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Abstract

The concept of universal integral, recently proposed, generalizes the Choquet, Shilkret and Sugeno integrals. Those integrals
admit a discrete bipolar formulation, useful in those situations where the underlying scale is bipolar. In this paper we propose
the concept of discrete bipolar universal integral, in order to provide a common framework for bipolar discrete integrals, includ-
ing as special cases the discrete Choquet, Shilkret and Sugeno bipolar integrals. Moreover we provide two different axiomatic
characterizations of the proposed discrete bipolar universal integral.
© 2014 Elsevier B.V. All rights reserved.
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1. Introduction

Recently, a concept of universal integral has been proposed [27]. The universal integral generalizes the Choquet
integral [4], the Sugeno integral [36] and the Shilkret integral [34]. Moreover, in [24,25] a formulation of the universal
integral with respect to a level dependent capacity has been proposed, in order to generalize the level-dependent
Choquet integral [18], the level-dependent Shilkret integral [3] and the level-dependent Sugeno integral [30]. The
Choquet, Shilkret and Sugeno integrals admit a discrete bipolar formulation, useful in those situations where the
underlying scale is bipolar [12,13,17,19,21]. In this paper we introduce and characterize the discrete bipolar universal
integral, which generalizes the discrete Choquet, Shilkret and Sugeno bipolar integrals.

Let us briefly describe the economic motivations of this paper. In the last three/four decades non-additive
integrals—i.e. those integrals based on monotone measures, not necessarily additive—have been applied to many
fields of Decision Analysis.
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For example, in the field of multiple-criteria decision aid (MCDA), the use of non-additive integrals (called fuzzy
integrals) is nowadays pervasive [8,14]. The motivation is due, essentially, to the fact that non-additive integrals, when
used as aggregation functions, allow for a natural representation of the interaction of criteria.

In decision making under risk and uncertainty for a large time, the dominant model has been the Expected Utility
Theory (EUT) [39]. The EUT value function is based on the Lebesgue integral, but the additivity of this integral
when applied to real choice (especially in economics) leads to unrealistic conclusions (see e.g. [1,5,23,37]). For
these motivations the development of new theories, called non-EUT theories, and based on non-additive integrals has
increased very fast (for a seminal survey we recommend [35]). In decision making under risk and uncertainty, the
Choquet integral has firstly received an axiomatic characterization [32] and then has been successfully applied to
economic models of decision: overall we remember the Choquet Expected Utility (CEU) of Schmeidler and Gilboa
[7,33] and the Cumulative Prospect Theory of Tversky and Kahneman [38].

Very recently, one of the most interesting lines of research was concerned with the bipolarity of choices: the deci-
sion maker individuates a reference point and, then separates gains (alternatives greater than the reference point) from
losses (alternatives smaller than the reference point); symmetric choices with respect to the reference point are con-
sidered. Regarding a general discussion on the use of bipolarity the reader is referred to [11,29], while regarding the
generalization of well known integrals, used in MCDM, to the bipolar case, the reader is referred to [15,21]. Also in
decision under risk and uncertainty, the necessity of new tools able to model the bipolarity has emerged [28,40]. In [22]
the bipolar Choquet integral of Grabisch and Labreuche [13] has been used in order to obtain a bipolar generalization
of CPT.

The paper is organized as follows. In Section 2 we introduce the basic concepts. In Section 3 we define and
characterize the bipolar universal integral. In Section 4 we give an illustrative example of a bipolar universal integral
which is neither the Choquet nor Sugeno or Shilkret type. Section 5 shows how the discrete universal integral can be
also characterized in terms of a family of aggregation functions satisfying a set of desired axioms. Finally, in Section 6,
we present conclusions.

2. Basic concepts

For the sake of simplicity, in this work we present the results in a multiple criteria decision making setting. Given a
set of criteria X = {1, . . . , n}, an alternative x can be identified with a score vector x = (x1, . . . , xn) ∈ [−∞,+∞]n,
being xi the evaluation of x with respect to the ith criterion. Without loss of generality, in the following we consider
the bipolar scale [−1,1] to expose our results, so that x ∈ [−1,1]n. For all x = (x1 . . . , xn) ∈ [−1,1]n, the set {i ∈
X | xi � t}, t ∈ [0,1], is briefly denoted with {x � t}. Similar meaning have the symbols {x � t}, {x > t} and {x < t}.
For all x,y ∈ [−1,1]n we say that x dominates y and we write x � y, if xi � yi, i = 1, . . . , n. Let us consider
the set Q = {(A,B) ∈ 2X × 2X | A ∩ B = ∅} of all disjoint pairs of subsets of X, see [12]. With respect to the
binary relation � on Q defined as (A,B) � (C,D) iff A ⊆ C and B ⊇ D, Q is a lattice, i.e., a partially ordered
set in which any two elements have a unique supremum (A,B) ∨ (C,D) = (A ∪ C,B ∩ D) and a unique infimum
(A,B)∧ (C,D) = (A∩C,B ∪D). For all (A,B) ∈ Q the vector 1(A,B) ∈ [−1,1]n is the vector whose ith component
equals 1 if i ∈ A, equals −1 if i ∈ B and equals 0 else. A bipolar aggregation function f : [−1,1]n → [−1,1] is a
function such that f (x) � f (y) whenever x � y and f (1(X,∅)) = 1, f (1(∅,X)) = −1 and f (1(∅,∅)) = 0. We indicate
with A[−1,1]n the set of aggregation functions on [−1,1]n.

Definition 1. A function μb :Q → [−1,1] is a (normalized) bi-capacity [12,13,19] on X if

• μb(∅,∅) = 0, μb(X,∅) = 1 and μb(∅,X) = −1;
• μb(A,B) � μb(C,D) for all (A,B), (C,D) ∈Q such that (A,B) � (C,D).

By the sake of simplicity, we shortly denote μb((A,B)) with μb(A,B). Note that the specification of bi-capacities
generally requires 3n − 1 parameters. In order to reduce the number of these parameters (and complexity of bi-
capacities), some authors have proposed the notion of k-additivity of bi-capacities by using the Möbius and bi-polar
Möbius transform. For more details on this topic, the reader is referred to literature [12] and [6].
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Definition 2. The bipolar Choquet integral of x = (x1, . . . , xn) ∈ [−1,1]n with respect to the bi-capacity μb is given
by [12,13,19]:

Chb(x,μb) =
1∫

0

μb

({x > t}, {x < −t})dt. (1)

The bipolar Choquet integral of x = (x1, . . . , xn) ∈ [−1,1]n with respect to the bi-capacity μb can be rewritten as

Chb(x,μb) =
n∑

i=1

(|xσ(i)| − |xσ(i−1)|
)
μb

({
x � |xσ(i)|

}
,
{
x � −|xσ(i)|

})
, (2)

being σ : X → X any permutation of indexes such that 0 = |xσ(0)| � |xσ(1)| � · · · � |xσ(n)|. Let us note that to ensure
that ({x � |t |}, {x � −|t |}) ∈ Q for all t ∈ R, we adopt the convention—which will be maintained trough all the
paper—that in the case of t = 0 the inequality xj � 0 is to be understood as xj < 0.

In this paper we use the symbol ∨ to indicate the maximum and ∧ to indicate the minimum. The symmetric
maximum of two elements—introduced and discussed in [9,10]—is defined by the following binary operation:

a � b =
⎧⎨
⎩

−(|a| ∨ |b|) if b �= −a and either |a| ∨ |b| = −a or = −b,

0 if b = −a,

|a| ∨ |b| else.

Alternatively the symmetric maximum of a, b ∈ R can be written as

a � b = sign(a + b)
(|a| ∨ |b|).

The symmetric minimum of two elements [9,10] is defined as:

a � b =
{ −(|a| ∧ |b|) if sign(b) �= sign(a),

|a| ∧ |b| else.

Alternatively the symmetric minimum of a, b ∈R can be written as

a � b = sign(a · b)
(|a| ∧ |b|).

In [31] it has been shown that on the domain [−1,1] the symmetric maximum coincides with two recent symmetric
extensions of the Choquet integral, the balancing Choquet integral and the fusion Choquet integral, when they are
computed with respect to the strongest capacity (i.e. the capacity which takes the value zero on the empty set and
one elsewhere). However, the symmetric maximum of a set X cannot be defined without any ambiguity, being �

non-associative. Suppose that X = {3,−3,2}, then (3 � −3) � 2 = 2 or 3 � (−3 � 2) = 0, depending on the order
of aggregation. Several possible extensions of the symmetric maximum for dimension n,n > 2, have been proposed
(see [10,16] and also the relative discussion in [31]). One of these extensions is based on the splitting rule applied to
the maximum and to the minimum as described in the following. Given X = {x1, . . . , xm} ⊆ R, the bipolar maximum
of X, shortly

∨b
X, is defined as

∨b
X =

(∨
X

)
�

(∧
X

)
. (3)

In the same way and for an infinite set X, it is possible to define the concept of bipolar supremum of X, supbip X,
as the symmetric maximum applied to the supremum and the infimum of X:

supbipX = supX � infX,

with the convention that ±∞ � l = ±∞ for all l ∈R and +∞ � (−∞) = 0.

Definition 3. The bipolar Shilkret integral of x = (x1, . . . , xn) ∈ [−1,1]n with respect to the bi-capacity μb is given
by [21]:

Shb(x,μb) =
∨
i∈X

b{|xi | · μb

({
x � |xi |

}
,
{
x � −|xi |

})}
. (4)
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Definition 4. The bipolar Sugeno integral of x = (x1, . . . , xn) ∈ [−1,1]n with respect to the bi-capacity μb on X is
given by [21]:

Sub(x,μb) =
∨
i∈X

b{|xi | � μb

({
x � |xi |

}
,
{
x � −|xi |

})}
. (5)

The discrete bipolar Choquet Shilkret and Sugeno integrals defined in (1), (4) and (5) are aggregation functions
from A[−1,1]n and they have been axiomatized in [21]. Next sections provide a general framework for these discrete
bipolar fuzzy integrals.

3. Discrete universal integrals and discrete bipolar universal integrals

In order to define universal integrals it is necessary to introduce the concept of semicopula [2].

Definition 5. A semicopula is a function ⊗ : [0,1]2 → [0,1] such that for all x, y, t and z ∈ [0,1] the following
axioms are satisfied:

• monotonicity: x ⊗ y � t ⊗ z, whenever x � t and y � z;
• 1 is a neutral element: 1 ⊗ x = x ⊗ 1 = x.

Note that a semicopula has 0 as annihilator. Indeed 0 � a⊗0 � 1⊗0 = 0 and 0 � 0⊗a � 0⊗1 = 0. A commutative
and associative semicopula is called a t-norm. Typical examples of t-norms are the minimum (∧), the product (·), and
the Lukasiewicz t-norm defined by TL(x, y) = (x + y − 1) ∨ 0.

The concept of universal integrals, which can be defined for arbitrary monotone measures on arbitrary measurable
spaces (S;A) and for arbitrary measurable functions f : S → [0,∞], was axiomatically introduced in [27]. Here
we use the concept of [0,1]-valued discrete universal integral [26], defined on the union of all measurable spaces
(Xn,2Xn), where the finite space Xn = {1, . . . , n} is considered for all n ∈ N and is equipped with the σ -algebra 2Xn .
Functions from Xn to [0,1] are identified with n-dimensional vectors of [0,1]n. Let Mn denote the set of all capacities
on Xn i.e., the set of all monotone set functions m : 2Xn → [0,1] such that m(∅) = 0 and m(Xn) = 1. For all n ∈ N,
and E ⊆ Xn the characteristic function 1E is identified with the vector 1E ∈ [0,1]n whose ith component equals 1 if
i ∈ E and equals 0 otherwise.

Definition 6. A function I : ⋃n∈N(Mn×[0,1]n) → [0,1] is a [0,1]-valued discrete universal integral [26] if it satisfies
the following axioms:

(I1) I (m,x) is non-decreasing with respect to m and with respect to x;
(I2) I (m,1E) = m(E), for all n ∈N, m ∈ Mn and E ⊆ Xn;
(I3) I (m, c · 1Xn) = c, for all n ∈ N, m ∈ Mn and c ∈ [0,1];
(I4) I (m1,x1) = I (m2,x2), for all (m1,x1) ∈ Mn1 ×[0,1]n1 , (m2,x2) ∈ Mn2 ×[0,1]n2 , n1, n2 ∈ N, such that for all

t ∈ [0,1], m1({x1 � t}) = m2({x2 � t}).

In [26] the following proposition has been stated.

Proposition 1. Let I be a [0,1]-valued discrete universal integral. Then there exists a semicopula ⊗ such that we
have I (m, c · 1A) = c ⊗ m(A) for all n ∈N, m ∈ Mn, c ∈ [0,1] and A ⊆ Xn.

Due to Proposition 1 in Definition 6, axioms (I2) and (I3) can be equivalently substituted with the following axiom

(I5) there exists a semicopula ⊗ such that I (m, c · 1A) = c ⊗ m(A) for all n ∈N, m ∈ Mn, c ∈ [0,1] and A ⊆ Xn.

The following theorem represents an alternative axiomatic characterization of the [0,1]-valued discrete universal
integral.
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Theorem 1. A function I : ⋃n∈N(Mn × [0,1]n) → [0,1] is a [0,1]-valued discrete universal integral if and only if it
satisfies the following axioms:

(I5) there exists a semicopula ⊗ such that I (m, c · 1A) = c ⊗ m(A) for all n ∈N, m ∈ Mn, c ∈ [0,1] and A ⊆ Xn.
(I6) I (m1,x1) � I (m2,x2) for all (m1,x1) ∈ Mn1 ×[0,1]n1 and (m2,x2) ∈ Mn2 ×[0,1]n2 , n1, n2 ∈ N, such that for

all t ∈ [0,1], m1({x1 � t}) � m2({x2 � t}).

Proof. The sufficiency part is obvious since it is easily checked that (I6) implies (I1) and (I4) while (I5) implies (I2)
and (I3). Now we prove the necessity part.

Let us suppose that axioms (I1)–(I4) hold. Axiom (I5) is true by Proposition 1 and, then, we only have to prove
axiom (I6). Let us suppose that for some n1, n2 ∈ N, Xn1 = {c1, . . . , cn1} and Xn2 = {d1, . . . , dn2} are two sets of
disjoint criteria, i.e. Xn1 ∩ Xn2 = ∅. Consider (m1,x) ∈ Mn1 × [0,1]n1 and (m2,y) ∈ Mn2 × [0,1]n2 such that for
all t ∈ [0,1], m1({x � t}) � m2({y � t}). If x = (x1, . . . , xn1) and y = (y1, . . . , yn2) let us consider vector z =
(x1, . . . , xn1 , y1, . . . , yn2) ∈ [0,1]n1+n2 and the two capacities m,m : 2Xn1∪Xn2 → [0,1] defined for all E ⊆ Xn1 ∪Xn2

by

m(E) =
∨{

m1(E ∩ X1),m2(E ∩ X2)
}

and

m(E) =
∧{

m1(E ∩ X1),m2(E ∩ X2)
}
.

By axiom (I4) we have that I (m1,x1) = I (m,z) and I (m2,x2) = I (m,z) and by axiom (I1), being m � m,
I (m,z) � I (m,z). Note that the condition Xn1 ∩ Xn2 = ∅ does not represent a limitation, since by axiom (I4),
the value I (m,x) does not depend on the underlying measurable space (Xn,2Xn) but only on the values of m ∈ Mn

on the correspondent subsets {x � t} from Xn. �
Remark 1. Observe that the necessity in Theorem 1 can be shown also alternatively by means of [27, Proposition 2.7].

Now let us generalize the concept of discrete universal integral from the scale [0,1] to the symmetric scale [−1,1]
by extending Definition 6 and generalizing the definition of bipolar universal integrals given in [20]. Again the finite
space Xn is considered for all n ∈ N and similarly, the lattice Q, which will be denoted with Qn and the set of all
normalized bi-capacities on Xn, which will be denoted with Mb

n . Functions from Xn to [−1,1] are identified with
n-dimensional vectors of [−1,1]n.

Definition 7. A function Ib : ⋃n∈N(Mb
n × [−1,1]n) → [−1,1] is a [−1,1]-valued discrete bipolar universal integral

if it satisfies the following axioms:

(U1) Ib(μb,x) is non-decreasing with respect to μb and with respect to x;
(U2) Ib(μb,1(A,B)) = μb(A,B), for all n ∈ N, μb ∈ Mb

n and (A,B) ∈ Qn;
(U3) Ib(μb, c · 1(Xn,∅)) = −Ib(μb, c · 1(∅,Xn)) = c, for all n ∈N, μb ∈ Mb

n , c ∈ [0,1];
(U4) if Ib(μb1 ,1(A1,B1)) = −Ib(μb2 ,1(A2,B2)) for some n1, n2 ∈ N, μb1 ∈ Mb

n1
, μb2 ∈ Mb

n2
, (A1,B1) ∈ Qn1 and

(A2,B2) ∈ Qn2 , then for all c ∈ [0,1],

Ib(μb1 , c · 1(A1,B1)) = −Ib(μb2 , c · 1(A2,B2));
(U5) Ib(μb1 ,x1) = Ib(μb2 ,x2) for all pairs (μb1 ,x1) ∈ Mb

n1
×[−1,1]n1 and (μb2 ,x2) ∈ Mb

n2
×[−1,1]n2 , n1, n2 ∈ N,

such that for all t ∈]0,1],

μb1

({x1 � t}, {x1 � −t}) = μb2

({x2 � t}, {x2 � −t}).
The following proposition holds
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Proposition 2. Let Ib : ⋃n∈N(Mb
n ×[−1,1]n) → [−1,1] be a [−1,1]-valued discrete bipolar universal integral. Then

there exists a semicopula ⊗ such that for all n ∈ N, μb ∈ Mb
n , c ∈ [0,1] and (A,B) ∈Qn,

Ib(μb, c · 1(A,B)) = sign
(
μb(A,B)

)(
c ⊗ ∣∣μb(A,B)

∣∣).
Proof. First of all let us observe that for any c ∈ [0,1] and for any n ∈ N, n � 2, we can define a bi-capacity μb on
Qn by setting μb(A,B) = 0 if A ∩ B �= ∅, μb(A,∅) = c and μb(∅,A) = −c if A ∈ 2Xn \ {∅,Xn}.

Now, for all a, c ∈ [0,1], let us define the function a ⊗c = Ib(μb, a1(A,B)) = −Ib(μ
∗
b, a1(A∗,B∗)), for all n,n∗ ∈ N,

μb ∈ Mb
n , μ∗

b ∈ Mb
n∗ and (A,B) ∈Qn, (A∗,B∗) ∈Qn∗ such that μb(A,B) = c and μ∗

b(A
∗,B∗) = −c. Due to axioms

(U4) and (U5) and to the remark at the beginning of the proof, this definition is well posed.
Now we check that ⊗ is a semicopula, starting by proving monotonicity. Suppose that a1, a2 ∈ [0,1] with a1 < a2,

then by monotonicity of Ib we have that a1 ⊗ c = Ib(μb, a11(A,B)) � a2 ⊗ c = Ib(μb, a21(A,B)) for all c ∈ [0,1]
and for some n ∈ N, μb ∈ Mb

n such that μb(A,B) = c. If b1, b2 ∈ [0,1] with b1 < b2 there exists an n ∈ N, n � 3,
μb ∈ Mb

n , E ⊆ F ⊆ Xn such that μb(E,∅) = b1 and μb(F,∅) = b2 (see the beginning of the proof). Now, for all
a ∈ [0,1] we have that a ⊗ b1 = Ib(μb, a1(E,∅)) � a ⊗ b2 = Ib(μb, a1(F,∅)), by monotonicity of Ib . We conclude that
⊗ is non-decreasing in both components.

Now we prove that 1 is a neutral element for ⊗. For all a ∈ [0,1], a ⊗ 1 = Ib(μb, a1Xn) = a by (U3) and 1 ⊗ a =
Ib(μb,1(A,B)) = a for all n ∈N, and μb ∈ Mb

n such that μb(A,B) = a, by (U2).
Finally, it is obvious, by definition of ⊗, that for all n ∈ N, μb ∈ Mb

n , c ∈ [0,1] and (A,B) ∈ Qn, Ib(μb, c ·
1(A,B)) = sign(μb(A,B)) (c ⊗ |μb(A,B)|). �

Due to Proposition 2 in Definition 7, axioms (U2), (U3) and (U4) can be equivalently substituted with the following
axiom

(U6) there exists a semicopula ⊗ such that for all n ∈ N, μb ∈ Mb
n , c ∈ [0,1] and (A,B) ∈ Qn, Ib(μb, c · 1(A,B)) =

sign(μb(A,B)) (c ⊗ |μb(A,B)|).

Note that the discrete bipolar Choquet, Shilkret and Sugeno integrals (1), (4) and (5) are [−1,1]-valued discrete
bipolar universal integrals in the sense of Definition 7. Observe that the underlying semicopula ⊗ is the standard
product in the case of the bipolar Choquet and Shilkret integrals, while ⊗ is the minimum (with neutral element β = 1)
for the bipolar Sugeno integral. Note also that for the bipolar Sugeno integral Sub(μb, c · 1(A,B)) = c � μb(A,B) is
the symmetric minimum.

The following theorem represents an alternative axiomatic characterization of the [−1,1]-valued discrete bipolar
universal integral.

Theorem 2. A function Ib : ⋃n∈N(Mb
n × [−1,1]n) → [−1,1] is a [−1,1]-valued discrete bipolar universal integral

if and only if it satisfies the following axioms:

(U6) there exists a semicopula ⊗ such that for all n ∈ N, μb ∈ Mb
n , c ∈ [0,1] and (A,B) ∈ Qn, Ib(μb, c · 1(A,B)) =

sign(μb(A,B)) (c ⊗ |μb(A,B)|).
(U7) Ib(μb1 ,x1) � Ib(μb2 ,x2) for all pairs (μb1 ,x1) ∈ Mb

n1
× [−1,1]n1 and (μb2 ,x2) ∈ Mb

n2
× [−1,1]n2 ,

n1, n2 ∈ N, such that for all t ∈]0,1],
μb1

({x1 � t}, {x1 � −t}) � μb2

({x2 � t}, {x2 � −t}).
Proof. The sufficiency part is obvious, since it is easily checked that axiom (U7) implies axioms (U1) and (U5) while
axiom (U6) implies (U2), (U3) and (U4). Now we prove the necessity part.

Let us suppose that axioms (U1)–(U5) hold. Axiom (U6) is true by Proposition 2 and, then, we only have to prove
axiom (U7).

Suppose that for some n1, n2 ∈ N, X1 = {c1, . . . , cn1} and X2 = {d1, . . . , dn2} are two sets of criteria with Xn1 ∩
Xn2 = ∅ and X = Xn1 ∪Xn2 . Let us indicate Q1 = {(A,B) | A,B ∈ 2X1,A∩B = ∅}, Q2 = {(A,B) | A,B ∈ 2X2,A∩
B = ∅} and Q = {(A,B) | A,B ∈ 2X,A ∩ B = ∅}. If x = (x1, . . . , xn1) and y = (y1, . . . , yn2) let us consider z =
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(x1, . . . , xn1 , y1, . . . , yn2) ∈ [−1,1]n1+n2 and the two bi-capacities μb,μb
: Q → [−1,1] defined for all (A,B) ∈ Q

by

μb(A,B) =
∨{

μb1(A ∩ X1,B ∩ X1),μb2(A ∩ X2,B ∩ X2)
}

and

μ
b
(E) =

∧{
μb1(A ∩ X1,B ∩ X1),μb2(A ∩ X2,B ∩ X2)

}
.

By axiom (U4) we have that Ib(μb1 ,x) = Ib(μb,z) and Ib(μb2 ,y) = Ib(μ
b
,z) and by axiom (U1), being μb � μ

b
,

Ib(μb,z) � Ib(μ
b
,z). Note that the condition Xn1 ∩Xn2 = ∅ does not represent a limitation, since by axiom (U4), the

value Ib(μb,x) does not depend on the underlying space (Xn,Qn) but only on the values of μb on the correspondent
element of Qn. �
4. An illustrative example

When considering the unipolar integrals, the Shilkret integral is always weaker (i.e., for any function f and any
capacity m it cannot give a greater output) as the Choquet and the Sugeno integrals (two later being incomparable, in
general). Considering the Hamacher product given by

a ⊗ b =
{

0 if a = b = 0
a·b

1−(1−a)(1−b)
else,

as a pseudo-multiplication on [0,1]. The weakest universal integral based on this pseudo-multiplication is stronger
than the Shilkret integral, weaker then the Sugeno integral, but incomparable with the Choquet integral. In the fol-
lowing example we introduce its bipolar version, which obviously differs from bipolar Choquet, Shilkret and Sugeno
integrals.

Let Ib : ⋃n∈N(Mb
n × [−1,1]n) → [−1,1] be given by

I (μb,x) = supbip
{

t · μb({x � t}, {x � −t})
1 − (1 − t)(1 − |μb({x � t}, {x � −t})|)

∣∣∣ t ∈]0,1]
}
. (6)

Note that (6) defines a bipolar universal integral. Indeed let us define for all (μb,x) ∈ Mb
n × [−1,1]n and for all

t ∈ [0,1], h(μb,x)(t) = μb({x � t}, {x � −t}). Then if μb � μ′
b and x � x′, we have h(μb,x) � h(μ′

b,x
′) and being

the function t · h/[1 − (1 − t)(1 − |h|)] non-decreasing in h ∈ R, we conclude that I (μb,x) � I (μ′
b,x

′) using the
monotonicity of the bipolar supremum. Moreover, for all n ∈N, μb ∈ Mn, c ∈ [0,1] and (A,B) ∈ Qn,

I (μb, c · 1(A,B)) = sign
(
μb(A,B)

) c · |μb(A,B)|
1 − (1 − c)(1 − |μb(A,B)|)

= sign
(
μb(A,B)

)(
c ⊗ ∣∣μb(A,B)

∣∣). (7)

which means that the semicopula ⊗ underlying the bipolar universal integral (6) is the Hamacher product.
Now let us compute this integral in the simple situation of X2 = {1,2}. In this case the functions we have to

integrate can be identified with a two dimensional vector (x, y) ∈ [−1,1]2 and we should define a bi-capacity on Q2.
For example

μb

({1},∅) = 0.6, μb

({2},∅) = 0.2, μb

({1}, {2}) = 0.1,

μb

({2}, {1}) = −0.1, μb

(∅, {1}) = −0.3 and μb

(∅, {2}) = −0.5.

First let us consider the four cases |x| = |y|. If x � 0:

I
(
μb, (x, x)

) = x, I
(
μb, (x,−x)

) = 0.1x

0.1 + 0.9x
,

I
(
μb, (−x, x)

) = −0.1x

0.1 + 0.9x
and I

(
μb, (−x,−x)

) = −x.

For all the other possible cases, we have the following formula
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I
(
μb, (x, y)

) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∨b{y, 0.6x
0.6+0.4x

} x > y � 0∨b{ 0.1|y|
0.1+0.9|y| ,

0.6x
0.6+0.4x

} x � 0 > y > −x∨b{ 0.1x
0.1+0.9x

,
−0.5|y|

0.5+0.5|y| } x � 0 � −x > y∨b{x,
−0.5|y|

0.5+0.5|y| } 0 > x > y∨b{x,
0.2y

0.2+0.8y
} y > x � 0∨b{ −0.1|x|

0.1+0.9|x| ,
0.2y

0.2+0.8y
} y � 0 > x > −y∨b{ −0.1y

0.1+0.9y
,

−0.1|x|
0.1+0.9|x| } y � 0 � −y > x∨b{y,

−0.3|x|
0.3+0.7|x| } 0 > y > x.

(8)

Observe that for arbitrary two [−1,1]-valued discrete bipolar integrals Ib and I ∗
b , also their convex combination is

a bipolar universal integral, as the following proposition states.

Proposition 3. Let I ∗
b and I ∗∗

b be two [−1,1]-valued discrete bipolar universal integrals from
⋃

n∈N(Mb
n × [−1,1]n)

to [−1,1]. Then, for each λ ∈ [0,1], the function Ib defined by Ib = λI ∗
b + (1−λ)I ∗∗

b , is also a [−1,1]-valued discrete
bipolar universal integral.

Proof. Suppose that I ∗
b and I ∗∗

b are related to semicopulas ⊗1 and ⊗2 respectively. Let λ be fixed in ]0,1[. It is
trivial to show that ⊗ = λ ⊗1 +(1 − λ)⊗2 is again a semicopula. Now it can be easily checked that Ib, with re-
spect to semicopula ⊗, satisfies conditions of Theorem 2 and, then, it is a [−1,1]-valued discrete bipolar universal
integral. �

From Proposition 3, it follows that a simple way to generate new bipolar universal integrals is by convex combina-
tions of given bipolar universal integrals. For example, convex combinations of Sugeno and Choquet bipolar integrals
can be useful when fitting bipolar integrals to some real data, forming a parametric class of bipolar universal integrals.

5. Bipolar universal integrals and axiomatic foundation in terms of aggregation functions

Suppose Ib : ⋃n∈N(Mb
n × [−1,1]n) → [−1,1] is a [−1,1]-valued discrete bipolar universal integral and for some

n ∈ N, consider a fixed μ∗
b ∈ Mb

n . The function Iμ∗
b
: [−1,1]n → [−1,1] defined by Iμ∗

b
(x) = Ib(μ

∗
b,x) for all x ∈

[−1,1]n, is a bipolar aggregation function from A[−1,1]n . Thus any [−1,1]-valued discrete bipolar universal integral
can be viewed as a family of aggregations functions, Iμb

(·) ∈ ⋃
n∈NA[−1,1]n , one for each bi-capacity μb ∈ ⋃

n∈N Mb
n .

In this section we shall characterize [−1,1]-valued discrete bipolar universal integrals, starting from a family of
aggregation functions of

⋃
n∈NA[−1,1]n satisfying some desired properties.

Consider a family Fb ⊆ ⋃
n∈NA[−1,1]n with Fb �= ∅ and consider the following axioms on Fb:

(B1) For all f ∈ Fb ∩ A[−1,1]n1 , g ∈ Fb ∩ A[−1,1]n2 and x ∈ [−1,1]n1 , y ∈ [−1,1]n2 , n1, n2 ∈ N, such that for all
t ∈]0,1]

f (1({x�t},{x�−t})) � g(1({y�t},{y�−t})),
then f (x) � g(y).

(B2) Every f ∈ Fb is idempotent, i.e., for all n ∈ N, c ∈ [−1,1] and f ∈ Fb ∩ A[−1,1]n , f (c · 1(Xn,∅)) = −f (c ·
1(∅,Xn)) = c.

(B3) For all n ∈ N and for all μb ∈ Mb
n there exists f ∈ Fb ∩ A[−1,1]n such that f (1(A,B)) = μb(A,B) for all

(A,B) ∈ Qn.
(B4) For all n1, n2 ∈N, f ∈Fb ∩A[−1,1]n1 , g ∈Fb ∩A[−1,1]n2 , and (A1,B1) ∈ Qn1, (A2,B2) ∈Qn2 , such that

f (1(A1,B1)) = −g(1(A2,B2)),

then for all c ∈ [0,1],
f (c · 1(A1,B1)) = −g(c · 1(A2,B2)).
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Observe that the above introduced axioms (B1)–(B4) are independent.

Theorem 3. Axioms (B1)–(B4) hold for a family Fb ⊆ ⋃
n∈NA[−1,1]n , if and only if there exists a [−1,1]-valued

discrete bipolar universal integral Ib with a semicopula ⊗ such that, for all n ∈ N and f ∈Fb ∩A[−1,1]n there exists
a bi-capacity μb(f ) ∈ Mb

n such that

f (x) = Ib

(
μb(f ),x

)
for all x ∈ [−1,1]n. (9)

More precisely,

(a) for all n ∈ N, f ∈ Fb ∩A[−1,1]n and (A,B) ∈Qn, μb(f )(A,B) = f (1(A,B));
(b) for all x, y ∈ [0,1], x ⊗y = f (x1(A,B)), with f (1(A,B)) = y, (A,B) ∈ Qn and f ∈ Fb ∩A[−1,1]n for some n ∈ N.

Proof. First we prove the sufficiency part, i.e. we suppose that axioms (B1)–(B4) hold for the family Fb and we prove
the existence of a [−1,1]-discrete bipolar universal integral satisfying Eq. (9).

Our first step is to prove that for any n ∈ N and f ∈ Fb ∩ A[−1,1]n we can define a bi-capacity by means of the
relationship

μb(f )(A,B) = f (1(A,B)) for all (A,B) ∈Qn.

Being f a bipolar aggregation function, μb(f )(Xn,∅) = f (1(Xn,∅)) = 1, μb(f )(∅,Xn) = f (1(∅,Xn)) = −1 and
μb(f )(∅,∅) = f (1(∅,∅)) = 0. Moreover, if (A,B), (C,D) ∈ Qn with (A,B) � (C,D) then 1(A,B) � 1(C,D) and by
monotonicity of f we have that μb(f )(A,B) = f (1(A,B)) � f (1(C,D)) = μb(f )(C,D). Thus for any f ∈ Fb, μb(f )

is a bi-capacity.
Our second step is to prove that a semicopula is defined by setting for all x, y ∈ [0,1], x ⊗ y = f (x1(A,B)), with

f (1(A,B)) = y, (A,B) ∈ Qn and f ∈ Fb ∩ A[−1,1]n for some n ∈ N. First of all observe that the definition of ⊗
is well posed. Indeed, for any b ∈ [0,1] there exist n ∈ N, f ∈ Fb ∩ A[−1,1]n and (A,B), (C,D) ∈ Qn such that
f (1(A,B)) = b and f (1(C,D)) = −b by (B3) (see also the beginning of the proof of Proposition 2). Moreover, if for
some f ∈ Fb ∩ A[−1,1]n1 , g ∈ Fb ∩ A[−1,1]n2 and c ∈ [0,1] we have that f (1(A,B)) = g(1(C,D)) with (A,B) ∈ Qn1

and (C,D) ∈ Qn2 , then f (c1(A,B)) = g(c1(C,D)) by (B1), because

f (1({c1(A,B)�t},{c1(A,B)�−t})) = g(1({c1(C,D)�t},{c1(C,D)�−t})) for all t ∈]0,1].
Thus, ⊗ is well defined and we must prove that it is a semicopula.

To prove that ⊗ is non-decreasing, let us consider x1, x2, y1, y2 ∈ [0,1] such that x1 � x2 and y1 � y2. By definition
there exist f ∈ Fb ∩ A[−1,1]n1 , g ∈ Fb ∩ A[−1,1]n2 such that we have that x1 ⊗ y1 = f (x11(A,B)) with (A,B) ∈
Qn1 such that f (1(A,B)) = y1 and x2 ⊗ y2 = g(x21(C,D)) with (C,D) ∈ Qn2 such that g(1(C,D)) = y2. It results
f (x11(A,B)) � g(x21(C,D)) by (B1), because

f (1({x11(A,B)�t},{x11(A,B)�−t})) � g(1({x21(C,D)�t},{x21(C,D)�−t})) for all t ∈]0,1].
Now we prove that 1 is a neutral element for ⊗. For all a ∈ [0,1] we have that for any f ∈ Fb ∩ A[−1,1]n , a ⊗ 1 =
f (a1(Xn,∅)) = a by idempotency of f . Moreover, by definition of ⊗ we have that 1 ⊗ a = f (1 · 1(A,B)) = a for some
f ∈Fb ∩A[−1,1]n and (A,B) ∈ Qn. We conclude that ⊗ is a semicopula.

Let us note that, due to axiom (B4), we could equivalently define ⊗ by setting for all x, y ∈ [0,1], ⊗
(x, y) =

−f (x1(A,B)), with f (1(A,B)) = −y with (A,B) ∈Qn, f ∈ Fb ∩A[−1,1]n for some n ∈N.
For any n ∈ N and f ∈ Fb ∩ A[−1,1]n we have defined a bi-capacity by means of μb(f )(A,B) = f (1(A,B)) for

all (A,B) ∈ Qn. On the converse for any n ∈ N and μb ∈ Mb
n , by (B3) there exists an f ∈ Fb ∩ A[−1,1]n such

that f (1(A,B)) = μb(A,B) for all (A,B) ∈ Qn. Axiom (B1) ensures that function f is unique, indeed: suppose
that f (1(A,B)) = g(1(A,B)) for all (A,B) ∈ Qn, then by (B1) for all x ∈ [−1,1]n we have that f (1({x�t},{x�−t})) =
g(1({x�t},{x�−t})) for all t ∈]0,1] and then f (x) = g(x). Due to the proved uniqueness we indicate with fμb

the
function from Fb such that fμb

(1(A,B)) = μb(A,B) for all (A,B) ∈ Qn and, obviously, μb(fμ∗
b
) = μ∗

b .

Aggregation functions from Fb define a function Ib : ⋃n∈N(Mb
n × [−1,1]n) → [−1,1] by means of Ib(μb,x) =

fμb
(x) for all (μb,x) ∈ ⋃

n∈N(Mb
n × [−1,1]n). Let us prove that the function Ib is a bipolar universal integral with

respect to semicopula ⊗.
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We use the characterization of Theorem 2, then we have to prove that Ib satisfies axioms (U6) and (U7).
For all n ∈ N, μb ∈ Mb

n , c ∈ [0,1] and (A,B) ∈ Qn, Ib(μb, c · 1(A,B)) = fμb
(c · 1(A,B)). If fμb

(1(A,B)) =
μb(A,B) � 0, then by definition of ⊗, fμb

(c · 1(A,B)) = c ⊗ μb(A,B), while if fμb
(1(A,B)) = μb(A,B) < 0, then,

again by definition of ⊗ and by axiom (B4), fμb
(c · 1(A,B)) = −c ⊗|μb(A,B)|. Thus, in any case Ib(μb, c · 1(A,B)) =

sign(μb(A,B))(c ⊗ |μb(A,B)|) and (U6) is proved.
Consider (μb1,x1) ∈ Mb

n1
× [−1,1]n1 and (μb2 ,x2) ∈ Mb

n2
× [−1,1]n2 , n1, n2 ∈ N, such that for all t ∈]0,1],

μb1({x1 � t}, {x1 � −t}) � μb2({x2 � t}, {x2 � −t}). By definition this means fμb1
(x1) = Ib(μb1 ,x1) � fμb2

(x2) =
Ib(μb2 ,x2), which proves (U7) and concludes the sufficiency part.

Now we prove the necessity part. Suppose that Ib : ⋃n∈N(Mb
n ×[−1,1]n) → [−1,1] is a bipolar universal integral

with respect to some semicopula ⊗. For fixed n ∈ N, μb ∈ Mb
n the Iμb

: [−1,1]n → [−1,1] defined by Iμb
(x) =

Ib(μb,x) for all x ∈ [−1,1]n, is a bipolar aggregation function. Let us prove that the family of aggregation functions
Fb = {Iμb

| μb ∈ ⋃
n∈N Mb

n} satisfies axioms (B1)–(B4). Since Ib is a discrete universal integral, it satisfies axioms
(U6) and (U7) of Theorem 2 and then (B1) follows directly by definition of Fb and by (U7) while (B2), (B3) and (B4)
follow by definition of Fb and by (U6). �
6. Conclusions

In this paper we have defined and axiomatically characterized the [−1,1]-valued discrete bipolar universal integral,
thus providing a common frame including the discrete bipolar Choquet, Shilkret and Sugeno integrals. Moreover,
an axiomatic characterization of bipolar universal integrals in the framework of bipolar aggregation functions was
introduced, too. We believe that the concept of bipolar universal integral will allow new theoretical developments,
where the bipolarity of choices is involved, both in MCDA as well as in decision under risk and uncertainty.
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