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• DMCA coefficient is introduced.
• Different settings (non-stationarity level, scales, correlations, time series length) are examined.
• DMCA coefficient is both an alternative and a complement to the DCCA coefficient.
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a b s t r a c t

In the paper, we introduce a new measure of correlation between possibly non-stationary
series. As the measure is based on the detrending moving-average cross-correlation
analysis (DMCA), we label it as the DMCA coefficient ρDMCA(λ) with a moving average
window length λ. We analytically show that the coefficient ranges between −1 and 1 as
a standard correlation does. In the simulation study, we show that the values of ρDMCA(λ)
very well correspond to the true correlation between the analyzed series regardless the
(non-)stationarity level. Dependence of the newly proposed measure on other parameters
– correlation level, moving average window length and time series length – is discussed as
well.

© 2014 Elsevier B.V. All rights reserved.

1. Introduction

Inspection of statistical properties of multivariate series has become a topic of increasing importance in econophysics.
For this purpose, various estimators of power-laws in cross-correlations of a pair of series have been proposed—detrended
cross-correlation analysis and its various versions [1,2], detrending cross-correlation moving average [3,4], height cross-
correlation analysis [5] and cross-correlation analysis based on statistical moments [6]. Out of these, the detrended cross-
correlation analysis (DCCA) [1,2] has become the most popular one. Apart from the analysis of the power laws in the
cross-correlation function itself, Zebende [7] proposed the DCCA cross-correlation coefficient as a combination of DCCA
and the detrended fluctuation analysis (DFA) [8–10]. Even though its ability to uncover power-law cross-correlations has
been somewhat disputed [11–14], Kristoufek [15] shows that the coefficient is able to estimate the correlation coefficient
between non-stationary series precisely and that it dominates the standardly used Pearson’s correlation coefficient.
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Historically, the detrended fluctuation analysis and methods derived from it have been frequently compared to (or
sometimes even interwoven with) the detrending moving average (DMA) [16,17] procedures. In most cases, the competing
approaches fare very similarly while the DMA algorithms are computationally less demanding as they contain no box-
splitting1 and regression fitting [18–26]. In this paper, we follow these steps and propose an alternative but also a
complementary coefficient to the DCCA cross-correlation coefficient of Zebende [7]—the detrending moving-average cross-
correlation coefficient. In the following section, the coefficient is introduced. After that, results of the wide Monte Carlo
study are presented showing that the newly proposed coefficient estimates the true correlation coefficient precisely even
for strongly non-stationary series. Comparison to the DCCA coefficient is included as well.

2. DMCA coefficient

We start with the detrending moving average procedure (DMA) proposed by Vandewalle & Ausloos [16] and further
developed by Alessio et al. [17]. For (possibly asymptotically non-stationary) series {xt} and {yt}, we construct integrated
series Xt =

t
i=1 xi and Yt =

t
i=1 yi for t = 1, 2, . . . , T where T is the time series length which is common for both series.

Fluctuation functions Fx,DMA and Fy,DMA are then defined as

F 2
x,DMA(λ) =

1
T − λ + 1

⌊T−θ(λ−1)⌋
i=⌊λ−θ(λ−1)⌋


Xt − Xt,λ

2
, (1)

F 2
y,DMA(λ) =

1
T − λ + 1

⌊T−θ(λ−1)⌋
i=⌊λ−θ(λ−1)⌋


Yt − Yt,λ

2
(2)

where λ is themoving average window length and θ is a factor of moving average type (forward, centered and backward for
θ = 0, θ = 0.5 and θ = 1, respectively). Xt,λ and Yt,λ then represent the specific moving averages with the window size λ
at time t . Different types of moving averages have been studied and the centered one (θ = 0.5) shows the best results [18]
so that we apply θ = 0.5 in this study as well.

For the bivariate series, He & Chen [4] propose the detrending moving-average cross-correlation analysis (DMCA) which
is a special case of the method proposed by Arianos & Carbone [3]. The bivariate fluctuation F 2

DMCA, which can be seen as a
detrended covariance, is defined as

F 2
DMCA(λ) =

1
T − λ + 1

⌊T−θ(λ−1)⌋
i=⌊λ−θ(λ−1)⌋


Xt − Xt,λ

 
Yt − Yt,λ


. (3)

In the steps of Zebende [7],wepropose the detrendingmoving-average cross-correlation coefficient, or also theDMCA-based
correlation coefficient, as

ρDMCA(λ) =
F 2
DMCA(λ)

Fx,DMA(λ)Fy,DMA(λ)
. (4)

In a similar way as for the DCCA correlation coefficient [11], the DMCA coefficient can be rewritten as

ρDMCA(λ) =
F 2
DMCA(λ)

Fx,DMA(λ)Fy,DMA(λ)

=

1
T−λ+1

⌊T−θ(λ−1)⌋
i=⌊λ−θ(λ−1)⌋


Xt − Xt,λ

 
Yt − Yt,λ




1
T−λ+1

⌊T−θ(λ−1)⌋
i=⌊λ−θ(λ−1)⌋


Xt − Xt,λ

2 1
T−λ+1

⌊T−θ(λ−1)⌋
i=⌊λ−θ(λ−1)⌋


Yt − Yt,λ

2

=

⌊T−θ(λ−1)⌋
i=⌊λ−θ(λ−1)⌋

ϵx,tϵy,t
⌊T−θ(λ−1)⌋

i=⌊λ−θ(λ−1)⌋
ϵ2
x,t

⌊T−θ(λ−1)⌋
i=⌊λ−θ(λ−1)⌋

ϵ2
y,t

(5)

where {ϵx,t} and {ϵy,t} are the series {Xt} and {Yt}, respectively, detrended by the centeredmoving average of length λ. From
the last part of Eq. (5), it is visible that

−1 ≤ ρDMCA(λ) ≤ 1 (6)

1 Note that moving averages are also utilized in the detrended fluctuation analysis methods where the polynomial detrending is substituted by the
moving average filtering [25]. However, DMA presented in this paper is based on scaling of fluctuations with moving average window length whereas DFA
methods using moving averages are still based on box splitting and scaling with box sizes.
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Fig. 1. Estimated DMCA correlation coefficients for different fractional integration parameters d I. Results for the time series of length T = 1000 are shown
here. Separate figures represent different parameters d − d = 0.1 (top left), d = 0.4 (top right), d = 0.6 (middle left), d = 0.9 (middle right), d = 1.1
(bottom left), d = 1.4 (bottom right). Red lines represent the true value of ρεν . The solid lines of shades of gray (mostly overlapping with the red line)
represent the median values of 1000 simulations for the given parameter setting. The dashed lines represent the 95% confidence intervals (the 2.5th and
the 97.5th quantiles of the simulations). Different shades of gray stand for different values of the moving average window λ going from the lowest one
(λ = 5, the darkest shade) to the highest one (λ = 101, the lightest shade). (For interpretation of the references to colour in this figure legend, the reader
is referred to the web version of this article.)

according to the Cauchy–Schwarz inequality. The DMCA-based correlation coefficient thus has the same range as the
standard correlation. In the following section, we show that the values of the newly proposed coefficient very precisely
describe the correlations between two series and this is true even for strongly non-stationary series.

3. Simulations results

In this section, we show that the DMCA coefficient is able to describe correlations between (even non-stationary)
series very precisely. To do so, we present a wide Monte Carlo simulation study2 for varying level of correlations and

2 The R-project codes for the DMCA coefficient are available at http://staff.utia.cas.cz/kristoufek/Ladislav_Kristoufek/Codes.html or upon request from
the author.

http://staff.utia.cas.cz/kristoufek/Ladislav_Kristoufek/Codes.html
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Fig. 2. Standard deviations of DMCA correlation coefficients for different fractional integration parameters d I . Results for the time series of length T = 1000
are shown here. Separate figures represent different parameters d − d = 0.1 (top left), d = 0.4 (top right), d = 0.6 (middle left), d = 0.9 (middle right),
d = 1.1 (bottom left), d = 1.4 (bottom right). Solid lines represent the standard deviation of 1000 simulations for given parameter setting. Different shades
of gray stand for different values of the moving average window λ going from the lowest one (λ = 5, the darkest shade) to the highest one (λ = 101, the
lightest shade).

(non-)stationarity. For this purpose, we utilize two ARFIMA(0, d, 0) processes with correlated error terms

xt =

∞
n=0

an(d1)εt−n (7)

yt =

∞
n=0

an(d2)νt−n (8)

where an(di) =
Γ (n+di)

Γ (n+1)Γ (di)
, ⟨εt⟩ = ⟨νt⟩ = 0, ⟨ε2

t ⟩ = ⟨ν2
t ⟩ = 1 and ⟨εtνt⟩ = ρεν .

Parameter d is important for the stationarity discussion. For d < 0.5, the series are stationary while for 0.5 ≤ d < 1,
the series are non-stationary but mean-reverting whereas for d ≥ 1, the series are non-stationary and non-mean-reverting
(explosive). To see how the DMCA coefficient is able to quantify the correlation for (non-)stationary series, we select several
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Fig. 3. Estimated DMCA correlation coefficients for different fractional integration parameters d II. Results for the time series of length T = 5000 are shown
here. Notation of Fig. 1 is used.

levels of d, specifically d1 = d2 ≡ d = 0.1, 0.4, 0.6, 0.9, 1.1, 1.4. To cover a wide spectrum of possible correlation levels in
a sufficient detail, we study ρεν = −0.9, −0.8, . . . , 0.8, 0.9. To see the effect of different moving average lengths, we study
the cases λ = 5, 15, 31, 101. And finally, we examine two time series lengths which are representative for usually analyzed
series in econophysics—T = 1000, 5000.

In Figs. 1–4, all the results are summarized. In Figs. 1–2, the time series length of T = 1000 is discussed, and in Figs. 3–4,
the results for T = 5000 are illustrated. In the figures, we present the 2.5%, 50% and 97.5% quantiles, i.e. we show the 95%
confidence intervals and the median value, based on 1000 simulations for a given parameter setting.

The main findings can be summarized as follows. First, the DMCA coefficient is an unbiased estimator of the true
correlation coefficient of the series regardless the (non-)stationarity setting, the correlation level, the time series length
and the moving average window size λ. Second, the confidence intervals get wider with an increasing λ. Nonetheless,
the confidence intervals remain quite narrow for all inspected λs (when compared to the DCCA coefficient or Pearson’s
correlation examined by Kristoufek [15]). Third, the performance of the coefficient is symmetric around the zero correlation,
i.e. there are no evident differences between the performance for the positive and for the negative correlations. Fourth, the
DMCA coefficient gets more precise with an increasing absolute value of the true correlation—for the true correlation of
both ±0.9, the confidence intervals are extremely narrow. Fifth, the standard deviation of the coefficient is approximately
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Fig. 4. Standard deviations of DMCA correlation coefficients for different fractional integration parameters d II. Results for the time series of length T = 5000
are shown here. Notation of Fig. 2 is used.

symmetric around the zero correlation and it increases with the parameter d. And sixth, the performance of the DMCA
coefficient gets better with an increasing time series length T .

4. Conclusions and discussion

In this paper, we introduce a newmeasure of correlation between possibly non-stationary series. As themeasure is based
on the detrending moving-average cross-correlation analysis (DMCA), we label it as the DMCA coefficient ρDMCA(λ) with a
moving averagewindow size λ. We analytically show that the coefficient ranges between−1 and 1 as a standard correlation
does. In the simulation study, we show that the values of ρDMCA(λ) very well correspond to the true correlation between the
analyzed series regardless the (non-)stationarity level.

As the ρDMCA(λ) coefficient can be seen as both an alternative and a complement to the ρDCCA(s) coefficient [7], the
precision of these coefficients should be compared. As both this study and our previous study of the statistical properties of
the DCCA coefficient [15] are constructed in a similar manner, the comparison is easy. The most important findings are the
following. First, both coefficients provide anunbiased estimator even for highly non-stationary processes. Second, apart from
the very strong non-stationarity case (d = 1.4), both coefficients bring very precise estimates of the true correlation. And
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third, turning to the differences, we find that the DMCA coefficient has narrower confidence intervals and lower standard
deviations for given settings. However, it needs to be noted that the crucial parameters of the coefficients are different. For
the DMCAmethod, we have the moving average window length λ, and for the DCCA method, we utilize the scale swhich is
used for box-splitting and averaging of the fluctuations around the time trend. Therefore, these two coefficients are not easily
comparable. However, an indisputable advantage of the newly proposed DMCA coefficient remains—the DMCA procedure
is computationally much less demanding than the DCCA method mainly due to the box-splitting and the time-trend fitting
in the DCCA procedure. This might become an issue for long financial series and in any other branch of research. Overall,
we suggest to use both methods in empirical analyses dealing with potentially non-stationary series as each of the methods
can better control for different types of trends.
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