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Abstract. Multiobjective optimization problems depending on a probabil-
ity measure often correspond to situations in which an economic or financial
process is simultaneously influenced by a random factor and a decision pa-
rameter. Moreover it is reasonable to evaluate the process by a few objective
functions and it seems reasonable to determine the “decision” with respect to
the mathematical expectation of objectives. Complete knowledge of the proba-
bility measure is a necessary condition to analyze the problem. However, in
applications mostly the problem has to be solved on the data base. A relation-
ship between “characteristics” obtained on the base of complete knowledge of
the probability measure and those obtained on the above mentioned data base
has been already investigated in the case when constraints set is not depending
on the probability measure ([9], [10]). The aim of the work will be to try to
relax this condition.
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1 Introduction

To introduce a “rather general” multiobjective stochastic programming problem, let (Ω,S, P ) be a
probability space; ξ := ξ(ω) = (ξ1(ω), . . . , ξs(ω)) s–dimensional random vector defined on (Ω,S, P );
F (:= F (z), z ∈ Rs), PF and ZF denote the distribution function, the probability measure and the sup-
port corresponding to ξ, respectively. Let, moreover, gi := gi(x, z), i = 1, . . . , l, l ≥ 1 be real–valued (say,
continuous) functions defined on Rn ×Rs; XF ⊂ X ⊂ Rn be a nonempty set generally depending on F,
and X ⊂ Rn be a nonempty “deterministic” convex set. If the symbol EF denotes the operator of mathe-
matical expectation corresponding to F and if for every x ∈ X there exist finite EF gi(x, ξ), i = 1, . . . , l,
then a rather general “multiobjective” one–stage stochastic programming problem can be introduced in
the form:

Find minEF gi(x, ξ), i = 1, . . . , l subject to x ∈ XF . (1)

The problem (1) depends on the measure PF that usually (in applications) has to be estimated on the
data base. Evidently, then an analysis have to be done with respect to an empirical problem:

Find minEFN gi(x, ξ), i = 1, . . . , l subject to x ∈ XFN , (2)

where FN denotes an empirical distribution function determined by a random sample {ξi}Ni=1 correspond-
ing to the distribution F .

Of course by this approach we can obtain only estimates of the corresponding “theoretical” charac-
teristics. A relationship between “theoretical” characteristics and those obtained on the data base has
been already investigated in the case when the constraint set does not depend on the probability measure
(see e.g. [9] and [10]). In this work we consider the case when there exist real valued convex functions
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ḡi(:= ḡi(x), x ∈ Rn), i = 1, . . . , s and αi ∈ (0, 1), i = 1, . . . , , s such that

either XF (:= XF (α)) =

s⋂
i=1

{x ∈ X : P [ω : ḡi(x) ≤ ξi] ≥ αi}, α = (α1, . . . , αs), (3)

the case (3) corresponds to a special form of individual probability constraints;

or XF (:= XF (u0, α)) =
s⋂
i=1

{x ∈ X : min
ui
{P [ω : Li(x, ξ) ≤ ui] ≥ αi} ≤ ui0},

ui0 > 0, u0 = (u1
0, . . . , u

s
0), α = (α1, . . . , αs),

Li(x, z) = ḡi(x)− zi, i = 1, . . . , s, z = (z1, . . . , zs),

(4)

Li(x, z), i = 1, . . . , s can be considered as loss functions. This type of loss functions can appear, e.g., in
connection with an inner problem of two stage stochastic (generally nonlinear) programming problems
(for definition of two–stage problems see, e.g. [1]).

To analyze the problem (1), the results of the multiobjective deterministic problems will be recalled.
Since, it follows from them that the results of one–objective optimization theory can be useful to investi-
gate the relationship between the results obtained under complete knowledge of PF and them obtained
on the data base, we recall also one–objective stochastic programming problems.

2 Some Definition and Auxiliary Assertion

2.1 Deterministic Case

To recall some results of the multiobjective deterministic optimization theory we consider a multiobjective
deterministic optimization problem in the following form:

Find min fi(x), i = 1, . . . , l subject to x ∈ K, (5)

where fi(x), i = 1, . . . , l are real–valued functions defined on Rn, K ⊂ Rn is a nonempty set.

Definition 1. The vector x∗ is an efficient solution of the problem (5) if and only if there exists no x ∈ K
such that fi(x) ≤ fi(x∗) for i = 1, . . . , l and such that for at least one i0 one has fi0(x) < fi0(x∗).

Definition 2. The vector x∗ is properly efficient solution of the multiobjective optimization problem
(5) if and only if it is efficient and if there exists a scalar M > 0 such that for each i and each x ∈ K
satisfying fi(x) < fi(x

∗) there exists at least one j such that fj(x
∗) < fj(x) and

fi(x
∗)− fi(x)

fj(x)− fj(x∗)
≤M. (6)

Proposition 1. ([4]) Let K ⊂ Rn be a nonempty convex set and let fi(x), i = 1, . . . , l be convex functions
on K. Then x0 is a properly efficient solution of the problem (5) if and only if x0 is optimal in

min
x∈K

l∑
i=1

λifi(x) for some λ1, . . . , λl > 0;

l∑
i=1

λi = 1.

A relationship between efficient and properly efficient points is presented e.g in [3] or in [4].

Remark 1. Let f(x) = (f1(x), . . . , fl(x)), x ∈ K; Keff , Kpeff be sets of efficient and properly efficient
points of the problem (5). If K is a convex set, fi(x), i = 1, . . . , l are convex functions on K, then

Kpeff ⊂ Keff ⊂ K̄peff where K̄peff denotes the closure set of Kpeff . (7)

It follows from Proposition 1 that the properties of the multiobjective optimization can be (under
some assumptions) investigated by one–objective theory. To recall suitable results, let ‖ ·‖ = ‖ ·‖n denote
the Euclidean norm in Rn and ∆n[·, ·] the Hausdorff distance of subsets of Rn (for the definition of the
Hausdorff distance see e.g. [13]).



Proposition 2. Let X be a nonempty compact set. If

1. ĝ0 := ĝ0(x), x ∈ Rn is a Lipschitz function on X with the Lipschitz constant L,

2. X̄(v) ⊂ Rn are nonempty sets for v ∈ ZF and, moreover, there exists Ĉ > 0 such that

∆n[X̄(v(1)), X̄(v(2))] ≤ Ĉ‖v(1)− v(2)‖ for v(1), v(2) ∈ ZF ,

then
| inf
x∈X̄(v(1))

ĝ0(x)− inf
x∈X̄(v(2))

ĝ0(x)| ≤ LĈ ‖v(1)− v(2)‖ for v(1), v(2) ∈ ZF .

Proof. Proposition 2 is a slightly modified version of Proposition 1 in [6].

Remark 2. An estimate of Ĉ can be found (for some special form of ḡi, i = 1, . . . , s) in [6].

Definition 3. Let h(x) be a real–valued function defined on a nonempty convex se K ⊂ Rn. h(x) is a
strongly convex (with a parameter ρ > 0) function if

h(λx1 + (1− λ)x2) ≤ λh(x1) + (1− λ)h(x2)− λ(1− λ)ρ‖x1 − x2‖2 for every x1, x2 ∈ K, λ ∈ 〈0, 1〉.

Proposition 3. [5] Let K ⊂ Rn be a nonempty, compact, convex set. Let, moreover, h(x) be a continuous
strongly convex (with a parameter ρ > 0) real–valued function defined on K. If x0 is defined by the relation
x0 = arg min

x∈K
h(x), then

‖x− x0‖2 ≤ 2

ρ
|h(x)− h(x0)| for every x ∈ K.

2.2 One–Objective Stochastic Programming Problems

To recall suitable for us assertions of one criteria stochastic optimization theory we start with the problem:

Find ϕ(F, XF ) = inf EF g0(x, ξ) subject to x ∈ XF , (8)

where g0(x, z) is a real–valued function defined on Rn ×Rs.

First, if F and G are two s–dimensional distribution functions for which the Problem (8) is well
defined and if X (F, XF ) denotes a solution set of the problem (8), then we can obtain that

|ϕ(F, XF )− ϕ(G, XG)| ≤ |ϕ(F, XF )− ϕ(G, XF )| + |ϕ(G, XF )− ϕ(G, XG)|. (9)

If g0(x, z) is a strongly convex functions on X (with a parameter ρ > 0), then X (F, XF ) is singleton and
consequently also

‖X (F, XF )−X (G, XG)‖ ≤ ‖X (F, XF )−X (G, XF )‖ + ‖X (G, XF )−X (G, XG)‖. (10)

According to (9), (10) we can study separately stability of the problem (8) with respect to pertur-
bation in the objective function and in the constraints set. To this end let Fi, i = 1, . . . , s denote
one–dimensional marginal distribution functions corresponding to F and kFi(αi) be defined by the rela-
tion:

kFi
(αi) = sup{zi : PFi

{ω : zi ≤ ξi(ω)} ≥ αi}, αi ∈ (0, 1), i = 1, . . . , s. (11)

Proposition 4. Let ḡi, i = 1, . . . , s be real-valued continuous function defined on Rn, αi ∈ (0, 1), i =
1, . . . , s, α = (α1, . . . , αs). If PFi , i = 1, . . . , s are absolutely continuous with respect to the Lebesque
measure on R1, then

XF = X̄(kF (α)), kF (α) = (kF1
(α1), . . . , kFs

(αs)),

where

X̄(v) =
s⋂
i=1

{x ∈ X : ḡi(x) ≤ vi}, v = (v1, . . . , vs) in the case (3),

X̄(v) =
s⋂
i=1

{x ∈ X : ḡi(x)− ui0 ≤ vi}, v = (v1, . . . , vs) in the case (4).



Proof. The assertion of Proposition 4 has been proven in [6] (the case (3)) and in [8] (the case 4).

Proposition 5. Let the assumptions of Proposition 2 and Proposition 4 be fulfilled. Then

| inf
X̄(kF (α))

ĝ0(x)− inf
X̄(kG(α))

ĝ0(x)| ≤ LĈ‖kF (α)− kG(α)‖.

If, moreover, ĝ0(x) is a strongly convex function on X, then there exists a constant C̄ such that

‖X (F, XF )−X (F, XG)‖2 ≤ C̄‖kF (α)− kG(α)‖.

Proof. The first assertion of Proposition 5 follows from Proposition 2 and Proposition 4. To prove the
second assertion we consider the distribution function F̄ fulfilling the relations

kF̄ (α) = (kF̄1
(α1), . . . , kF̄s

(αs)), kF̄i
(αi) = max[kFi(αi), kGi(αi)], i = 1, . . . , s

and employ the relation (10), the first assertion and Proposition 3.

Furthermore, if we replace G by FN we can employ the previous assertions to investigate the rela-
tionship between ϕ(F, XF ), X (F, XF ) and ϕ(FN , XFN ), X (FN , XFN ). To this end we assume:

A.2 {ξi}∞i=1 is an independent random sequence corresponding to F ; FN is determined by {ξi}Ni=1,

A.3 PFi
, i = 1, . . . , s are absolutely continuous w. r. t. the Lebesgue measure on R1,

A.4 for i ∈ {1, . . . , s} there exist δ > 0, ϑ > 0 such that f̄i(zi) > ϑ for zi ∈ ZFi
, |zi − kFi

(αi)| < 2δ,
where f̄i := f̄i(zi), i = 1, . . . , s denotes the probability density corresponding to Fi.

Proposition 6. [7] Let s = 1, α ∈ (0, 1). If Assumption A.2, A.3 and A.4 are fulfilled, 0 < t
′
< δ, then

P{ω : |kFN (α)−kF (α)| > t
′
} ≤ 2 exp{−2N(ϑt

′
)2}, N ∈ N , (N denotes the set of natural numbers).

Proposition 7. Let X be a convex, compact and nonempty set, αi ∈ (0, 1), i = 1, . . . , s, α =
(α1, . . . , αs), N ∈ N . If assumptions A.2, A.3, A.4 and assumptions of Proposition 5 are fulfilled,
then there exists a constant C > 0 such that

P{ω : | inf
X̄(kF (α))

ĝ0(x)− inf
X̄(kFN (α))

ĝ0(x)|| > t} ≤ 2s exp{−2N(ϑt/LCs)2} for 0 < t/LCs < δ.

If moreover ĝ0(x) is a strongly convex function on X, then there exists a constant C̄ such that

P{ω : ‖X (F, XF )−X (F, XFN )‖2 > t} ≤ 2s exp{−2N(ϑt/LC̄s)2}.

Proof. The assertion of Proposition 7 follows from Proposition 5, Proposition 6 and the properties of the
Euclidean norm.

Furthermore, we replace g0(x, z) := ĝ0(x) independently of z ∈ ZF by more general case when

1a. g0(x, z) is a real–valued Lipschitz function on X with the Lipschitz constant L
′

not depending on
z ∈ ZF .

Then EFN g0(x, ξ) is a Lipschitz function of x ∈ X with the Lipschitz constant L
′

not depending on
ω ∈ Ω. Consequently, according to Proposition 2 and Proposition 4 there exists C

′
such that

| inf
X̄(kF (α))

EFN g0(x, ξ)− inf
X̄(kFN (α))

EFN g0(x, ξ)| ≤ L
′
C

′
‖kF (α)− kFN (α)‖ for ω ∈ Ω

and for t > 0

P{ω : | inf
X̄(kF (α))

EFN g0(x, ξ)− inf
X̄(kFN (α))

EFN g0(x, ξ)| > t} ≤ P{ω : L
′
C

′
‖kFN (α)− kF (α)‖ ≥ t}.

If, moreover, g0(x, z) is a strongly convex (with a parameter ρ > 0) function on X, then employing the
proof technique from the proof of Proposition 5 we can obtan that

P{ω : ‖X (F, XF )−X (F, XFN )‖2 > t} ≤ P{ω : 2L
′
C

′
ρ‖kFN (α)− kF (α)‖ ≥ t}

Furthermore, employing Proposition 7 and the relations (9), (10) we obtain



Proposition 8. Let the assumptions A.2, A.3, A.4 and 1.a are fulfilled, t > 0. If there exists γ ∈ (0, 1/2)
such that

P{ω : Nγ |ϕ(F, XF )− ϕ(FN , XF )| > t} −−−−→
N→∞

0,

then
P{ω : Nγ | inf

X̄(kF (α))
EF g0(x, ξ)− inf

X̄(kFN (α))
EFN g0(x, ξ)| > t} −−−−→

N→∞
0.

Moreover, if g0(x, z) is for every z ∈ ZF a strongly convex function of x ∈ X with a parameter ρ >, 0
then also

P{ω : Nγ‖X (F, XF )−X (FN , XFN )‖2 > t} −−−−→
N→∞

0.

3 Multiobjective Stochastic Case

To analyze stochastic multiobjective problem (1) we restrict our consideration to the case when

B.1 gi(x, z), i = 1, . . . , l are for every z ∈ ZF strongly (with a parameter ρ > 0) convex functions;
moreover they are Lipschitz on X with the Lipschitz constant L1 not depending on z ∈ ZF .

Furthermore we introduce (for two s–dimensional distribution functions F, G) the sets G(F, XF ), X̄ (F, XF ),
Ḡ(F, XF ), Λ and the function ḡ(x, z, λ) by the relations:

G(F, X) = {y ∈ Rl : yj = EF gj(x, ξ), j = 1, . . . , l for some x ∈ X; y = (y1, . . . , yl)},

X̄ (F, XF ) = {x ∈ XF : x is a properly efficient point of the problem (1)},

ḠF (F, XF ) = {y ∈ Rl : yj = EF gj(x, ξ), j = 1, . . . , l for some x ∈ X̄ (F, XF )},

ḠF (G, XG) = {y ∈ Rl : yj = EF gj(x, ξ), j = 1, . . . , l for some x ∈ X̄ (G, XG)},

Λ = {λ ∈ Rl : λ = (λ1, . . . , λl), λi > 0, i = 1, . . . , l,
l∑
i=1

λi = 1},

ḡ(x, z, λ) =
l∑
i=1

λigi(x, z), x ∈ Rn, z ∈ Rs, λ ∈ Λ.

(12)

Evidently, under the assumption B.1, the function ḡ(x, z, λ) is (for every z ∈ ZF , λ ∈ Λ) a (strongly with
a parameter ρ > 0) convex and Lipschitz function on X with the Lipschitz constant L1 not depending
on z ∈ ZF . Consequently, if we define the parametric optimization problem

Find ϕλ(F, XF ) = inf EF ḡ(x, ξ, λ)) subject to x ∈ XF for λ ∈ Λ, (13)

we can employ the auxiliary assertions of previous parts to analyze the Problem (1) and to see that the
following Theorems are valid.

Theorem 9. Let Assumptions B.1, A.2, A.3 and A.4 be fulfilled, X be a compact nonempty convex set,
gi(x, z) := g0

i (x), x ∈ X, z ∈ ZF , i = 1, . . . , l, then

P{ω : ∆l[G(F, XF ), G(FN , XFN )] −→N−→∞ 0} = 1,

P{ω : ∆n[X̄ (F, XF ), X̄ (FN , XFN )] −→N−→∞ 0} = 1,

P{ω : ∆l[ḠF (F, X), ḠF (FN , XFN )] −→N−→∞ 0} = 1.

Remark 3. It follows (under the assumptions of Theorems 9) that asymptotic properties, in the case of
constraints sets fulfilling the relation (3), do not depend on the tails of distributions (including all stable
case).

Theorem 10. Let B.1, A.2, A.3 be fulfilled, X be a compact nonempty set, t > 0. If there exists
γ ∈ (0, 1/2) such that

P{ω : Nγ | inf
XF (α)

EF gi(x, ξ)− inf
XF (α)

EFN gi(x, ξ)| > t} −→N−→∞= 0, (14)



then
P{ω : Nγ ∆l[G(F, X), G(FN , XFN )] > t} −→N−→∞ = 0.

P{ω : Nγ/2 ∆n[X̄ (F, X), X̄ (FN , XFN )] > t} −→N−→∞ = 0,

P{ω : Nγ/2 ∆l[ḠF (F, X), ḠF (FN , XFN )] > t} −→N−→∞ = 0.

(15)

If, moreover, there exist functions ĝ0
i (x), ı = 1, . . . , l defined on Rn such that gi(x, z) = ĝ0

i (x), i = 1, . . . ,
then the relations (15) are valid with γ ∈ (0, 1/2).

Remark 4. It follows from Theorems 9, 10 that asymptotic properties, in the case of constraints sets
fulfilling the relation (3) or (4) and the condition gi(x, z) := gi0(x, z), i = 1, . . . , l (fulfilling the condition
1.a) do not depend on the tails of distributions (including stable distributions). To this end it is assumed
that the one-dimensional marginals are absolutely continuous with respect to Lebesque measure in R1.
Practically this assertion follows from the old results of [2] or [14]. The distribution with heavy tails
appear very often in economic and financial applications, see e.g. [11], [12].

4 Conclusion

The paper deals with multiobjective stochastic programming problems, especially with a relationship be-
tween characteristics of these problems corresponding to complete knowledge of the probability measure
and those determined on the data base. However, in spite of the former papers there the assumption of
“deterministic” constraints set is rather relaxed. On the other hand we still assume that the objective
functions are strongly convex with respect to x ∈ X. Evidently linear functions do not fulfil this assump-
tions. It seems (under the corresponding analysis) that similar assertions are also valid in the linear case.
However, a detailed investigation in this direction is beyond the scope of this paper.
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