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Abstract. In this paper we are concentrated on a problem of linear chance-
constrained programming where the constraint matrix is considered random
with a known distribution of the matrix rows. The rows are not considered
to be independent; instead, we make use of the copula notion to describe the
dependence of the matrix rows. In particular, the distribution of the rows is
driven by so-called Archimedean class of copulas. We provide a review of very
basic properties of Archimedean copulas and describe how they can be used to
transform the stochastic programming problem into a deterministic problem of
second-order cone programming. Also the question of convexity of the problem
is explored and importance of the selected class of copulas is commented. At
the end of the paper, we provide a simple example to illustrate the concept
used.
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1 Introduction

In many economic decision problems we are faced to the problem how to deal with uncertainty of the
data. In this contribution we introduce an extension to the probabilistic programming approach based
on the description of probabilistic properties of the data through the notion of copulas.

1.1 Problem Formulation

Consider an uncertain linear optimization problem in the form

min cTx subject to Ξx ≤ h, x ∈ X (1)

where Ξ ⊂ R
n is a deterministic closed convex set, c ∈ R

n, h = (h1, . . . , hK) ∈ R
K are deterministic

vectors, and Ξ ∈ R
K × R

n is an uncertain (unknown) matrix. We denote ΞT
1 , . . . ,Ξ

T
K the rows of the

matrix Ξ. It is easy to see that if X is polyhedral, and a realization of the data element Ξ is known in
advance, (1) is an instance of the classical linear optimization problem. As already G. Dantzig noticed
in his early work [4], this is rarely the case. Instead, we have to consider uncertainty of the data as a
natural element of the optimization model.

Several approaches can be drawn to deal with uncertainty of the data. Among well known ones we
cite (ex-post) sensitivity analysis of the linear programming, parametric programming (in which data
element is considered to be parameter), or robust approach (the constraints of the problem are required
to be satisfied for all realizations from some predefined uncertainty set). In our paper, we concentrate on
the stochastic programming approach: we suppose that Ξ is a random vector with a known distribution,
and the constraints are required to be satisfied with a prescribed, sufficiently high probability. More
specifically, for a fixed p ∈ [0; 1], we consider a chance-constrained linear optimization problem of the
form

min cTx subject to Pr{Ξx ≤ h} ≥ p, x ∈ X. (2)
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For easier referencing, we drop the deterministic constraint x ∈ X from our future consideration (without
losing the generality of our conclusions), and denote the feasible set of problem (2) as

X(p) :=
{

x ∈ R
n | Pr{Ξx ≤ h} ≥ p

}

. (3)

Chance-constrained programming problems were treated many times in the literature, starting with
the work [2], and summarized by the classical book [14] and recent chapters [15] and [5]. It were realized
that problem (2), especially in the presented form with random data matrix, is not easy to analyze—
from the theoretical as well as from the practical point of view. It is worth to declare that two main
difficulties were revealed: first, even with its inner linear structure, the feasible set X(p) has not to be
convex; and second, the presence of multidimensional integrals prevents the probability in (2) to be easily
calculated. We concentrate on the first issue here. Convexity of the set X(p) was treated several times
in the literature; apart from mentioned references we mention recent results by [6], [7], and [16]. In our
paper, we will use an approach developed by [11] and provide conditions under which the problem happen
to be convex, together with a simple application illustrating the concept used.

2 Dependence—Notion of Copulas

Convexity results mentioned shortly in the introduction of the paper (except the last one) are based on
the assumption of row independence, that is, the random vectors ΞT

1 , . . . ,Ξ
T
K are supposed to be pairwise

independent. Although it can be seen as an obstacle, we have a handy tool to generalize this assumption:
a copula notion. This is well known from the field of probability theory and mathematical statistics
but rarely used in stochastic optimization, especially it was not used to describe structural properties
of chance-constrained problems. Apart of already mentioned reference we can cite [8] and [1] but these
works do not directly concern the problem of the form (2). In this section we provide necessary definitions
and theorems needed to describe dependence properties of problem (2); we refer the reader to the book
[13] for details.

Definition 1. A copula is the distribution function C : [0; 1]K → [0; 1] of some K-dimensional random
vector whose marginals are uniformly distributed on [0;1].

It is Sklar’s Theorem (given below) that justifies usefulness of copula notion to describe dependence
properties of a problem. Before stating it, we recall the definition of quantile function which plays a
fundamental role in the sequel of the paper.

Definition 2. Given a one-dimensional distribution function F : R → [0; 1], its quantile function is
defined as

F (−1)(π) := inf{t ∈ R | F (t) ≥ π}.
Proposition 1 (Sklar’s Theorem). For any K-dimensional distribution function F : RK → [0; 1] with
marginals F1, . . . , FK , there exists a copula C such that

∀z ∈ R
K F (z) = C(F1(z1), . . . , FK(zK)). (4)

If, moreover, Fk are continuous, then C is uniquely given by

C(u) = F (F−1
1 (u1), . . . , F

−1
K (uK)). (5)

Otherwise, C is uniquely determined on rangeF1 × · · · × rangeFK .

Through Sklar’s Theorem, an arbitrary dependence structure can be described by an appropriately
chosen (unique) copula. A leading example is so-called independent (product) copula

CΠ(u) =
∏

k

uk (6)

providing us the well known independence formula for distributions functions— if the marginals F1, . . . , FK

are independent then their joint distribution function F is given by

F (z) = CΠ

(

F1(z1), . . . , FK(zK)
)

=
K
∏

k=1

Fk(zk).
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Figure 1 Independent copula: distribution, density, and density with standard normal marginals.

For reader convenience we provide a graphical representation of the independence copula in Figure 1.
The third graph of the figure is the well-known two-dimensional density of the normal distribution with
independent marginals. The contours of this density are in form of “regular” ellipsoids (circles in this
special case).

To an easy treatment of problem (2) we need an algebraically convenient class of copulas. This is
provided by the Archimedean copulas.

Definition 3. A copula C is called Archimedean if there exists a continuous strictly decreasing function
ψ : [0; 1]→ [0; +∞], called generator of C, such that ψ(1) = 0 and

C(u) = ψ(−1)

(

n
∑

i=1

ψ(ui)

)

. (7)

If limt→0 ψ(t) = +∞ then C is called a strict Archimedean copula and ψ is called a strict generator.

A necessary and sufficient condition for a continuous, strictly decreasing function to be an Archimedean
generator is not easy task and was provided by [12]. We need only a sufficient condition for strict
Archimedean generators.

Definition 4. A real function f : R→ R is called completely monotonic on an open interval I ⊆ R if it
is nondecreasing, differentiable for each order k, and its derivatives alternate in sign, i. e.

(−1)k dk

dtk
f(t) ≥ 0 ∀k = 0, 1, . . . , and ∀t ∈ I. (8)

Proposition 2. Let ψ : [0; 1] → R+ be a strictly decreasing function with ψ(1) = 0 and limt→0 ψ(t) =
+∞. Then it is a generator of a strict Archimedean copula for each dimension K ≥ 2 if and only if ψ(−1)

is completely monotonic on (0;+∞).

It is easy to see that the independent copula is Archimedean with the strict generator ψ(t) = − ln t.
Another popular example of an Archimedean copula is the Gumbel–Hougaard copula defined by ψ(t) =
(− ln t)θ where θ ≥ 1 can be seen as a parameter of the dependence. The Gumbel–Hougaard copula is
presented in Figure 2. Compared to the independent case, the density (the third subfigure) is “pointed”
and the ellipsoidal contours of the independent copula take form of drops. For other illustrations of
Archimedean copulas (Clayton, Joe) see [11]; an exhaustive listing of 22 families of Archimedean copulas
treated by the literature is given by Table 4.1 in [13].

3 Convex Reformulation

The Archimedean copulas can be used for an equivalent convex reformulation of the feasible set X(p).

Theorem 3 ([11], Theorem 3.1). Suppose, in (3), that the rows ΞT
k have n-variate normal distribution

with means µk and positive definite covariance matrices Σk. Then the feasible set of problem (2) can be



x
0

y

0.2

0.4

0.6

0.8
1
0

0.2

0.8

0.6

0.4

1

z

0 0.2 0.4 0.6 0.8 1

x

10
0.2

0.4
0.6

0.8

0

5

10

15

1

0.8
0.6

y

0.4

0.2

z

0

x

y

0

z

1

0.05

0
-1

2

0.1

0.15

3

0.2

-2
3-3

2

1

-3

-2

-1

0

Figure 2 Gumbel-Hougaard copula (θ = 1.6): distribution, density, and density with standard normal
marginals.

equivalently written as

X(p) =
{

x | ∃yk ≥ 0 :
∑

k

yk = 1, µk
Tx+Φ(−1)

(

ψ(−1)(ykψ(p))
)

√

xTΣkx ≤ hk ∀k
}

(9)

where Φ is the distribution function of a standard normal distribution and ψ is the generator of an
Archimedean copula describing the dependence properties of the rows of the matrix Ξ. Moreover, if ψ(−1)

is completely monotonic, and p > p∗ := Φ
(

max{
√
3, 4λ

(k)
max[λ

(k)
min]

−3/2‖µk‖}
)

, where λ
(k)
max, λ

(k)
min are the

largest and lowest eigenvalues of the matrices Σk, then the problem is convex.

Proof. See [10]. The threshold p∗ was provided for independent case by [7] using properties of r-concave
functions (see also [9]) but it have not to be changed under our dependency assumptions.

Theorem 3 offers a way to replace multidimensional integral in (3) by a set of one-dimensional (sep-
arable) constraints of the form (9). Reference [11] (based on the work [3]) also provides a numerical
approximation of (9) by two second-order cone programming (SOCP) problems, using the fact that the
function y 7→ H(y) := Φ(−1)

(

ψ(−1)(ykψ(p))
)

is convex. For example, a piecewise-convex approximation
of this functions leads to the following SOCP problem giving a lower bound for the optimal value of the
original probabilistic problem

min cTx subject to

µk
Tx+

√

zkTΣkzk ≤ hk, z
k ≥ akjx+ bkjw

k (∀k, ∀j)
∑

k

wk = x, wk ≥ 0, zk ≥ 0 (∀k),
(10)

where

akj := H(ykj)− bkjykj , bkj :=
ψ(p)

φ(H(ykj))ψ′
(

ψ(−1)(ykjψ(p))
) ,

ykj are given partition points of the interval (0; 1], and φ is the standard normal density. In [11], also an
inner approximation is provided for the problem.

4 Application to the Model with EEA Indicators

To present a simple example of using this approach, we pursue the direction presented already in [9] and
previous works referenced therein. We briefly summarize the model and its description; the details can
be found in the mentioned reference [9]. We did not include numerical results (based on simulations) in
the current paper as they are matter of our current and still not finished research.



Consider vector mappings ik(x; ξ) := xTAkξ, representing a functional dependence of the EEA indi-
cators (of ecological stability) ik on decision vector x (possible ecological arrangements), and uncertainty
factor ξ. The indicators of ecological stability monitor basic properties of the environment, e.g. air
and water quality, pollution, noise, etc. Possible arrangements include desulphurisation of plants, water
cleaners, soundproofing of roads, limits provided by law, and many others.

To convene our assumption we suppose this dependence to be linear. Denote Lk required threshold
values for the indicators ik; apart x, Lj are also considered to be decision variables of the problem in
our formulation. Our aim is to maximize the ecological limits in order to meet them at least with the
required fixed probability p (i. e., to find the optimal critical values for ecological indicators achievable
with high probability). The problems can be then formulated as

max
∑

k

Lk subject to Pr
{

xTAkξ ≥ Lk, k ∈ K
}

≥ p, x ∈ X0; (11)

X0 contains budget and other deterministic constraints.

Problem (11) falls into the frame of problem (2). Suppose that the joint distribution of the constraints
rows J is driven by an Archimedean (for example, by the Gumbel–Hougaard) copula. If ξ is normally
distributed random vector, then so is the product Akξ, and the problem is convex by Theorem 3 for
sufficiently high value of p. The outer approximating SOCP problem of the form (10) is straightforward,
and lower bound for the optimal value can be easily found as the side effect of the problem. The
parameters µk, Σk are provided by probabilistic properties of Akξ. Using the exact form of the generator
ψ of the Gumbel–Hougaard copula, we can provide the coefficients akj , bkj in the following explicit form

akj := Φ(−1)
(

py
1/θ
kj

)

− bkjykj , bkj :=
(− ln p)θpy

1/θ
kj

θφ
(

Φ(−1)
(

py
1/θ
kj

))(

ln py
1/θ
kj

)θ−1
.

5 Conclusion

In this work we have provided a methodological note on a stochastic programming problem with chance
constraints. In particular, a use of a specific class of Archimedean copulas having completely monotonic
inverse generators on a problem with normally distributed rows was given. The problem is reformulated
appropriately and the convexity of the feasible set is stated for a sufficiently high probability level. We
also describe how the problem can be approximated by an second-order cone programming problem which
is solvable by traditional optimization procedures. The accompanying (but still artificial) example on
indicators of ecological stability offers an insight into a possible application of the methodology described.
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