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Influence of short sales and margin requirements 
on portfolio efficiency - a DEA-risk approach 
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Abstract 

We focus on efficiency of assets and portfolios available to investors on financial markets. We 

employ diversification consistent DEA-risk models with CVaR deviations as the inputs and 

expected rate of return as the output. Moreover, we allow short selling and take into account 

margin requirements. Our model is then employed in an empirical study where selected assets 

from US stock market are investigated. The sample approximation technique is used to deal 

with the multivariate skew-normal distribution of random returns.  
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1. Introduction 

Data Envelopment Analysis (DEA) was introduced by Charnes et al. (1978) as a tool for 

accessing efficiency of homogeneous decision-making (production) units, which consume 

multiple inputs and produce several outputs, cf. Cooper et al. (2011). In general, 

characteristics with lower values preferred to higher are considered as the inputs, whereas 

characteristics with preferred higher values are used as the outputs. Murthi et al. (1997) found 

an analogy in finance and considered mutual funds as the decision making units. Risk 

measures (standard deviation), expense ratio and loadings were considered as the inputs, 

whereas gross return was used as the output.  

The traditional DEA models were extended to take into account dependencies between 

considered investment opportunities leading to the class of diversification-consistent (DC) 

DEA models. The first DC DEA model was proposed by Briec et al. (2004) under 

Markowitz’s (1952) mean-variance framework. The model was extended by considering the 

skewness as an additional input, see Briec et al. (2007), Joro and Na (2006). Recently, Lamb 

and Tee (2012) introduced a general class of diversification-consistent models where arbitrary 

number of coherent risk measures can be used as the inputs and several return measures serve 

as the outputs. The models were further extended by Branda (2013a, 2013b) to take into 

account various concept from multiobjective optimization and various choices of the set of 

investment opportunities including limited diversification. Branda and Kopa (2012, 2014) 

investigated relations between DEA models and stochastic dominance efficiency tests. 

Most of the studies considered the case where short sales are not allowed or are allowed, 

however without taking into account the margin requirements. Recently, the margin 

requirements were taken into consideration by Ding et al. (2014), who worked with the mean-

variance efficiency. We continue in this direction and formulate a DC DEA-risk model with 
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CVaR deviations, short sales and margin requirements. The model leads to a large scale linear 

programming problem under the assumption that the random asset returns have a finite 

discrete distribution. However, in the numerical study we employ the multivariate skew-

normal distribution, cf. Azzalini and Dalla Valle (1996). To solve the DEA models, we use 

the sample approximation technique where simulated samples are used to approximate the 

true distribution by a discrete one. The final scores are then based on several samples. 

Moreover, we discuss the stability of ranking. 

This paper is organized as follows. In Section 2, we propose the basic notation and discuss 

the choice of the set of available investment opportunities. Moreover, we define the deviation 

measure based on the conditional value at risk. In Section 3, we propose diversification-

consistent DEA-risk model and its linear programming distribution for discretely distributed 

returns. The DEA model is then employed in Section 4 to access efficiency of selected assets 

from US stock market. Section 5 concludes the paper. 

2. Preliminaries and notation 

We consider n assets with random rates of return Ri, i=1, …,n, with finite mean value. The 

most traditional choice of set of investment opportunities, where we enable to combine the 

assets into a portfolio which is composed exclusively from the considered assets and do not 

enable short sales, is as follows: 
 

ℛ = {∑ 𝑅𝑖𝑥𝑖  

𝑛

𝑖=1

∶ ∑ 𝑥𝑖 = 1,

𝑛

𝑖=1

 𝑥𝑖  ≥ 0 }. 

If short sales are allowed (SSA), then the set simplifies to 

ℛ𝑆𝑆𝐴 = {∑ 𝑅𝑖𝑥𝑖  

𝑛

𝑖=1

∶ ∑ 𝑥𝑖 = 1 

𝑛

𝑖=1

}. 

However, we will consider the following set of investment opportunities where short sales are 

allowed with margin requirements (MR): 

ℛ𝑀𝑅 = {
∑ 𝑅𝑖𝑥𝑖 + (1 − ∑ 𝑥𝑖

𝑛

𝑖=1

)  𝑟

𝑛

𝑖=1

∶ 1 − ∑ 𝑥𝑖 + 𝛾 ∑ 𝑥𝑖
+ ≥ 𝛽

𝑛

𝑖=1

∑ 𝑥𝑖
−

𝑛

𝑖=1

𝑛

𝑖=1

,

𝑥𝑖 = 𝑥𝑖
+ − 𝑥𝑖

−,  𝑥𝑖
+, 𝑥𝑖

− ≥ 0

}, 

 

where 𝛽 ≥ 1 denotes the margin requirement level on short position for risky assets and 

𝛾 ≥ 0 the nonnegative discount rate for the long position of the owned risky assets. If 𝛼 is set 

to zero, then only cash can be used for margins. Moreover, the cash invested over budget has 

to be borrowed for interest rate 𝑟 or the remaining not-invested cash can be deposit for the 

same rate. Similar set of investment opportunities was considered by Ding et al. (2014) under 

Markowitz’s (1952) mean-variance framework. 

A general deviation measure derived from the conditional value at risk can be defined 

using the following minimization formula, cf. Rockafellar et al. (2006): 

 

𝐶𝑉𝑎𝑅𝑑𝑒𝑣𝛼(𝑅) = min
𝜂

1

1 − 𝛼
𝔼 [max{(1 − 𝛼)(𝑅 − 𝜂), 𝛼(𝜂 − 𝑅)}], 

 

for an investment opportunity represented by a random rate of return R with finite mean value 

and for level 𝛼 ∈ (0,1). The measure is called CVaR deviation or a deviation from 𝛼-quantile, 

see also Ogryczak and Ruszczynski (2002). 
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3. DEA-risk model with margin requirements 

In this section, we propose a new diversification consistent DEA-risk model where K 

CVaR deviations on different levels 𝛼𝑘 are used as the inputs and the expected return as the 

only output. In general, the model can be written as: 

 

min
𝜃,𝑅

𝜃 

𝔼[𝑅] ≥ 𝔼[𝑅0], 
𝐶𝑉𝑎𝑅𝑑𝑒𝑣𝛼𝑘

(𝑅) ≤ 𝜃 ∙ 𝐶𝑉𝑎𝑅𝑑𝑒𝑣𝛼𝑘
(𝑅0), 𝑘 = 1, … , 𝐾, 

𝑅 ∈  ℛ𝑀𝑅 . 
 

We say that investment opportunity 𝑅0 is efficient if and only if the optimal value is equal to 

one, otherwise it is inefficient. The model enables full diversification and short sales due to 

the choice of the set of available investment opportunities ℛ𝑀𝑅. 

Under a discrete distribution of the returns with S  equiprobable realizations 𝑟𝑖,𝑠, the model 

can be reformulated as a (large) linear programming problem: 

 

min
𝜃,𝑥𝑖,𝑢𝑠,𝑘,𝜂𝑘,𝑦𝑠,𝑘,𝑧𝑠,𝑘
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𝑆
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≥
1

𝑆
∑ 𝑟0,𝑠 − 𝑟

𝑆

𝑠=1

, 

1

𝑆
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𝑛

𝑖=1

𝑟𝑖,𝑠) ≤ 𝑢𝑠,𝑘 , 𝑘 = 1, … , 𝐾, 𝑠 = 1, … , 𝑆, 

∑ 𝑦𝑠,𝑘

𝑆

𝑠=1

−
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𝑛
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+, 𝑥𝑖
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The first constraint corresponds to the expected returns, whereas the next six groups of 

constraints express the relation between CVaR deviations. Note that the CVaR deviations for 

benchmark 𝑅0 are substituted by their dual expressions using nonnegative variables 𝑦𝑠,𝑘, 𝑧𝑠,𝑘, 

see Branda (2014) for details. Auxiliary nonnegative variables 𝑢𝑗,𝑠 are used to model the 

maximum in the definition of CVaR deviations. Below, we consider 𝐾 = 4 inputs with the 

levels 𝛼𝑘 ∈ {0.75, 0.9, 0.95, 0.99}. The last two constraints define the set of investment 

opportunities. 
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4. Empirical study 

In this section, we employ the proposed diversification-consistent DEA model together with 

the sample approximation technique, see Shapiro et al. (2009) for a general introduction, to 

access efficiency of selected US assets observed monthly from January 2009 to December 

2013. The historical prices were available through the function FinancialData in Wolfram 

Mathematica 9. We consider Boeing (BA), Coca-Cola (KO), JPMorgan Chase (JPM), Oracle 

(ORCL), Microsoft (MSFT), Nike (NKE), Intel (INTC), Apple (AAPL). We employ the 

multivariate skew-normal distribution to model the asset returns, see Azzalini and Dalla Valle 

(1996) for details. The parameters of the returns distribution were estimated using the R 

packages sn and fAssets. The same packages were also used to simulate the Monte-Carlo 

samples. To test performance of the sample approximation technique, 100 independent 

samples of 1000 return realizations are used. 

The modelling system GAMS and the solver CPlex were used to solve the optimization 

problems. The results of the DEA models can be found in Tables 1-4. Tables 1 and 3 show 

basic descriptive statistics and 95% confidence intervals of the resulting efficiency scores 

based on the samples for different values of the discount rate γ. In the first case (γ = 0), no 

discount of risky investments is possible, thus short sales have to be fully guaranteed by cash. 

In the second case (γ = 0,5), fifty percent of the value of the risky assets can be used to cover 

the margin requirements. Note that the resulting ranking is based on the mean scores and does 

not change with different γ. The stability of the ranking can be verified from Tables 2 a 4, 

which show counts of differences in ranking based on the considered samples compared with 

the ranking based on the mean score. The only efficient asset - Apple - is classified as 

efficient based on all samples. Also the ranking of the first inefficient asset - Nike - is quite 

stable and the asset was not ranked as second for 9 samples only. The misclassification for the 

other assets does not exceed one rank in most cases. 
 

 

Table 1: Descriptive statistics of efficiency scores (discount rate 𝛾 = 0) 

  BA KO JPM ORCL MSFT NKE INTC AAPL 

Mean 0,563 0,507 0,398 0,428 0,489 0,681 0,533 1,000 

Ranking 3 5 8 7 6 2 4 1 

St.dev. 0,051 0,063 0,069 0,064 0,067 0,061 0,061 0,000 

Minimum 0,413 0,347 0,245 0,270 0,318 0,508 0,381 1,000 

Maximum 0,679 0,674 0,570 0,622 0,692 0,819 0,766 1,000 

Conf. int. Lb 0,573 0,520 0,412 0,441 0,502 0,693 0,545 1,000 

Conf. int. Ub 0,553 0,495 0,385 0,416 0,476 0,669 0,521 1,000 

 

 

Table 2: Differences in ranking (discount rate 𝛾 = 0) 

Difference BA KO JPM ORCL MSFT NKE INTC AAPL 

4 0 0 2 0 2 0 0 0 

3 0 3 0 0 5 0 0 0 

2 0 14 7 10 13 0 2 0 

1 2 21 28 20 29 0 23 0 

0 52 21 63 41 39 91 31 100 

-1 31 18 0 29 9 6 27 0 

-2 12 18 0 0 3 2 13 0 

-3 3 5 0 0 0 1 4 0 
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Table 3: Descriptive statistics of efficiency scores (discount rate 𝛾 = 0,5) 

  BA KO JPM ORCL MSFT NKE INTC AAPL 

Mean 0,559 0,507 0,398 0,428 0,489 0,672 0,533 0,873 

Ranking 3 5 8 7 6 2 4 1 

St.dev. 0,049 0,063 0,069 0,064 0,067 0,057 0,061 0,038 

Minimum 0,413 0,347 0,245 0,270 0,318 0,507 0,381 0,789 

Maximum 0,676 0,674 0,569 0,615 0,690 0,811 0,764 0,975 

Conf. int. Lb 0,569 0,520 0,411 0,441 0,502 0,683 0,545 0,881 

Conf. int. Ub 0,550 0,495 0,384 0,416 0,476 0,661 0,521 0,866 

 

 

Table 4: Differences in ranking (discount rate 𝛾 = 0,5) 

Difference BA KO JPM ORCL MSFT NKE INTC AAPL 

-4 0 0 2 0 2 0 0 0 

-3 0 3 0 0 5 0 0 0 

-2 0 16 7 10 13 0 2 0 

-1 2 19 28 20 29 0 24 0 

0 49 21 63 41 39 91 31 100 

1 33 18 0 29 9 6 26 0 

2 13 18 0 0 3 2 13 0 

3 3 5 0 0 0 1 4 0 

 

5. Conclusion 

In this paper, we have formulated a new diversification-consistent DEA-risk model based 

on CVaR deviations. The set of available investment opportunities allows short selling and 

takes into account the margin requirements. We have employed the proposed DEA model to 

access efficiency of selected assets from US stock market. Using the sample approximation 

technique, we have verified the stability of the efficiency classification and of the assets 

ranking. 
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