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In this paper, we prove some properties of atoms of weakly null-additive monotone mea-
sures. By using the regularity and weak null-additivity, a sin-gleton characterization of
atoms of monotone measures on a metric space is shown. It is a generalization of previous
results obtained by Pap. The calculation of the Sugeno integral and the Choquet integral
over an atom is also presented, respectively. Similar results for recently introduced univer-
sal integral are also given. Following these results, it is shown that the Sugeno integral and
the Choquet integral over an atom of monotone measure is maxitive linear and standard
linear, respectively. Convergence theorems for the Sugeno integral and the Choquet inte-
gral over an atom of a monotone measure are also shown.

� 2013 Elsevier Inc. All rights reserved.
1. Introduction

An atom of a measure is an important concept in the classical measure theory [6] and probability theory. This concept was
generalized in non-additive measure theory. The atoms for submeasures on locally compact Hausdorff spaces were discussed
by Dobrakov [4]. In 1991, Suzuki [24] first introduced the concept of an atom of fuzzy measures (non-negative monotone set
functions with continuity from below and above and vanishing at £), and investigated some analytical properties of atoms
of fuzzy measures. Further research on this matter was made by Pap [19–22], Jiang and Suzuki [7,8], Li et al. [15], Wu and
Sun [26], and Kawabe [9,11]. In [21] Pap showed a singleton characterization of atoms of regular null-additive monotone set
functions, i.e., if a non-negative monotone set function l is regular and null-additive, then every atom of l has an outstand-
ing property that all the mass of the atom is concentrated on a single point in the atom.

In this paper, we shall further investigate some properties of atoms of weakly null-additive monotone measures on metric
spaces. We shall show that if a regular monotone measure is weakly null-additive, then the previous results obtained by Pap
[21] remain valid. This fact makes easy the calculation of the Sugeno integral and the Choquet integral over an atom of a
monotone measure which is regular and countably weakly null-additive. Following these results, it is shown that the Sugeno
integral and the Choquet integral over an atom of a monotone measure is maxitive linear and standard linear (cf.[17]),
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respectively. The convergence theorems for the Sugeno integral and the Choquet integral over an atom of a monotone mea-
sure are shown, too.

2. Preliminaries

Let X be a non-empty set, F be a r-algebra of subsets of X, and N denote the set of all positive integers. Unless stated
otherwise, all the subsets mentioned are supposed to belong to F .

A set function l : F ! ½0;1� is said to be continuous from below [3], if limn!1lðAnÞ ¼ lðAÞ whenever An % A; continuous
from above [3], if limn!1lðAnÞ ¼ lðAÞ whenever An & A and there exists n0 with lðAn0 Þ <1; continuous, if l is continuous
from below and above; order continuous [21], if limn!1lðAnÞ ¼ 0 whenever An & £; exhaustive [4], if limn!1lðEnÞ ¼ 0 for
any infinite disjoint sequence fEngn2N; strongly order continuous [13], if limn!1lðAnÞ ¼ 0 whenever An & A and lðAÞ ¼ 0.

A set function l is called finite, if lðXÞ <1; r-finite [21], if there exists a sequence fXng � F such that
X1 � X2 � � � � ; X ¼
[1
n¼1

Xn and lðXnÞ <1 ðn ¼ 1;2; . . .Þ:
Definition 2.1 [27]. A monotone measure on F is an extended real valued set function l : F ! ½0;1� satisfying the following
conditions:
(1) lð£Þ ¼ 0; (vanishing at £).
(2) lðAÞ 6 lðBÞ whenever A � B and A;B 2 F . (monotonicity).

When l is a monotone measure, the triple ðX;F ;lÞ is called a monotone measure space [21,27].
In this paper, we always assume that l is a monotone measure on F .

Definition 2.2 [27]. l is called weakly null-additive, if for any E; F 2 F ,
lðEÞ ¼ lðFÞ ¼ 0) lðE [ FÞ ¼ 0:

In the following we recall several concepts related to the weak null-additivity of non-negative set functions.
Definition 2.3.
(i) l is said to be null-additive, if lðE [ FÞ ¼ lðEÞ whenever E; F 2 F and lðFÞ ¼ 0, see [27].
(ii) l is said to be weakly asymptotic null-additive, if lðEn [ FnÞ & 0 whenever fEng and fFng are decreasing sequences

with lðEnÞ & 0 and lðFnÞ & 0, see [10].
(iii) l is said to have pseudometric generating property (for short, (p.g.p.)), if lðEn [ FnÞ ! 0 whenever the sequences

fEng � F and fFng � F with lðEnÞ ! 0 and lðFnÞ ! 0, see [5].

Obviously, the null-additivity of l implies weak null-additivity. The pseudometric generating property implies weak
asymptotic null-additivity, and the latter implies weak null-additivity.

Definition 2.4 [14]. l is called countably weakly null-additive, if for any fAngn2N � F ,
lðAnÞ ¼ 0; 8n P 1) l
[1
n¼1

An

 !
¼ 0:
Definition 2.5 [1]. l is called null-continuous, if l
S1

n¼1An
� �

¼ 0 for every increasing sequence fAngn2N � F such that
lðAnÞ ¼ 0; n ¼ 1;2; . . ..

We give some relationships among the above introduced properties.

Proposition 2.6. l is countably weakly null-additive if and only if l is both weakly null-additive and null-continuous.
Proposition 2.7 [1]. If l is weakly null-additive and strongly order continuous, then it is null-continuous.
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Proposition 2.8. l is countably weakly null-additive if at least one of the following conditions holds:

(i) l is weakly null-additive and strongly order continuous,
(ii) l is weakly asymptotic null-additive and order continuous,

(iii) l has (p.g.p.) and it is order continuous.
Note 2.9. A weakly null-additive monotone measure may not be null-additive.
Example 2.10. Let X ¼ fa; bg and F ¼ PðXÞ. Put
lðEÞ ¼
1 if E ¼ X;
1
2 if E ¼ fbg;
0 if E ¼ fag or E ¼£:

8><>:

Then obviously l is a weakly null-additive monotone measure, but it is not null-additive.
Note 2.11. A null-continuous monotone measure may not be countably weakly null-additive.
Example 2.12. Let X ¼ N and F ¼ PðNÞ. Put
lðEÞ ¼
0 if E ¼£ or E ¼ fng ðn 2 NÞ;
1 otherwise:

�

Then monotone measure l satisfies continuity from below. Thus l is also null-continuous. On the other hand, l is not
weakly null-additive, and hence it is neither null-additive nor countably weakly null-additive.
Note 2.13. A weakly null-additive monotone measure may not be countably weakly null-additive.
Example 2.14. Let X ¼ N and F ¼ PðNÞ. Put
lðEÞ ¼
0 if jEj <1;
1 if jEj ¼ 1;

�

where jEj stands for the number of elements of E.

Obviously, l is monotone measure and null-additive, and hence it is weakly null-additive. However l is neither countably
weakly null-additive nor null-continuous.

Observe that l has (p.g.p.), but it is not order continuous.

Note 2.15. The weak null-additivity and strong order continuity are independent of each other.
Example 2.16. Let X ¼ N and F ¼ PðNÞ. Put
lðEÞ ¼
0 if jEj <1;X
i2E

1
2i if jEj ¼ 1;

8<:

where jEj stands for the number of elements of E.

Then l is monotone measure and weakly null-additive. However l is not strongly order continuous. Observe that l is
order continuous, but it has not (p.g.p.).

Example 2.17. Let X ¼ fa; bg and F ¼ PðXÞ. Put
lðEÞ ¼
0 if E ¼£; fag; fbg;
1 if E ¼ X:

�

Then obviously l is not weakly null-additive monotone measure, but it is strongly order continuous, and null-continuous.
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Note 2.18. The order continuity and (p.g.p.) are independent of each other (see Examples 2.14 and 2.17 above).
Remark 2.19. In [21] Pap introduced the concept of r-null-additivity for general set functions (see Definition 2.7 in [21]).
When l is a monotone measure on F , the r-null-additivity of l implies countable weak null-additivity. A countably weakly
null-additive monotone measure may not be r-null-additive (see Example 2.10 above). From Proposition 2.3 in [21], we can
obtain the following result: if l is a monotone measure on F , then l is r-null-additive if and only if l is null-additive and
countably weakly null-additive.

Let F+ denote the class of all nonnegative real-valued measurable functions on X. Let f 2 Fþ, E 2 F . The Sugeno (fuzzy) inte-
gral of f on E with respect to l, denoted by ðSÞ

R
E f dl, is defined by
ðSÞ
Z

E
f dl ¼ sup

06a<þ1
½a ^ lðfx : f ðxÞP ag \ EÞ�:
The Choquet integral of f on E with respect to l, denoted by ðCÞ
R

E f dl, is defined by
ðCÞ
Z

E
f dl ¼

Z 1

0
lðfx : f ðxÞP tg \ EÞdt;
where the right side integral is Riemann integral.

3. Atoms of monotone measures and integrals on them
Definition 3.1 [24]. Let l be a monotone measure on F . A set A 2 F is called an atom of l if lðAÞ > 0 and for every B � A
from F holds either

(i) lðBÞ ¼ 0, or

(ii) lðAÞ ¼ lðBÞ and lðA� BÞ ¼ 0.
Proposition 3.2 [24]. Every subset B of an atom A of l is also an atom of l if lðBÞ > 0.
Proposition 3.3. If l is r-finite and countably weakly null-additive, then for every atom A of l;lðAÞ <1 always holds.
Proof. Since l is r-finite, then there exists a sequence fXng � F such that X1 � X2 � � � � and
A ¼
[1
n¼1

ðA \ XnÞ and lðA \ XnÞ <1 ðn ¼ 1;2; . . .Þ:
If we suppose that for every n ¼ 1;2; . . . ;lðA \ XnÞ ¼ 0, then by the countable weak null-additivity of l, we obtain
lð
S1

n¼1ðA \ XnÞÞ ¼ 0, i.e., lðAÞ ¼ 0. This is in the contradiction with lðAÞ > 0. Therefore, there exists n0 such that
lðA \ Xn0 Þ > 0. Since A is atom of l, we obtain by (ii) in Definition 3.1 that lðAÞ ¼ lðA \ Xn0 Þ <1. h
Proposition 3.4. Let f be a nonnegative real-valued measurable function on ðX;FÞ. If l is countably weakly null-additive, then for
any atom A of l, there is a real number a� ¼ a�ðf ;AÞ, such that lðff ¼ a�g \ AÞ ¼ lðAÞ. Furthermore, we have
ðSÞ
Z

A
f dl ¼ a� ^ lðAÞ
and
ðCÞ
Z

A
f dl ¼ a� � lðAÞ:
Proof. Put RðAÞ ¼ fa P 0 : lðff < ag \ AÞ ¼ 0g, and a� ¼ sup RðAÞ, i.e.,
a� ¼ supfa P 0 : lðff < ag \ AÞ ¼ 0g:
Observe that 0 2 RðAÞ, i.e., RðAÞ– £. Suppose that RðAÞ is unbounded. Then there exist a sequence fangn2N � RðAÞ such that
an % 1ðn!1Þ. Then,
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ff < ang \ A %
[1
n¼1

ðff < ang \ AÞ ¼ A:
Therefore, noting that an 2 RðAÞ, we have
lðff < ang \ AÞ ¼ 0; n ¼ 1;2; . . . :
Since l is countably weakly null-additive, then
lðAÞ ¼ l
[1
n¼1

ðff < ang \ AÞ
 !

¼ 0:
This is in contradiction with lðAÞ > 0. So RðAÞ is bounded and hence a� 2 ½0;1Þ.

Choose a sequence fbngn2N � RðAÞ such that bn % a�ðn!1Þ. Then
ff < bng \ A % ff < a�g \ A ðn!1Þ;
i.e.,
ff < a�g \ A ¼
[1
n¼1

ðff < bng \ AÞ:
Since bn 2 RðAÞ,
lðff < bng \ AÞ ¼ 0; n ¼ 1;2; . . . ;
and by using the countably weak null-additivity of l, then
lðff < a�g \ AÞ ¼ l
[1
n¼1

ðff < bng \ AÞ
 !

¼ 0:
Thus we can get
lðff P a�g \ AÞ ¼ lðAÞ:
Indeed, if lðff P a�g \ AÞ ¼ 0, noting that lðff < a�g \ AÞ ¼ 0 and l is weakly null-additive, then we have
lðAÞ ¼ l ðff P a�g \ AÞ [ ðff < a�g \ AÞð Þ ¼ 0:
This is impossible. Thus we have lðff P a�g \ AÞ > 0. Since A is an atom of l, we get lðff P a�g \ AÞ ¼ lðAÞ.
On the other hand, for any a > a�, we have
lðff P ag \ AÞ ¼ 0:
In fact, from the definition of a�, lðff < ag \ AÞ > 0. Since A is atom, then lðff < ag \ AÞ ¼ lðAÞ and lðA� ff < ag \ AÞ ¼ 0,
i.e., lðff P ag \ AÞ ¼ 0.

Take a sequence fcngn2N, cn > a� ðn ¼ 1;2; . . .Þ such that cn & a� ðn!1Þ, then we have
ff > a�g \ A ¼
[1
n¼1

ðff P cng \ AÞ:
Since lðff P cng \ AÞ ¼ 0 n ¼ 1;2; . . ., and by using the countably weak null-additivity, we have lðff > a�g \ AÞ ¼ 0.

If we suppose that lðff ¼ a�g \ AÞ ¼ 0, then, by applying the weak null-additivity of l and
ff P a�g \ A ¼ ðff > a�g \ AÞ [ ðff ¼ a�g \ AÞ;
we have lðff P a�g \ AÞ ¼ 0. This is in contradiction with
lðff P a�g \ AÞ ¼ lðAÞ:
Therefore lðff ¼ a�g \ AÞ > 0, and hence
lðff ¼ a�g \ AÞ ¼ lðAÞ:
Now we show the second part of conclusions.
Using that lðff P ag \ AÞ ¼ 0 ða > a�Þ and lðff P ag \ AÞ ¼ lðAÞ ða 6 a�Þ, we obtain
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ðSÞ
Z

A
f dl ¼ supfa ^ lðff P ag \ AgÞ : 0 6 a 6 a�g ¼ a� ^ lðAÞ
and
ðCÞ
Z

A
f dl ¼

Z 1

0
lðfx : f ðxÞP tg \ AÞdt

¼
Z a�

0
lðfx : f ðxÞP tg \ AÞdt

þ
Z 1

a�
lðfx : f ðxÞP tg \ AÞdt

¼
Z a�

0
lðfx : f ðxÞP tg \ AÞdt ¼ a� � lðAÞ: �
Remark 3.5. Recently, Klement et al. [12] have introduced the concept of universal integral based on a pseudo-multiplica-
tion � : ½0;1�2 ! ½0;1� (nondecreasing in each component, 0 is annihilator, there exists neutral element e different from 0)
satisfying two basic properties:

(i) ðUÞ
R

E c dl ¼ ðUÞ
R

X c � 1E dl ¼ c � lðEÞ for any monotone measure l on ðX;FÞ and, any real constant c 2 ½0;1� and any
E 2 F .

(ii) ðUÞ �
R

X f dl ¼ ðUÞ
R

X g dm for any f ; g 2 Fþ and any monotone measures l; m on ðX;FÞ such that
lðfx : f ðxÞP tgÞ ¼ mðfx : gðxÞP tgÞ
for all t 2�0;1½.

(For more details see [12]).
Now it is evident that, under the constraint of Proposition 3.4, it holds
lðfx : f � 1AðxÞP tgÞ ¼ lðfx : a� � 1AðxÞP tgÞ;
t 2�0;1½, and hence
ðUÞ
Z

A
f dl ¼ ðUÞ

Z
X

f � 1A dl ¼ ðUÞ
Z

X
a� � 1A dl ¼ ðUÞ

Z
A
a� dl ¼ a� � lðAÞ:
As a corollary of this general result, the second part of Proposition 3.4 is obtained, noting that � ¼ ^ in the case of the Sugeno
integral, while � ¼ � when considering the Choquet integral, both mentioned integrals being particular universal integrals.

Observe that the weak null-additivity of l in Proposition 3.4 is a sufficient but not necessary condition.

Example 3.6. Consider a finite set X and F ¼ PðXÞ, and a finite monotone measure l : PðXÞ ! ½0;1½ with unique atom A.
Then necessarily l is given by lðEÞP d if E � A and lðEÞ ¼ 0 otherwise, with d ¼ lðAÞ 2�0;1½. For any universal integral
related to a pseudo-multiplication � : ½0;1�2 ! ½0;1�, it holds, for any f 2 Fþ,
ðUÞ
Z

A
f dl ¼ a� � d;
where a� ¼minff ðxÞ : x 2 Ag. Note that l is weakly null-additive only if A is a singleton (compare Theorem 4.6, see also
Example 2.10 with A ¼ fbg). Hence if card (A) > 1, we see that the conclusion of Proposition 3.4 may be satisfied also for
monotone measures which are not weakly null-additive.
4. Atoms of regular monotone measures and integrals on them

In this section, we suppose that X is a metric space, and that O and K are the classes of all open and compact subsets in X,
respectively. F denotes Borel r-algebra on X, i.e., it is the smallest r-algebra containing O.

Definition 4.1. [18,21,25]A monotone measure l is called regular, if for each A 2 F and each � > 0, there exist a compact set
K� 2 K and an open set G� 2 O such that
K� � A � G� and lðG� � K�Þ < �:

Obviously, if l is regular, then for each A 2 B and each � > 0, there exists a compact set K� 2 K such that
K� � A and lðA� K�Þ < �:
From the definitions of atom and regularity, we can obtain the following properties.
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Proposition 4.2. Let l be a regular monotone measure. If A is an atom of l, then there exists a compact set K 2 K such that K � A
and lðA� KÞ ¼ 0.
Proposition 4.3. Let l be a weakly null-additive monotone measure and A be an atom of l. If B � A and lðA� BÞ ¼ 0, then
lðBÞ > 0 and lðBÞ ¼ lðAÞ.
Proposition 4.4. Let l be a weakly null-additive regular monotone measure and A be an atom of l. If B is a subset of A with
lðBÞ > 0, then there exists compact subset K � B such that lðKÞ > 0 and lðKÞ ¼ lðBÞ ¼ lðAÞ.
Remark 4.5. Propositions 4.2, 4.3 and 4.4 hold for any Hausdorff space (cf.[23]).
The following result gives a singleton characterization of atoms of regular weakly null-additive monotone measures.

Theorem 4.6. Let l be a weakly null-additive regular monotone measure. If A is an atom of l, then there exists a unique point
a 2 A such that
lðAÞ ¼ lðfagÞ:
Proof. Let A 2 F be an arbitrarily fixed atom of l. We denote by K1 the family of all compact sets K � A such that
lðA� KÞ ¼ 0, i.e.,
K1 ¼ fK 2 K : K � A;lðA� KÞ ¼ 0g:
From Propositions 4.2 and 4.3 we know that K1 is non-empty and for any K 2 K1; lðKÞ > 0, and hence K is an atom of l and
lðKÞ ¼ lðAÞ.

If K1; K2 2 K1, by the weak null-additivity of l, we have
lðA� K1 \ K2Þ ¼ lððA� K1Þ [ ðA� K2ÞÞ ¼ 0
and hence K1 \ K2 2 K1. This indicates that K1 possesses finite intersection property, i.e., for any finite sets from K1, inter-
section of these finite sets is non-empty.

We take
K0 ¼
\

K2K1

K;
then K0 is a non-empty compact set.
We shall show that K0 2 K1, i.e., lðA� K0Þ ¼ 0. If that is not true, i.e., lðA� K0Þ > 0. Then, from Proposition 4.4, there

exists bK 1 2 K1 such that bK 1 � A� K0 and lðbK 1Þ > 0. Since A is an atom of l, we have lðAÞ ¼ lðbK 1Þ and lðA� bK 1Þ ¼ 0. ThusbK 1 2 K1, and hence K0 � bK 1. This is in contradiction with the fact that K0 \ bK 1 ¼£. Therefore lðA� K0Þ ¼ 0. This shows
K0 2 K1.

Now we shall show that K0 is a singleton set. Suppose that it is not, i.e., there exist two elements t1; t2 2 K0; t1 – t2. Let U
be an open neighborhood of t1 such that U does not contain t2. Then
K0 ¼ ðK0 � UÞ [ ðK0 \ UÞ;
and K0 – ðK0 � UÞ; K0 – ðK0 \ UÞ. Since l is weakly null-additive, we have lðK0 � UÞ > 0 or lðK0 \ UÞ > 0 (otherwise, by the
weak null-additivity of l, we get lðK0Þ ¼ 0 which is impossible, since K0 2 K1;lðK0Þ > 0). Thus, one of the sets K0 � U or
K0 \ U must belong to K1, but K0 is the least element from K1, we obtain a contradiction. Therefore, there exists a 2 A such
that K0 ¼ fag and, noting that lðAÞ ¼ lðK0Þ, we have
lðAÞ ¼ lðfagÞ:

Now we show that the point a is unique. Suppose that there exist two points a1; a2 2 A, a1 – a2, such that
lðAÞ ¼ lðfa1gÞ ¼ lðfa2gÞ:

Since lðA� fa1gÞ ¼ 0, and fa2g � A� fa1g, thus we get lðfa2gÞ ¼ 0 which contradicts the fact that lðfa2gÞ ¼ lðAÞ > 0.

The proof is now complete. h

Since null-additivity implies weak null-additivity, as a direct result of Theorem 4.6, we get the following corollary, which
is a generalization of the result obtained by Pap [21].

Corollary 4.7 (Pap[16, Theorem 9.6]). Let l be a regular null-additive monotone measure. If A is an atom of l, then there exists a
point a 2 A such that
lðAÞ ¼ lðfagÞ:
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Corollary 4.8. Let l be a regular and weakly asymptotic null-additive (or has (p.g.p.)). If A is an atom of l, then the conclusion of
Theorem 4.6 holds.

From Proposition 3.4 and Theorem 4.6, we can obtain the following result.

Corollary 4.9. Let l be a regular and countably weakly null-additive monotone measure. If A is an atom of l, then there exists a
unique point a 2 A such that
ðSÞ
Z

A
f dl ¼ f ðaÞ ^ lðfagÞ
and
ðCÞ
Z

A
f dl ¼ f ðaÞ � lðfagÞ
for any non-negative measurable function f.
Corollary 4.10. Under the conditions of Corollary 4.9, if A is an atom of l, then for any non-negative measurable functions f and g
on A and a P 0,
ðSÞ
Z

A
ða ^ f Þdl ¼ a ^ ðSÞ

Z
A

f dl
and
ðSÞ
Z

A
ðf _ gÞdl ¼ ðSÞ

Z
A

f dl _ ðSÞ
Z

A
g dl:
Proof. Applying Corollary 4.9 to the measurable function a ^ f , there exists a unique point a 2 A such that
ðSÞ
Z

A
ða ^ f Þdl ¼ ða ^ f ÞðaÞ ^ lðfagÞ;
i.e.,
ðSÞ
Z

A
ða ^ f Þdl ¼ ða ^ f ðaÞÞ ^ lðfagÞ ¼ a ^ ½f ðaÞ ^ lðfagÞ�:
Since the point a in Corollary 4.9 is unique, we have
ðSÞ
Z

A
f dl ¼ f ðaÞ ^ lðfagÞ;
and therefore
ðSÞ
Z

A
ða ^ f Þdl ¼ a ^ ðSÞ

Z
A

f dl:
The proof of the rest is similar. h
Corollary 4.11. Under the conditions of Corollary 4.9, if A is an atom of l, then for any non-negative measurable functions f and g
on A and a P 0,
ðCÞ
Z

A
ða � f Þdl ¼ a � ðCÞ

Z
A

f dl
and Z Z Z

ðCÞ

A
ðf þ gÞdl ¼ ðCÞ

A
f dlþ ðCÞ

A
g dl:
Proof. It is similar to the proof of Corollary 4.10. h
Definition 4.12. Let f 2 Fþ and ffng � Fþ. ffng is said to converge to f almost everywhere on A, in symbols fn!
a:e:

A
f , if there is a

subset N � A such that lðNÞ ¼ 0 and fn converges to f on A� N.
Corollary 4.13. Under the conditions of Corollary 4.9, if A is an atom of l, then for any f 2 Fþ and ffng � Fþ, fn!
a:e:

A
f ðn!1Þ implyZ Z
lim
n!1

ðSÞ
A

fn dl ¼ ðSÞ
A

f dl
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and
lim
n!1

ðCÞ
Z

A
fn dl ¼ ðCÞ

Z
A

f dl:
Proof. Since fn!
a:e:

A
f , there is a subset N � A such that lðNÞ ¼ 0 and fn converges to f on A� N. From Theorem 4.6, there exists a

unique point a 2 A such that
lðAÞ ¼ lðfagÞ
Since A is atom, lðAÞ ¼ lðfagÞ > 0, so the point a 2 A� N. Thus, as n!1, fnðaÞ ! f ðaÞ. Therefore, as n!1,
fnðaÞ ^ lðfagÞ ! f ðaÞ ^ lðfagÞ;
and
fnðaÞ � lðfagÞ ! f ðaÞ � lðfagÞ:
By using Corollary 4.9, we have
lim
n!1

ðSÞ
Z

A
fn dl ¼ ðSÞ

Z
A

f dl:
and
lim
n!1

ðCÞ
Z

A
fn dl ¼ ðCÞ

Z
A

f dl: �
Similarly, we can get the following corollary.
Corollary 4.14. Under the conditions of Corollary 4.9, if A is an atom of l, and ffng � Fþ and
P1

n¼1fn <1, then
ðCÞ
Z

A

X1
n¼1

fn

 !
dl ¼

X1
n¼1

ðCÞ
Z

A
fn dl:
From Proposition 2.6, 2.8, we can obtain directly the following corollary.
Corollary 4.15. Let l be a regular monotone measure, and let l satisfy one of the following conditions:

(i) l is weakly null-additive and null-continuous;
(ii) l is weakly null-additive and strongly order continuous;

(iii) l is weakly asymptotic null-additive and order continuous;
(iv) l has (p.g.p.) and, is order continuous.

If A is an atom of l, then the conclusions of Corollaries (4.9–4.14) hold.
In [9] Kawabe discussed the regularity of continuous monotone measure on a complete and separable metric space. The

following result was established in a fairly general setting in [9].

Proposition 4.16. Let l be finite continuous monotone measure. If l is weakly null-additive, then for each A 2 F and each � > 0,
there exist a compact set K� 2 K and an open set G� 2 O such that
K� � A � G� and lðG� � K�Þ < �:

When X is a complete and separable metric space, from Corollary 4.15 and Proposition 4.16, we can obtain the following

result:
Theorem 4.17. Let l be finite continuous monotone measure, and let l satisfies at least one of the following conditions:

(i) l is weakly null-additive;
(ii) l is null-additive;

(iii) l is weakly asymptotic null-additive;
(iv) l has (p.g.p.).

If A is an atom of l, then the conclusions of Theorem 4.6, Corollaries 4.9, 4.10, 4.11, 4.13 and 4.14 hold.
Remark 4.18. When X is a regular space (cf.[23]), we can easily know that Theorem 4.6, Corollaries 4.7–4.15 remain valid.
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5. Concluding remarks

We have introduced and discussed some properties of atoms of weakly null-additive monotone measures and their im-
pact on Sugeno and Choquet integrals. Our results from Section 3 and 4 can be extended for any universal integral [12] in the
following sense: for any n-ary operation H : ½0;1�n ! ½0;1�, non-decreasing in each component, left distributive over a pseu-
do-multiplication � (i.e., Hða1; . . . ; anÞ � b ¼ Hða1 � b; . . . ; an � bÞ) and any universal integral linked to �, it holds
ðUÞ
Z

A
Hðf1; . . . ; fnÞdl ¼ H ðUÞ

Z
A

f1 dl; . . . ; ðUÞ
Z

A
fn dl

� �
;

where f1; . . . ; fn 2 Fþ (note that fi can be a constant function, too). In particular, Benvenuti integral introduced and discussed
in [2] satisfies the left distributivity of the applied pseudo-addition 	 : ½0;1�2 ! ½0;1� over the corresponding pseudo-mul-
tiplication � and thus this integral is pseudo-linear.
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