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Spectrum-based estimators of the bivariate Hurst exponent
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We discuss two alternate spectrum-based estimators of the bivariate Hurst exponent in the power-law cross-
correlations setting, the cross-periodogram and local X-Whittle estimators, as generalizations of their univariate
counterparts. As the spectrum-based estimators are dependent on a part of the spectrum taken into consideration
during estimation, a simulation study showing performance of the estimators under varying bandwidth parameter
as well as correlation between processes and their specification is provided as well. These estimators are less
biased than the already existent averaged periodogram estimator, which, however, has slightly lower variance.
The spectrum-based estimators can serve as a good complement to the popular time domain estimators.
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I. INTRODUCTION

Introduction of detrended cross-correlation analysis
(DCCA) [1–4] has opened a new branch of studying cross-
correlations between two series which has found its home in
various disciplines: hydrology and (hydro)meteorology [5–7],
seismology and geophysics [8,9], biology and biometrics
[10,11], DNA sequences [12], neuroscience [13], music [14],
electricity [15], finance [16–18], commodities [19,20], traffic
[21–23], and others. Since then, height cross-correlation
analysis [24] and detrending moving-average cross-correlation
analysis [20,25] have been introduced as complements to
DCCA. These estimators are based on a generalization of the
power-law decay of the autocorrelation function ρ(k) with lag
k in the univariate case where ρ(k) ∝ k2H−2 for lag k → +∞.
The Hurst exponent H is a measure of long-range dependence,
and it holds that 0 � H < 1 for stationary series. For H > 0.5,
the process is positively long-range correlated and reminds
one of a trending process, which, however, returns back to its
mean and remains stationary. Due to this characteristic, such
processes are also usually referred to as persistent processes.
On the other hand, H < 0.5 implies antipersistence, which
features frequent reversal of signs and in general negative
correlation. No long-range dependence is present for H = 0.5.

Long-range correlations are generalized into the bivariate
setting simply by translating the properties into two dimen-
sions: a power-law decay of the cross-correlation function
of the two analyzed processes. Specifically, we have the
cross-correlation function ρxy(k) with lag k of a specific form,
i.e., ρxy(k) ∝ k2Hxy−2 for lag k → +∞. If the bivariate Hurst
exponent Hxy > 0.5, we have power-law cross-correlated
processes, or alternatively cross-persistent or long-range cross-
correlated processes. Such processes are persistent in their
comovement; i.e., if the pair of series moved together in
the past, they are more likely to move together in the
future as well [24]. Such definition is positioned in the
time domain. However, we can also approach the power-law
cross-correlations in the frequency domain.

An alternative definition of the power-law cross-correlated
processes is again built on a generalization of the univariate
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definition. The cross-persistent process is characterized by
the cross-power spectrum of a form |fxy(λ)| ∝ λ1−2Hxy for
frequency λ → 0+ [26]. The power law asymptotic decay
of the cross-correlation function thus simply translates to the
power-law divergence of the cross-power spectrum close to
the origin. This alternative approach to the power-law cross-
correlations is used only marginally in the interdisciplinary
physics literature.

Here we discuss two alternate estimators of the bivariate
Hurst exponent based on the spectral definition of the power-
law cross-correlations. Specifically, we establish the cross-
periodogram estimator and the local X-Whittle estimator as
generalizations of their univariate counterparts, we discuss the
properties of these estimators, and we provide a comparison
to the only existent spectrum-based estimator: the averaged
periodogram estimator [26]. In the next section, the estimators
are described in detail. The following section discusses
the accuracy of the estimators with a changing bandwidth
parameter. The last section concludes.

II. SPECTRUM-BASED ESTIMATORS

Frequency domain estimators are based on the definition
that at frequencies close to the origin the magnitude of the
cross-power spectrum follows a power law and diverges to
infinity. Estimation of the cross-power spectrum thus becomes
crucial. The most frequently used tool is a cross-periodogram
Ixy(λ) defined as

Ixy(λj ) = 1

2π

+∞∑
k=−∞

γ̂xy(k) exp(−iλj k)

= 1

2πT

T∑
t=1

xt exp(−iλj t)
T∑

t=1

yt exp(iλj t)

= Ix(λj )Iy(λj ), (1)

where T is the time series length, γ̂xy(k) is an estimated
cross-covariance at lag k, and λj is a frequency defined as
λj = 2πj/T where j = 1,2, . . . ,�T/2� and �� is the nearest
lower integer operator so that the cross-periodogram is defined
between 0 and π only. Ix(λj ) is a periodogram of series {xt }
and Iy(λj ) is a complex conjugate of a periodogram of series
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{yt }. If the cross-periodogram is used in its raw form, then
evidently we automatically obtain Hxy = Hx+Hy

2 . Moreover,
the raw cross-periodogram (as well as the raw univariate
periodogram) is an inconsistent estimator of the true cross-
power spectrum [27]. To overcome the inconsistency issue,
the raw (cross-)periodogram needs to be smoothed. Bloomfield
[28] suggests a simple smoothing operator based on Daniell
[29], which is practically a simple moving average with half
weights on the boundary values. Some authors [26,30,31] also
suggest first tapering the series to deal with leakages at low
frequencies. In the following discussion, we apply only the
smoothing of periodograms, while the tapering is not utilized
because it did not show any finite sample efficiency or bias
gains for the estimators we use. In this section, we cover three
estimators of the bivariate Hurst exponent Hxy .

A. Averaged periodogram estimator

Sela and Hurvich [26] propose the averaged periodogram
estimator (APE), and they are in fact the first ones to propose
an estimator of Hxy (or more precisely d12 in their case, where
it holds that d12 = Hxy − 0.5 as in the univariate case) in the
frequency domain. The estimator is a bivariate generalization
of the method of Robinson [32]. Taking the cumulative cross-
periodogram F̂xy(λ) = 2π

m

∑�mλ/2π�
j=1 Ixy(λj ) where m � T/2

is a bandwidth parameter and fixed q ∈ (0,1), the estimator is
given by

Ĥxy = 1 −
ln F̂xy (qλm)

F̂xy (λm)

2 ln q
. (2)

Under 12 assumptions given by Sela and Hurvich [26], the
estimator is consistent. Moreover, it is advised to use q = 0.5.
The authors also provide a Monte Carlo simulation study to
show the finite sample properties of the estimator. The bias and
efficiency are shown by box plots for several scenarios to show
that for samples below 10 000 observations, the estimator is
strongly biased with high variance. For high values of m and
high number of observations, the variance of the estimator
decreases markedly while the estimator still remains biased.

B. Cross-periodogram estimator

As given in the definition of the cross-persistent processes,
the cross-power spectrum diverges at the origin as a power
law with exponent 1 − 2Hxy . Using the cross-periodogram
as an estimator of the cross-power spectrum, we expect the
long-range cross-correlated series to follow

|Ixy(λj )| ∝ λ
1−2Hxy

j . (3)

The cross-periodogram estimator (XPE) of the bivariate Hurst
exponent Hxy can be obtained through a regression on

ln |Ixy(λj )| ∝ −(2Hxy − 1) ln λj . (4)

As the power-law scaling is expected only for λ → 0+, the
regression is not performed over all frequencies. By choosing
λj = 2πj/T for j = 1,2, . . . ,m where m � T/2, we estimate
the bivariate Hurst exponent using only the information up to
a selected frequency based on a selection of the bandwidth
parameter m. For the univariate case, Beran [33] and Robinson

[34] show that the periodogram estimator is consistent and
asymptotically normal with

√
m(Ĥ − H 0) →d N (0,π2/24), (5)

where H 0 is the true Hurst exponent. The limiting distribution
is free of H 0 and also of all the other parameters (the
assumptions are given in Theorem 4.6 of Beran [33]). The
variance of the estimator decreases with a square root of
m, but we need to keep in mind that the higher the m

parameter is, the more biased the estimator is because the
power-law scaling holds only for the origin neighborhood.
Choice of m thus depends on preferences between bias and
efficiency. For the bivariate case, however, we have more
parameters in the specification of the model, mainly the
univariate Hurst exponents of the separate processes and the
correlation coefficient between error terms for the simplest
case, and there is no reason to believe that the properties of the
XPE estimator would be independent of these. Showing the
asymptotic properties requires a strict set of assumptions and
the underlying bivariate model specification. In the context of
this text, it would be out of line to assume some particular
specification of the underlying model as we try to keep the
assumptions of the methods as general as possible. We thus
do not provide the asymptotic properties for this estimator and
leave it for further research; yet, still, we provide a discussion
about the dependence of mean and variance of the estimator
on the set of parameters and compare the properties with
the other two frequency-based estimators later in the next
section.

C. Local X-Whittle estimator

The local Whittle estimator of the fractional differencing
parameter d or Hurst exponent H is based on the same
principle as the previously defined periodogram estimator:
the power-law divergence of the power spectrum. However,
instead of the regression fitting to the power-law scaling near
the origin as λ → 0+, the local Whittle estimator is based on
a minimization of the penalty function based on Künsch [35].

Taking the work of Robinson [36] as a starting point and
generalizing the method for the bivariate series, we propose
the estimator of the bivariate Hurst exponent Hxy as follows.
Divergence of the magnitude of the cross-power spectrum
close to the origin with the power-law scaling is assumed for
long-range cross-correlated processes {xt } and {yt }. Cross-
periodogram Ixy(λ) is defined according to Eq. (1) with
j = 1,2, . . . ,m where m � T/2 and λj = 2πj/T . Assuming
that series {xt } and {yt } are indeed long-range cross-correlated
with 1

2 < Hxy � 1, we propose the local X-Whittle estimator
(LXW) as

Ĥxy = arg min
1
2 <Hxy�1

R(Hxy), (6)

where

R(Hxy) = ln

⎡
⎣ 1

m

m∑
j=1

λ
2Hxy−1
j |Ixy(λj )|

⎤
⎦ − 2Hxy − 1

m

m∑
j=1

ln λj

(7)
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and λj = 2πj/T . Equation (7) represents the likelihood
function of Künsch [35]. The LXW estimator is thus a
semiparametric maximum likelihood estimator as it utilizes
only the properties of the cross-power spectrum near the
origin.

In a similar manner as for the XPE estimator, the univariate
version of the local Whittle estimator is consistent and
asymptotically normal, specifically

√
m(Ĥ − H 0) →d N (0,1/4), (8)

where again H 0 is the true bivariate Hurst exponent and the
limiting distribution is free of H 0 and all the other parameters.
The local Whittle estimator is thus asymptotically more
efficient than the periodogram estimator as 1/4 < π2/24. For
a detailed treatment of the univariate case and the assumptions,
see Ref. [36]. In the bivariate case, there is again no reason to
presume that the asymptotic properties would be independent
of the univariate Hurst exponents and the correlation structure
of the error terms. Discussion of these possible dependencies
and comparison with APE and XPE are provided in the
following section [38].

III. DEPENDENCE ON BANDWIDTH PARAMETER

Choice of the bandwidth parameter m is a crucial aspect of
the frequency domain estimators as indicated in the previous
section. As noted in the studies dealing with the univariate
specifications of the estimators [33,34,36], variance should
decrease with the parameter and bias should increase. The
former comes from the fact that the estimation is based
on more data points and the latter from the fact that the
power-law scaling of the cross-power spectrum holds only
for the lowest frequencies. Here we present and discuss the
behavior of the mean and variance of the frequency-based
estimators presented above with respect to varying parameter
m.

We discuss two main scenarios of the long-range cross-
correlated processes: the processes with and without power-
law coherency behavior, i.e., when the bivariate Hurst exponent
Hxy is not or is, respectively, equal to the average of the
separate Hurst exponents Hx and Hy . For the latter (simpler)
case, we utilize ARFIMA(0,d,0), autoregressive fractionally
integrated moving average, processes with correlated error
terms and with d1 = d2 = 0.4, and for the former, we use the
mixed-correlated ARFIMA processes [37] with d1 = d4 = 0.4
and d2 = d3 = 0.2.

Specifically, for given d parameters and an(d) = �(n+d)
�(n+1)�(d) ,

the correlated ARFIMA processes {xt } and {yt } are given
as

xt =
∞∑

n=0

an(d1)εt−n, yt =
∞∑

n=0

an(d2)νt−n,

〈εt 〉 = 〈νt 〉 = 0,
〈
ε2
t

〉 = σ 2
ε < +∞,〈

ν2
t

〉 = σ 2
ν < +∞,

〈εtεt−n〉 = 〈νtνt−n〉 = 〈εtνt−n〉 = 0 for n �= 0,

〈εtνt 〉 = σεν < +∞. (9)

The mixed-correlated ARFIMA processes are defined as

xt =
+∞∑
n=0

an(d1)ε1,t−n +
+∞∑
n=0

an(d2)ε2,t−n,

yt =
+∞∑
n=0

an(d3)ε3,t−n +
+∞∑
n=0

an(d4)ε4,t−n,

〈εi,t 〉 = 0 for i = 1,2,3,4,〈
ε2
i,t

〉 = σ 2
εi

for i = 1,2,3,4,

〈εi,t εj,t−n〉 = 0 for n �= 0 and i,j = 1,2,3,4,

〈εi,t εj,t 〉 = σij for i,j = 1,2,3,4 and i �= j. (10)

Both kinds of processes are studied for the time series
with T = 5000 observations and correlation between error
terms varying in an interval between 0.2 and 1 with a step
of 0.2. To uncover the dependence on m, we use m/T

from 0.05 up to 0.5 with a step of 0.05. We thus cover the
cross-periodogram from the lowest tenth of the frequencies
up to the whole cross-periodogram. For each specification,
we use 1000 simulations and the Daniell’s window of 21
as used in Sela and Hurvich [26]. In this way, we are able
to comment on the dependence of bias and variance of the
estimator with respect to the correlation between error terms
and the bandwidth parameter m.

Starting with the bias, Figs. 1 and 2 show the results of
simulations for the correlated and mixed-correlated ARFIMA
processes. In Fig. 1 we observe that for the correlated ARFIMA
processes for which we expect the bivariate Hurst exponent
to be equal to the average of the separate Hurst exponents
[37,39], the bias behavior differs for specific methods. For
LXW and XPE, we observe an expected behavior: the
estimates are unbiased for approximately m/T � 0.2, i.e.,
the lowest frequencies. For higher values of m, the estimates
become biased downwards. Interestingly, the bias is practically
independent of the correlation level between error terms for
all three estimators. However, for APE, the mean values of
the estimates are very stable across various m but remain
well below the theoretical value of 0.9 and yield a negative
bias of approximately −0.05. Again, the bias is practically
independent of the correlations between error terms.

The situation is more interesting for the mixed-correlated
ARFIMA processes, i.e., the power-law coherency case. In
Fig. 2 we can see that the mean values of the estimates are
dependent on both m and the correlation between error terms
for all three estimators. In general, it holds that the estimates are
less biased with an increasing correlation between error terms,
which is expected, but also with higher m. The performance
of the estimators is thus dependent not only on the parameters
but also on the specification of the model as shown by the
difference between the two cases.

The situation is quite similar for the behavior of variance
of the estimators. In Fig. 3 we show this behavior compared to
the theoretical asymptotic variance for the univariate cases (for
LXW and XPE). We observe several regularities which are true
for all three estimators. First, the variance decreases with the
increasing m as expected. Second, the variance decreases with
the increasing strength of correlations between error terms.
Third, the log-log depiction indicates a power-law scaling
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FIG. 1. (Color online) Mean values of APE, LXW, and XPE estimators dependent on m and correlation between error terms I. Values are
based on 1000 simulations of ARFIMA(0,d ,0) processes with correlated error terms and d1 = d2 = 0.4. Correlation between error terms ranges
between 0.2 and 1 with a step of 0.2 and is represented by different shades of gray (the lightest for 0.2 and black for 1). Red line represents the
true value of Hxy = 0.9.

with the parameter m. For LXW and XPE, we can compare
this scaling with the asymptotic scaling for the respective
univariate estimators, and it is visible that these can be seen as
square-root scalings which are in hand with the univariate
case. However, the levels of variance are well above the

asymptotic univariate values. The variance levels of LXW and
XPE practically overlap while the variance of APE shows
slightly lower values.

For the mixed-correlated ARFIMA processes, Fig. 4 depicts
the behavior of variance. All the regularities from the previous

FIG. 2. (Color online) Mean values of APE, LXW, and XPE estimators dependent on m and correlation between error terms II. Values are
based on 1000 simulations of mixed-correlated ARFIMA(0,d ,0) processes with d1 = d4 = 0.4 and d2 = d3 = 0.2. Correlation between error
terms ranges between 0.2 and 1 with a step of 0.2 and is represented by different shades of gray (the lightest for 0.2 and black for 1). Red line
represents the true value of Hxy = 0.7.
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FIG. 3. (Color online) Variance of APE, LXW, and XPE estimators dependent on m and correlation between error terms I. Values are
based on 1000 simulations of ARFIMA(0,d ,0) processes with correlated error terms and d1 = d2 = 0.4. Correlation between error terms ranges
between 0.2 and 1 with a step of 0.2 and is represented by different shades of gray (the lightest for 0.2 and black for 1). Red line represents the
asymptotical values for the univariate case (for LXW and XPE only).

paragraph hold even here. However, the level of variances is
evidently much higher compared to the previous case, and it
shows that the estimators have much higher variance for the
power-law coherency specification. Even though the variance
level again depends on the level of correlation between error
terms, the general variance level dominates. As a result, the
distance from the univariate asymptotic variances of LXW and

XPE is much more profound as well. Again, the level of vari-
ances is lower for APE compared to the other two estimators.

IV. CONCLUSIONS

We introduce two new estimators of the bivariate Hurst ex-
ponent, the cross-periodogram and local X-Whittle estimators,

FIG. 4. (Color online) Variance of APE, LXW, and XPE estimators dependent on m and correlation between error terms II. Values are
based on 1000 simulations of mixed-correlated ARFIMA(0,d ,0) processes with d1 = d4 = 0.4 and d2 = d3 = 0.2. Correlation between error
terms ranges between 0.2 and 1 with a step of 0.2 and is represented by different shades of gray (the lightest for 0.2 and black for 1).
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in the power-law cross-correlations setting and compare them
with the already existent averaged periodogram estimator. As
the spectrum-based estimators depend on a part of the spectrum
taken into consideration during estimation, in the same way as
the time domain estimators depend on the utilized scales, we
also provide a simulation study showing the performance of the
three estimators under a varying bandwidth parameter as well
as correlation between processes and their specification. The
newly introduced estimators are less biased than the averaged
periodogram, which, however, has slightly lower variance. The

spectrum-based estimators can serve as a good complement to
the already existing and popular time domain estimators.
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