13 0.14 0.18 0.13 -0.40 -0.17 -0.18 -0.08 -0.04 0.20 0.49
2012 0.40 0.39 0.37 0.38 0.67 0.42 0.26 0.62 0.58 0.06 0.05

Baur and Lucey (2010), who find gold to be a good hedge against stocks and there-
fore a safe haven during financial market turmoil. However, our result is in line with
the argument of Bartram and Bodnar (2009) that diversification provided little help
for investors during the financial crisis.

The change in the correlation structure described above can also be attributed
to changes in investors’ beliefs,14 which become mostly homogeneous across in-
vestment horizons after the structural break. The homogeneity can be partially in-
duced by broader uncertainty regarding financial markets pricing fundamentals.15

Investors tendency to favor more aggressive strategies may be one of the reasons
that we observe increased homogeneity in the correlations across investment hori-

14 Additional information on the role of investors’ beliefs can be found in Ben-David and Hirsh-
leifer (2012).
15 Connolly et al (2007) study the importance of time-varying uncertainty on asset correlation that
subsequently influences the availability of diversification benefits.



20 Jozef Barunı́k and Evžen Kočenda and Lukas Vacha

Table 1.4: Time-frequency correlation estimates for the oil–stocks pair. The high-frequency set
contains Wavelet correlation estimates based on high-frequency data. The daily set contains
Wavelet correlation estimates based on daily data

High-frequency data (minutes) Daily data (days)

10 20 40 80 160-y. 2 4 8 16 32 64- y.

1987 0.03 0.01 0.05 0.04 -0.64 -0.11 0.21 -0.07 -0.09 -0.03 0.66
1988 0.03 -0.03 -0.05 -0.11 0.30 -0.06 0.13 -0.09 -0.15 -0.30 -0.74
1989 0.01 0.00 0.03 -0.02 0.13 -0.08 0.12 -0.06 -0.10 -0.74 0.06
1990 -0.02 -0.12 -0.18 -0.20 -0.54 -0.38 -0.46 -0.62 -0.25 0.04 -0.84
1991 -0.04 -0.10 -0.17 -0.19 -0.49 -0.06 -0.06 0.38 0.34 -0.51 0.58
1992 0.03 0.01 0.04 -0.02 -0.51 0.08 0.04 0.20 -0.20 -0.52 0.50
1993 0.00 0.00 -0.01 -0.02 0.73 -0.05 -0.11 0.24 0.42 0.10 -0.63
1994 0.00 0.01 -0.03 -0.04 -0.77 -0.23 -0.05 0.01 0.13 -0.47 -0.58
1995 -0.02 0.01 0.02 0.00 -0.47 -0.05 0.04 0.06 0.37 -0.14 -0.20
1996 0.00 0.00 0.00 -0.03 -0.02 -0.02 0.05 -0.18 -0.15 -0.38 0.56
1997 0.00 0.00 0.07 0.08 -0.61 -0.15 0.00 0.02 0.08 0.19 -0.50
1998 0.00 -0.02 0.02 0.02 0.64 0.04 0.13 0.15 0.21 0.52 -0.79
1999 -0.01 0.02 0.03 0.00 -0.94 -0.03 0.01 0.09 0.17 0.73 0.99
2000 0.02 -0.01 -0.02 -0.05 -0.18 -0.11 -0.09 0.07 -0.11 -0.53 -0.24
2001 0.01 0.04 0.03 -0.05 0.51 -0.12 -0.04 0.08 0.03 0.84 0.81
2002 -0.01 -0.01 -0.02 -0.03 -0.70 0.17 0.19 0.41 0.24 0.36 -0.53
2003 -0.01 -0.03 -0.04 -0.05 0.57 -0.24 0.08 -0.49 -0.36 -0.58 -0.54
2004 -0.07 -0.15 -0.18 -0.25 0.13 -0.13 0.01 0.05 -0.08 -0.68 -0.71
2005 -0.16 -0.19 -0.17 -0.18 0.00 -0.09 0.14 0.04 -0.46 -0.20 0.32
2006 0.04 0.07 0.09 0.10 -0.08 0.07 0.07 0.08 0.24 0.46 -0.12
2007 0.09 0.13 0.13 0.12 -0.63 0.17 0.07 -0.04 0.04 0.18 0.74
2008 0.26 0.27 0.31 0.33 0.70 0.42 0.32 0.09 0.05 0.12 -0.47
2009 0.42 0.46 0.48 0.50 0.92 0.53 0.28 0.61 0.10 -0.05 0.51
2010 0.57 0.59 0.58 0.62 0.69 0.70 0.71 0.51 0.58 0.91 0.86
2011 0.50 0.53 0.53 0.56 0.32 0.53 0.57 0.62 0.53 -0.03 0.74
2012 0.49 0.48 0.47 0.46 0.26 0.52 0.54 0.74 0.53 0.12 0.30

zons. Furthermore, the homogeneity in correlations may have been increased by the
introduction of completely electronic trading on exchange platforms in 2005, which
was accompanied by an increased volume of automatic trading.

Table 1.5: Values of the supF test with corresponding p-values. The break dates dividing the period
into pre-break and post-break. The full period covers January 2, 1987 to December 31, 2012

gold–oil gold–stocks oil –stocks

Date of the break September 8, 2006 May 5, 2009 September 26, 2008
supF 3390.3 2544.3 7284.9
p-value < 2.2e-16 < 1.1e-16 < 2.2e-16
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1.5 Conclusions

In this chapter, we study dynamic co-movements among key traded assets by em-
ploying the realized volatility and DCC GARCH approaches as a benchmark and
the wavelet methodology, a novel time-frequency approach. In terms of the dynamic
method, the wavelet-based correlation analysis enables us to analyze co-movements
among assets, not only from a time series perspective, but also from the investment
horizon perspective. Thus, we are able to provide unique evidence on how correla-
tions among major assets vary over time and at different investment horizons. We
analyze dynamic correlations in the prices of gold, oil, and a broad U.S. stock mar-
ket index, the S&P 500, over 26 years from January 2, 1987 until December 31,
2012. The analysis is performed on both intra-day and daily data.

Our findings suggest that the wavelet analysis outperforms the standard bench-
mark approaches. Further, it offers a crucial message based on the evidence of very
different patterns in linkages among assets over time. During the period before the
pairs of assets suffered from structural breaks, our results revealed very low, even
negative, but heterogeneous correlations for all pairs. After the breaks, the correla-
tions for all pairs increased on average, but their magnitudes exhibited large pos-
itive and negative swings. Surprisingly, despite this strongly varying behavior, the
correlations between pairs of assets became homogeneous and did not differ across
distinct investment horizons. A strong implication emerges. Prior to the structural
break, it was possible to use all three assets in a well-diversified portfolio. How-
ever, after the structural changes occurred, gold, oil, and stocks could not be used in
conjunction for risk diversification purposes during the post-break period studied.
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Appendix

1.6 Wavelet variance

The variance of a time series can be decomposed into its frequency components,
which are called scales in the wavelet methodology. Using wavelets, we can identify
the portion of variance attributable to a specific frequency band of the examined
time series. In this section, we demonstrate how to estimate wavelet variance and
demonstrate that the summation of all of the components of wavelet variance yields
the variance of the time series.

Let us suppose a real-valued stochastic process xi, i= 1, . . . ,N, whose L
2 th back-

ward difference is a covariance stationary stochastic process with mean zero. Then,
the sequence of the MODWT wavelet coefficients Wx( j,s), unaffected by the bound-
ary conditions, for all scales j = 1,2, . . . ,Jm is also a stationary process with mean
zero. As we use the least asymmetric wavelet of length L = 8, we can expect sta-
tionarity of the MODWT wavelet coefficients. Following Percival (1995), we define
the wavelet variance at scale j as the variance of wavelet coefficients at scale j as:

νx( j)2=var (Wx( j,s)) . (1.15)

For coefficients unaffected by the boundary conditions, which are defined for each
scale separately M j=N−L j+1 > 0, the unbiased estimator of wavelet variance at
scale j reads:

νx( j)2=
1

M j

N−1

∑
s=L j−1

Wx( j,s)2. (1.16)
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As the variance of a covariance stationary process xi is equal to the integral of the
spectral density function Sx(.), the wavelet variance at a scale j is the variance of
the wavelet coefficients Wx( j,s) with spectral density function Sx( j)(.):

νx( j)2=
∫ 1/2

−1/2
Sx( j)( f )d f=

∫ 1/2

−1/2
H j( f )Sx( j)( f )d f , (1.17)

where H j( f ) is the squared gain function of the wavelet filter h j (Percival and
Walden, 2000). As the variance of a process xi is the sum of the contributions of the
wavelet variances at all scales we can write:

var(x) =
∞

∑
j=1

νx( j)2. (1.18)

In case we have only a finite number of scales, we have to add also variance of the
scaling coefficients vector; thus we can write:

var(x) =
∫ 1/2

−1/2
Sx( f )d f=

Jm

∑
j=1

νx( j)2+var (Vx(Jm,s)) . (1.19)

1.7 Wavelet covariance

The wavelet covariance of two processes xt and yt is estimated in a similar manner
as the wavelet variance. As a first step, we perform the MODWT to obtain vectors
of wavelet and scaling coefficients at all scales j = 1,2, . . . ,Jm. While we use the
LA(8) wavelet with length L = 8, we can use non-stationary processes, which are
stationary after the d-th difference, where d ≤ L/2. The wavelet covariance of xt
and yt at scale j is defined as:

γxy( j) =Cov(Wx( j,s),Wy( j,s)) . (1.20)

Taking into consideration the MODWT wavelet coefficients unaffected by boundary
conditions denoted M j = N−L j +1 > 0, then for processes xt and yt defined above,
the estimator of the wavelet covariance at a scale j is defined as

γ̂xy( j) =
1

M j

N−1

∑
s=L j−1

Wx( j,s)Wy( j,s), (1.21)

When processes xt and yt are Gaussian, the MODWT estimator of wavelet covari-
ance is unbiased and asymptotically normally distributed (Whitcher et al, 1999).
When we have an infinite time series, the number of available scales goes to in-
finity, Jm → ∞, then the sum of all available wavelet covariances γxy ( j) yields the
covariance of xt and yt :
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Cov(xt ,yt)=
∞

∑
j=1

γxy( j). (1.22)

For a finite real time series, the number of scales is limited by Jm ≤ log2(T ), the
covariance of xt and yt is a sum of covariances of the MODWT wavelet coeffi-
cients γxy( j) at all scales j= 1,2, . . . ,Jm and the covariance of the scaling coefficients
Vx(J,s) at scale Jm:

Cov(xt ,yt)=Cov(Vx(Jm,s), Vy(Jm,s))+
Jm

∑
j=1

γxy( j). (1.23)

1.8 MODWT wavelet filters

Let us introduce the MODWT scaling and wavelet filters gl and hl , l= 0,1, . . . ,L−1,
where L denotes the length of the wavelet filter. For example, the Least Asymmetric
(LA8) wavelet filter has length L= 8 (Daubechies, 1992). Generally, the scaling
filter is a low-pass filter whereas the wavelet filter is a high-pass filter. There are
three basic properties that both MODWT filters must satisfy. Let us describe these
properties for the MODWT wavelet filter

L−1

∑
l=0

hl= 0,
L−1

∑
l=0

h2
l = 1/2,

∞

∑
l=−∞

hlhl+2N= 0, N ∈ ZN (1.24)

and for the MODWT scaling filter

L−1

∑
l=0

gl= 1,
L−1

∑
l=0

g2
l = 1/2,

∞

∑
l=−∞

glgl+2N= 0, N ∈ ZN . (1.25)

The transfer function of a MODWT filter {hl} at frequency f is defined via the
Fourier transform as

H( f ) =
∞

∑
l=−∞

hle−i2π f l=
L−1

∑
l=0

hle−i2π f l (1.26)

with the squared gain function defined as: H ( f ) = |H( f )|2.


