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1. Introduction

Non-additive measures and corresponding integrals can be used for modelling problems in non-additive environment.
Since Sugeno [23] initiated research on fuzzy measure and fuzzy integral (known as Sugeno integral), this area has been
widely developed and a wide variety of topics have been investigated (see, e.g., [3,7,19,21,25] and references therein).

Integral inequalities are an important aspect of the classical mathematical analysis [4,22]. Recently, Roman-Flores and his
collaborators generalized several classical integral inequalities to Sugeno integral (cf. [6,8]). Flores-Franuli¢ and Roman-Flo-
res [6] provided a Chebyshev type inequality for Lebesgue measure-based Sugeno integral of continuous and strictly
monotone functions. This inequality was generalized to arbitrary fuzzy measure-based Sugeno integral of monotone func-
tions by Ouyang et al. [15]. Later, Mesiar, Ouyang and Li further generalized this inequality to a rather general form
[12,16-18]. Jensen inequality was generalized in [20]. Some other inequalities are proved in [1,2]. In [8] Flores-Franuli¢
et al. proved a Stolarsky type inequality for Lebesgue measure-based Sugeno integral and a continuous and strictly monotone
function f : [0,1] — [0, 1]. In this contribution, we generalize this inequality to fuzzy measure-based Sugeno integral and a
general monotone function f.

After recalling some basic concepts and known results in the next section, Section 3 presents our main results, as
generalization of Stolarsky inequality for Sugeno integral obtained in [8], including illustrative examples. In Section 4,
Stolarsky theorem for Choquet integral is shown. Finally, in Section 5, some concluding remarks are added.
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2. Preliminaries

In this section we recall some basic definitions and previous results which will be used in the sequel. Let (X,.4) be a
measurable space, i.e., X is a non-void set and A a g-algebra of subsets of X. Throughout this paper, all considered subsets
are supposed to belong to A. Let F,(X) denote the set of all measurable functions f : X — [0, 1] with respect to .A. For
f e F.(X), we will denote by F, the set {x € X|f(x) > a} for o > 0. Clearly, F, is nonincreasing with respect to o, i.e.,
o < B implies F, D Fg. In what follows, all considered functions belong to F,(X), and we will often exploit the notation
f(a,) or f(a_) for a function f defined on [0, 1] and a € ]0,1], given by f(a,) = lim, - f(a+ €) and f(a_) = lim,_+ f(a — ).

Definition 2.1 [23]. A set function m : A — [0, 1] is called a fuzzy measure if the following properties are satisfied:

(FM1) m(z) = 0,m(X) = 1;
(FM2) A c B implies m(A) < m(B).

When m is a fuzzy measure, the triple (X,.4,m) is called a fuzzy measure space.

Definition 2.2. [19,23,25]. Let (X,.4,m) be a fuzzy measure space and A € A, the Sugeno integral of f on A, with respect to
the fuzzy measure m, is defined by

(S) (/Af dm = ae\{({ll(a AMANFE,)).

When A = X, then

(S)/dem: (S)/f dm:de\[éll(aAm(Fz)).

The following theorem collects some basic properties of Sugeno integral, which can be verified directly.

Theorem 2.3. Let (X,.A,m) be a fuzzy measure space, then

mANF,.) > o< (S) [,f dm = o, where m(ANF,_) =lim,_o m(ANF,_);
(if) m(ANF,,) < a <= (S) [,f dm < o, where m(ANF,.) =lim,_o m(ANF,.);
(S) [f dm < oo <= there exists y < o such that m(ANF,) < a;

(S) [of dm > oo <= there exists y > o such that m(ANF,) > a;

(S) J, 1 dm = m(A);

ACB— (S) [,f dm < (S) f,f dm;

F<g— () [,fdm<(S) [,gdm.

Note that by (i) and (ii) of the above theorem we infer that (S) [, f dm =« if and only if m(ANF,.) > o = m(ANF,,).
Recall that two functions f,g : X — R are said to be comonotone if for all (x,y) € X*> we have
f(x) —fv))(gx) —gW)) = 0.

In [12] we proved a general Chebyshev inequality for Sugeno integral on abstract spaces. Although the fuzzy measure m over
there is assumed to possess continuity, the result remains true if we abandon this assumption, that is, the following theorem

holds.

Theorem 2.4. Let f,g € F, (X) and m be an arbitrary fuzzy measure. Let % : [0,1]* — [0, 1] be continuous and nondecreasing in
both arguments and bounded from above by minimum. If f,g are comonotone, then the inequality

(S)/Af*gdm > ((S)/Afdm>* ((S)/Agdm>

holds.
For a nondecreasing function f:[0,1] —[0,1], its pseudo-inverse fC-1:[0,1] —[0,1] is given by
fEV(E) = sup{x € [0, 1]|f (x) > t}, see [9,10,24].

3. Main results

Our main aim is to generalize Stolarsky-type inequality for Sugeno integral which was proven under special constraints in
[8]. Our next result considers the case on nonincreasing functions. Let B([0, 1]) be the Borel o-algebra over [0, 1].



136 H. Agahi et al./Information Sciences 266 (2014) 134-139

Theorem 3.1. Let f:[0,1] — [0,1] be a nonincreasing function, ([0,1],B([0,1]),m) a fuzzy measure space, and define
h:[0,1] — [0,1] by h(a) =m([0,a]) for a € [0,1]. Let B,y be automorphisms on [0,1] (i.e, B,y :[0,1] — [0,1] are increasing

bijections) and oc = (7! % y~" )_]. If % : [0, 1]2 — [0, 1] is a continuous aggregation function which is jointly strictly increasing and
bounded from above by min, and which is dominated by h, i.e., for all x,y from [0, 1] it holds

h(x x y) = h(x) % h(y),

then
1 1 o1
©) [ sedm = [ fpanxs) [ ro)am (3.1)
where f(a) means the composite function defined on [0, 1] and given by f(o)(x) = f(ot(x)).
Proof. Let ( fo o)dm = aq, )folf(ﬁ) dm=>b and ( fo (y) dm = c. Since the Sugeno integral w.r.t. a fuzzy measure
(mX)=1)is 1dempotent, we know that a,b,c € [f(1),f(0)]. Since

1
) [ ferdm= "\ (Erm(xfaw) > 0) -
0 telf(1)£(0)]

we have

m({xlf(x(x)) > a-}) = a > m({x|f(2(x)) > a.}),

that is

m({xix < o' (f"V(@))}) = a = m({xjx <o (FV(a.)}),

h(o ' (f"(a-))) = a = h(e ' (F~(a.))),
where f(-1 stands for the pseudo-inverse of f. In the same way, we can prove that
h(g~ (fV(b-))) = b > h(g™"(f V(b
and
h(y' (fV () = ¢ = h(y ' (FV (ey)).
On the other hand, by the fact that % is bounded from above by min we have
-1 _ ﬂ—l *,yfl < ﬁ—l /\,})717

which implies that & > g, > 7. Thus we have f(a) < f(f) and f(a) < f(y). Moreover, by the monotonicity of Sugeno integral,
we conclude thata < banda < c.Ifa=bActhena > b x cand (3.1) holds. So without any loss of generality we can assume
that a < b A c. Hence it holds

1
(S) / flaydm=a > h(x ' (f(a,))) = h(e ' (F((bAC) ) =h(B (FI((bAC) ) *y (F((bAC)))
h(B~ (FD (b Ac) ) *h(y  (FED(bAc)) = (B (FV (b)) * h(y " (f! >bxc

- / f(p) dm * (5) / fgydm. D

Remark 3.2. If m is the Lebesgue measure / then we have h = id (the identity mapping) and h(x * y) > h(x) % h(y) for any
operator *. For an arbitrary fuzzy measure m, the corresponding function h satisfies h(x * y) > h(x) % h(y) considering the
aggregation function % = min, i.e., then the constraints of Theorem 3.1 are satisfied.

The following example shows that the condition * < min in Theorem 3.1 is necessary.

Example 3.3. Let % : [0,1)> — [0,1] be defined as x * y = x + y — xy (i.e., % is the probabilistic sum Sp [10]) and g =y = id.
Then o(x) = 1 — /1 — x. Let the fuzzy measure be defined by m = /2, where 1 is the Lebesgue measure, then h(x) = x* and
thus h(x x y) = (X +y —xy)* = x2 +y% — x%y% = h(x) % h(y). If we take f(x) = 1 — x for all x € [0, 1] then we obtain
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1
5 [ fwam=o [ 1oy am= \/ @ra-or =232,

€0,1]

/f %) dm = )/0 VI—xdm=\/ (ta(1-2)).

te[0,1]

Since (1 (f 1) > (L) < @ we conclude that

S/f 2y dm < Y3 /f B) dm * (S /f

which contradicts with inequality (3.1).
The following example shows that the condition h(x % y) > h(x) % h(y) cannot be omitted.

Example 3.4. Let ([0, 1], B[0, 1], m) be a fuzzy measure space such that

m(A) = min (2;,(A), ’KA); 1),

where 1 is the Lebesgue measure. Then h(x) = min (2x,%1). If % is the usual product, then we have

1 1 1 1
(g) =5 <1-n(3)n(3)
Let p(x) = y(x) = x? for all x € [0, 1], then &(x) = x. Put f(x) = max(1 — 20x, 0), then we have

(S)/Olf(oc) dm = (S)/1 max(1 — 20x,0) dm :%,

1 —
(5)/0f B) dm — /fy ) dm = )/0 max(pZOx{O)dm:@o Ly

Therefore

5 [ 'f(a) dm < (9] F) am) () | ) dm).

which violates inequality (3.1).
Till now, only nonincreasing functions f were considered. In the next result, we generalize the Stolarsky-like theorem for
Sugeno integral shown in [8] for nondecreasing functions.

Theorem 3.5. Let f:[0,1] — [0,1] be a nondecreasing function and ([0,1],5([0,1]),m) a fuzzy measure space. Let B,y be

automorphisms on [0,1] (ie., f,7:[0,1] — [0,1] are increasing bijections) and o« = (f~! % y*1)71. If % :[0,1? — [0,1] is any
continuous aggregation function which is jointly strictly increasing and bounded from above by min, then we have

1 o1 o1
5) /O flo)dm > (S)./o ) dm*(S)'/O f(y) dm

Proof. Since the aggregation function % is bounded from above by min, o' = 7' x 91 < 7' Ay~' and thus o > f,00 >
Since fis nondecreasing, we have f(«) > f(B) Af(y) = f(B) * f(y). Note that all the three functions f(«), f(f) and f(y) are non-
decreasing. Applying the Chebyshev type inequality for Sugeno integral (Theorem 2.4), by the monotonicity of Sugeno inte-
gral there holds

(S)/Olf(oc)d /f B)* () /fﬂ ) dm * (S /f D

Let § = x*,7 = x5 and % be the usual multiplication. Thus & = xas. If m is the Lebesgue measure 7, then we have the fol-
lowing result which generalize the main result of [8].

Corollary 3.6. Let f : [0,1] — [0, 1] be a monotone function and 7 be the Lebesgue measure on R. Then the inequality

) /O 1 feam) di > ((S) /0 1 f(x%> dz) ((5) /O 1 f(x%) dz)

holds, where a,b > 0.
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4. Stolarsky inequality for Choquet integral

Recall that Choquet integral is defined on a fuzzy measure space ([0,1],5([0,1]),m) for measurable function
f:10,1] — [0,1] by

(Ch)‘/‘fdm:/o.] m(f > t) dt,

where the right-hand side is the Riemann integral, for more details see [5,7,19]. In the case of lower-semicontinuous fuzzy
measures, for any f and m there is a classical o-additive measure my such that

) [gam= [ ram.

where the right-hand side is the Lebesgue integral. Moreover, if functions f and g are comonotone, then we can consider
my = mg. For more details see [13,14]. Now we are ready to introduce Stolarsky theorem for Choquet integral.

Theorem 4.1. Let ([0, 1], B([0, 1]),m) be a fuzzy measure space such that m is a lower-semicontinuous fuzzy measure absolutely
continuous with respect to the Lebesgue measure 2, i.e., if A(E) = 0 for some E € B([0, 1]) then also m(E) = 0. Then the Stolarsky
inequality holds for the corresponding Choquet integral, i.e., for any nonincreasing function f : [0,1] — [0, 1] it holds

(Ch) / fxas) dm > ((Ch) / f(x%) dm) ((Ch) | / Fxb) dm).

Proof. Observe that for a nonincreasing function f : [0, 1] — [0, 1], also the functions given by f <Xﬁ> f (x%) and f (x%) are

nonincreasing and they are comonotone for arbitrary a > 0 and b > 0. Then there is a g-additive measure (in fact, a proba-
bility measure) m; such that

(ct) [ fost)am = [ am

) [ 1odyam = [ b am.
and

(ch) [ rody dm— [ 'f(xd) dmy.

Moreover, my is absolutely continuous with respect to 4, and thus there is a Radon-Nikodym derivative w = d% such that
1 1
(ch) [ fon) am = [ gy dmy = [ wiareb) d
. JO 0
. 1 1
(ch) [ Sy dm— [ gy dmy = [ woaree) da
. Jo Jo

and

1 1
(ch) [ rodyam= [ 5oy dmy = [ wiaroé) az

Now, it is enough to apply the Stolarsky inequality with general weights shown by Maligranda et al. in [11]. O

5. Conclusion

We have proved a Stolarsky type inequality for Sugeno integral on a fuzzy measure space ([0, 1], 3([0, 1]), m) based on a
product-like operation *. It generalizes the results of [8]. Moreover, we have introduced Stolarsky inequality also for
Choquet integral acting on X = [0, 1]. We believe that our results will contribute to approximation and estimation theory
in information sciences systems when considering Sugeno or Choquet integral.
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