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1. Introduction

An atom of a measure is an important concept in the classical measure theory [6] and probability theory. This concept was
generalized in non-additive measure theory. The atoms for submeasures on locally compact Hausdorff spaces were discussed
by Dobrakov [4]. In 1991, Suzuki [24] first introduced the concept of an atom of fuzzy measures (non-negative monotone set
functions with continuity from below and above and vanishing at ¢¥), and investigated some analytical properties of atoms
of fuzzy measures. Further research on this matter was made by Pap [19-22], Jiang and Suzuki [7,8], Li et al. [15], Wu and
Sun [26], and Kawabe [9,11]. In [21] Pap showed a singleton characterization of atoms of regular null-additive monotone set
functions, i.e., if a non-negative monotone set function u is regular and null-additive, then every atom of y has an outstand-
ing property that all the mass of the atom is concentrated on a single point in the atom.

In this paper, we shall further investigate some properties of atoms of weakly null-additive monotone measures on metric
spaces. We shall show that if a regular monotone measure is weakly null-additive, then the previous results obtained by Pap
[21] remain valid. This fact makes easy the calculation of the Sugeno integral and the Choquet integral over an atom of a
monotone measure which is regular and countably weakly null-additive. Following these results, it is shown that the Sugeno
integral and the Choquet integral over an atom of a monotone measure is maxitive linear and standard linear (cf.[17]),
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respectively. The convergence theorems for the Sugeno integral and the Choquet integral over an atom of a monotone mea-
sure are shown, too.

2. Preliminaries

Let X be a non-empty set, F be a g-algebra of subsets of X, and N denote the set of all positive integers. Unless stated
otherwise, all the subsets mentioned are supposed to belong to F.

A set function pt : F — [0, oo] is said to be continuous from below [3], if lim,_ . i(A,) = ((A) whenever A, ~ A; continuous
from above [3], if lim,_. 1(A;) = u(A) whenever A, \, A and there exists ng with p(A,,) < oo; continuous, if y is continuous
from below and above; order continuous [21], if lim,_ . 1t(A,) = 0 whenever A, \, &J; exhaustive [4], if lim,_ . u(E,) = 0 for
any infinite disjoint sequence {E,},.y; strongly order continuous [13], if lim,_. t(A,) = 0 whenever A, \, A and u(A) =0.

A set function p is called finite, if ((X) < co; o-finite [21], if there exists a sequence {X,} C F such that

Xi CXo €y X=[JXa and p(Xp) < o0 (n=1,2,...),
n=1

Definition 2.1 [27]. A monotone measure on F is an extended real valued set function u : 7 — [0, oo] satisfying the following
conditions:

(1) W) =0; (vanishing at &¥).
(2) u(A) < u(B) whenever Ac Band A,B € F. (monotonicity).

When p is a monotone measure, the triple (X, F, u) is called a monotone measure space [21,27].
In this paper, we always assume that y is a monotone measure on F.

Definition 2.2 [27]. u is called weakly null-additive, if for any E, F € F,

WE)=u(F)=0= u(EUF)=0.
In the following we recall several concepts related to the weak null-additivity of non-negative set functions.

Definition 2.3.

(i) p is said to be null-additive, if u(EUF) = u(E) whenever E,F € F and u(F) =0, see [27].
(ii) w is said to be weakly asymptotic null-additive, if u(E, UF,) \, 0 whenever {E,} and {F,} are decreasing sequences
with p(E,) N\, 0and p(F,) \, 0, see [10].
(iii) p is said to have pseudometric generating property (for short, (p.g.p.)), if w(E, UF,) — 0 whenever the sequences
{Ep} Cc F and {F,} c F with u(E,) — 0 and u(F,) — 0, see [5].

Obviously, the null-additivity of x implies weak null-additivity. The pseudometric generating property implies weak
asymptotic null-additivity, and the latter implies weak null-additivity.

Definition 2.4 [14]. u is called countably weakly null-additive, if for any {An},.y C F,
uM@O,Vn>1¢u<Um>Q
n=1

Definition 2.5 [1]. uis called null-continuous, if u(UJ; ,A.) =0 for every increasing sequence {A;},.y C F such that
UA)=0,n=1,2,...
We give some relationships among the above introduced properties.

Proposition 2.6. u is countably weakly null-additive if and only if u is both weakly null-additive and null-continuous.

Proposition 2.7 [1]. If u is weakly null-additive and strongly order continuous, then it is null-continuous.
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Proposition 2.8. u is countably weakly null-additive if at least one of the following conditions holds:

(i) w is weakly null-additive and strongly order continuous,
(ii) p is weakly asymptotic null-additive and order continuous,

(iii) u has (p.g.p.) and it is order continuous.
Note 2.9. A weakly null-additive monotone measure may not be null-additive.

Example 2.10. Let X = {a,b} and F = P(X). Put

pE) = {1 i E= (b},

0 fE={a}orE=¢.

1 ifE=X,
%

Then obviously p is a weakly null-additive monotone measure, but it is not null-additive.
Note 2.11. A null-continuous monotone measure may not be countably weakly null-additive.

Example 2.12. Let X = N and F = P(N). Put

0 fE=gorE={n} neN),
HE) = { 1 otherwise.

Then monotone measure p satisfies continuity from below. Thus p is also null-continuous. On the other hand, yu is not
weakly null-additive, and hence it is neither null-additive nor countably weakly null-additive.

Note 2.13. A weakly null-additive monotone measure may not be countably weakly null-additive.

Example 2.14. Let X = N and F = P(N). Put

[0 f B <,
“(E)_{1 if |E) = oo,

where |E| stands for the number of elements of E.
Obviously, ¢t is monotone measure and null-additive, and hence it is weakly null-additive. However p is neither countably
weakly null-additive nor null-continuous.

Observe that u has (p.g.p.), but it is not order continuous.

Note 2.15. The weak null-additivity and strong order continuity are independent of each other.

Example 2.16. Let X = N and F = P(N). Put
0 if |E| < oo,
M(E) = { L if B =,
icE
where |E| stands for the number of elements of E.

Then u is monotone measure and weakly null-additive. However pu is not strongly order continuous. Observe that p is
order continuous, but it has not (p.g.p.).

Example 2.17. Let X = {a,b} and F = P(X). Put

(0 if E= &, {a},{b},
“(E)_{1 if E=X.

Then obviously y is not weakly null-additive monotone measure, but it is strongly order continuous, and null-continuous.
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Note 2.18. The order continuity and (p.g.p.) are independent of each other (see Examples 2.14 and 2.17 above).

Remark 2.19. In [21] Pap introduced the concept of ¢-null-additivity for general set functions (see Definition 2.7 in [21]).
When u is a monotone measure on 7, the g-null-additivity of x implies countable weak null-additivity. A countably weakly
null-additive monotone measure may not be g-null-additive (see Example 2.10 above). From Proposition 2.3 in [21], we can
obtain the following result: if ¢ is a monotone measure on F, then u is o-null-additive if and only if u is null-additive and
countably weakly null-additive.

Let F. denote the class of all nonnegative real-valued measurable functions on X. Let f € F,, E € F. The Sugeno (fuzzy) inte-
gral of f on E with respect to u, denoted by (S) f; fdu, is defined by

(S)./; fdi= sup [oAp({x:f(x) > o2} NE).

0<o<+oo

The Choquet integral of f on E with respect to u, denoted by (C) [ fdu, is defined by
© [Fdu= [ nix: s = by
where the right side integral is Riemann integral.

3. Atoms of monotone measures and integrals on them

Definition 3.1 [24]. Let y be a monotone measure on F. A set A € F is called an atom of p if u(A) > 0 and for every B Cc A
from F holds either

(i) u(B) =0, or
(ii) 4(A) = u(B) and (A — B) = 0.
Proposition 3.2 [24]. Every subset B of an atom A of p is also an atom of w if u(B) > 0.
Proposition 3.3. If i is o-finite and countably weakly null-additive, then for every atom A of u, i(A) < oo always holds.

Proof. Since p is o-finite, then there exists a sequence {X,} ¢ F such that X; c X, € --- and

s

A=|JANnX,) and pANX,) <o (n=1,2,..).

I
—_

n

If we suppose that for every n=1,2,...,u(AnX,) =0, then by the countable weak null-additivity of 1, we obtain
WU 1(ANnX,)) =0, ie, u(A)=0. This is in the contradiction with u(A) > 0. Therefore, there exists no such that
WANX,,) > 0. Since A is atom of u, we obtain by (ii) in Definition 3.1 that p(A) = WA NXy,) < co. O

Proposition 3.4. Let f be a nonnegative real-valued measurable function on (X, F). If u is countably weakly null-additive, then for
any atom A of u, there is a real number o* = o*(f,A), such that u({f = a*} NA) = u(A). Furthermore, we have

(s) / fdi=o" A u(A)
and

© [ Fau=c - e,

Proof. Put R(A) = {a > 0 : u({f < «} NnA) =0}, and o* = supR(A), i.e.,

o =sup{a = 0: u({f < o} NA) =0}.

Observe that 0 € R(A), i.e., R(A) # &J. Suppose that R(A) is unbounded. Then there exist a sequence {a,},., C R(A) such that
on /" oo(n — oo). Then,
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{f<a}nA /7 | JUf <om}nA) =
n=1
Therefore, noting that a, € R(A), we have

W{f <ay}nA)=0, n=1,2,....
Since u is countably weakly null-additive, then
WA) = M(U({f < On} ﬂA)) =0.
n=1
This is in contradiction with p(A) > 0. So R(A) is bounded and hence o* € [0, c0).

Choose a sequence {f3,},cn C R(A) such that g,  a*(n — o). Then
f<BnA / {f<a}nA (n— o0),

I <aynA={Jif < fu}0A).
n=1

Since B, € R(A),
pif <pynA)y=0, n=12.,
and by using the countably weak null-additivity of y, then

n=1

uif <oy ) = (O{f<ﬁn}mA>

Thus we can get
u{f = o'}y NA) = u(A).
Indeed, if u({f > a*} NA) =0, noting that u({f < o'} NnA) =0 and u is weakly null-additive, then we have

WA = pu(({f = }nA)u{f <a'}nA)) =0.

This is impossible. Thus we have u({f > o*} NA) > 0. Since A is an atom of y, we get u({f > o*} NA) = u(A).
On the other hand, for any o > «*, we have

u{f = o} nA) =

In fact, from the definition of o*, u({f < a} NA) > 0. Since A is atom, then u({f < o} NA) = u(A) and u(A—{f <o} NA) =0,

e, u({f = o} nA)=0.
Take a sequence {y,},cn» Vo > @ (n=1,2,...) such that p, \, o* (n — oo), then we have

{F>orna={Jdf = 7} nA.

n=1
Since u({f = y,} NnA)=0n=1,2,..., and by using the countably weak null-additivity, we have u({f > a*} NnA) =0
If we suppose that u({f = «*} N A) = 0, then, by applying the weak null-additivity of u and

fzatnA={f>a}tnAu{f=a}nA),

we have y({f > a*} nA) = 0. This is in contradiction with
HAEf = '} NA) = WA).
Therefore u({f = «*} NA) > 0, and hence

BF = 2} NA) = A).

Now we show the second part of conclusions.
Using that pu({f > «} NA) =0 (a0 > o*) and pu({f > a} NnA) = u(A) (o« < o*), we obtain
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(S)/fdu=sup{aw({f 2o NAY:0<a< o} =o ApA)
A
and

(© [ fdu= [ uiix:feo > 0 nade
- [ s = goaa
+ [C g0 > g oA

:/0 Lx  f(x) > t}nA)dt = o - p(A). O

Remark 3.5. Recently, Klement et al. [12] have introduced the concept of universal integral based on a pseudo-multiplica-
tion ® : [0, o0]* — [0, o0] (nondecreasing in each component, 0 is annihilator, there exists neutral element e different from 0)
satisfying two basic properties:

(i) (U) [zedpu = (U) [y c-1gdp = c ® p(E) for any monotone measure p on (X, F) and, any real constant ¢ € [0, co] and any
EeF.
(ii) (U) — [y fdu = (U) [, gdv for any f,g € F, and any monotone measures (i, Vv on (X, F) such that

pfx:fx) > t}) = v({x: g(x) > t})
for all t €]0, co].

(For more details see [12]).
Now it is evident that, under the constraint of Proposition 3.4, it holds

X f-14() = 6)) = u({x: o - 1a(x) > t}),
t €]0, [, and hence

W) [ Fdp= () [ - 1adp= ) [ o Aadu= () [ 2 du=or @ pia)

As a corollary of this general result, the second part of Proposition 3.4 is obtained, noting that ® = A in the case of the Sugeno
integral, while ® = - when considering the Choquet integral, both mentioned integrals being particular universal integrals.
Observe that the weak null-additivity of u in Proposition 3.4 is a sufficient but not necessary condition.

Example 3.6. Consider a finite set X and F = P(X), and a finite monotone measure u : P(X) — [0, o[ with unique atom A.
Then necessarily u is given by u(E) > d if E > A and pu(E) = 0 otherwise, with d = p(A) €]0, co[. For any universal integral
related to a pseudo-multiplication ® : [O,oo}z — [0, o], it holds, for any f € F.,

(U)/Afd,u: x @d,

where o = min{f(x) : x € A}. Note that u is weakly null-additive only if A is a singleton (compare Theorem 4.6, see also
Example 2.10 with A = {b}). Hence if card (A) > 1, we see that the conclusion of Proposition 3.4 may be satisfied also for
monotone measures which are not weakly null-additive.

4. Atoms of regular monotone measures and integrals on them

In this section, we suppose that X is a metric space, and that © and K are the classes of all open and compact subsets in X,
respectively. F denotes Borel o-algebra on X, i.e., it is the smallest g-algebra containing O.

Definition 4.1. [18,21,25]A monotone measure y is called regular, if for each A € 7 and each € > 0, there exist a compact set
K¢ € K and an open set Ge € O such that

KccAcGe and u(Ge—Ke) <e.
Obviously, if u is regular, then for each A € B and each € > 0, there exists a compact set K. € £ such that

KcecA and puA-Keo)<e

From the definitions of atom and regularity, we can obtain the following properties.
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Proposition 4.2. Let u be a regular monotone measure. If A is an atom of p, then there exists a compact set K € K such that K c A
and p(A—K) =0.

Proposition 4.3. Let u be a weakly null-additive monotone measure and A be an atom of u. If BC A and p(A — B) =0, then
{(B) > 0 and pu(B) = u(A).

Proposition 4.4. Let u be a weakly null-additive regular monotone measure and A be an atom of . If B is a subset of A with
W(B) > 0, then there exists compact subset K c B such that u(K) > 0 and pu(K) = p(B) = u(A).

Remark 4.5. Propositions 4.2, 4.3 and 4.4 hold for any Hausdorff space (cf.[23]).
The following result gives a singleton characterization of atoms of regular weakly null-additive monotone measures.

Theorem 4.6. Let i be a weakly null-additive regular monotone measure. If A is an atom of u, then there exists a unique point
a € A such that

HA) = p({a)).

Proof. Let A € F be an arbitrarily fixed atom of u. We denote by K; the family of all compact sets K c A such that
UA—K)=0,ie.,

Ki={Kek:KcA uA-K)=0}.

From Propositions 4.2 and 4.3 we know that K; is non-empty and for any K € K;, u(K) > 0, and hence K is an atom of y and
W(K) = [(A).
If K1, K5 € K1, by the weak null-additivity of u, we have
HA-KinKy)=pu((A-Ki)U(A-K3))=0

and hence K; N K, € K;. This indicates that Ky possesses finite intersection property, i.e., for any finite sets from £, inter-
section of these finite sets is non-empty.
We take

Ko = K,

Kek;

then K, is a non-empty compact set.

We shall show that K, € K4, i.e., (A —Ko) = 0. If that is not true, i.e., (A — Ko) > 0. Then, from Proposition 4.4, there
exists K; € Ky such that K; ¢ A— Kq and ,u(IAﬁ) > 0. Since A is an atom of u, we have u(A) = ,u(IAﬁ) and u(A — K1) = 0. Thus
K; € k1, and hence K, ¢ K. This is in contradiction with the fact that Ko 0 K; = &. Therefore (A — Ko) = 0. This shows
Ko € K.

’ Nov:/ we shall show that Kj is a singleton set. Suppose that it is not, i.e., there exist two elements t{,t; € Ko, t1 # t,. Let U
be an open neighborhood of t; such that U does not contain t,. Then

Ko = (Ko — U) U (Ko N T),

and Ko # (Ko — U), Ko # (Ko nU). Since p is weakly null-additive, we have u(Ko — U) > 0 or u(Ko nU) > 0 (otherwise, by the
weak null-additivity of u, we get u(Ko) = 0 which is impossible, since Ko € K1, i(Ko) > 0). Thus, one of the sets K, — U or
Ko N U must belong to K;, but Ky is the least element from K;, we obtain a contradiction. Therefore, there exists a € A such
that Ko = {a} and, noting that p(A) = u(Ko), we have
HA) = p({a}).
Now we show that the point a is unique. Suppose that there exist two points a;, a, € A, a; # ay, such that
HA) = u({am}) = p({az}).
Since ((A —{a1}) =0, and {a,} Cc A — {a;}, thus we get u({ax}) = 0 which contradicts the fact that u({a,}) = u(A) > 0.
The proof is now complete. O

Since null-additivity implies weak null-additivity, as a direct result of Theorem 4.6, we get the following corollary, which
is a generalization of the result obtained by Pap [21].

Corollary 4.7 (Pap[16, Theorem 9.6]). Let u be a regular null-additive monotone measure. If A is an atom of u, then there exists a
point a € A such that

H(A) = p({a)).
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Corollary 4.8. Let u be a regular and weakly asymptotic null-additive (or has (p.g.p.)). If A is an atom of p, then the conclusion of
Theorem 4.6 holds.

From Proposition 3.4 and Theorem 4.6, we can obtain the following result.

Corollary 4.9. Let u be a regular and countably weakly null-additive monotone measure. If A is an atom of y, then there exists a
unique point a € A such that

(s) / fdu=f(a) A u({a})

and

(©) [ Fdu=r@ - uita))

for any non-negative measurable function f.

Corollary 4.10. Under the conditions of Corollary 4.9, if A is an atom of , then for any non-negative measurable functions fand g
onAand a >0

©) [@nndu=an(s) [ fau

S) [(verdu=s) [ fduvis) [ gdn

Proof. Applying Corollary 4.9 to the measurable function o A f, there exists a unique point a € A such that

and

ol / (oA f)dp = (A f)(@) A p({a)),

) [ (@nf)du = (xnf@) n pitay) = (@) n plta))
Since the point a in Corollary 4.9 is unique, we have

) [ ran=r@ npiiap),
and therefore

©) [@nfdu=an(s) [ rap.

The proof of the rest is similar. O

Corollary 4.11. Under the conditions of Corollary 4.9, if A is an atom of p, then for any non-negative measurable functions fand g
onAand a > 0,

(© [(a-pdn=2-(0) [ rau

© [U+du=(©) [ fdu+() [ zan.

Proof. It is similar to the proof of Corollary 4.10. O

and

Definition 4.12. Let f ¢ F, and {f,} c F,. {f,} is said to converge to f almost everywhere on A, in symbols f, > ﬂ S f, if there is a
subset N C A such that y(N) = 0 and f, converges to fon A — N.

Corollary 4.13. Under the conditions of Corollary 4.9, if A is an atom of u, then for any f € F, and {f,} C F,, f a;:if (n — oo) imply
lim () [ fudii=(5) [ Fau
o0 A A
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and

lim (C) [ fudu = () [ fdp

n—oo

Proof. Since f, a'f'f, there is a subset N C A such that y(N) = 0 and f, converges to fon A — N. From Theorem 4.6, there exists a
unique point a € A such that

HA) = p({a})

Since A is atom, u(A) = p({a}) > 0, so the point a € A — N. Thus, as n — oo, fo(a) — f(a). Therefore, as n — oo,
fal@) A p{a}) — f(a) A p({a}),

and
fa(@) - p({a}) — f(a) - u({a}).

By using Corollary 4.9, we have

lim () [ fodp = (S) [ Fap.

n—oo

and

lim (€) [ fudu=(C) [ fdp. ©

Similarly, we can get the following corollary.

Corollary 4.14. Under the conditions of Corollary 4.9, if A is an atom of p, and {f,} C F, and Y7 fn < oo, then

©f (if) dyu = nﬁ:;@ [

From Proposition 2.6, 2.8, we can obtain directly the following corollary.

Corollary 4.15. Let u be a regular monotone measure, and let u satisfy one of the following conditions:

(i) wp is weakly null-additive and null-continuous;

(ii) w is weakly null-additive and strongly order continuous;
(iii) p is weakly asymptotic null-additive and order continuous;
(iv) p has (p.g.p.) and, is order continuous.

If A is an atom of p, then the conclusions of Corollaries (4.9-4.14) hold.
In [9] Kawabe discussed the regularity of continuous monotone measure on a complete and separable metric space. The
following result was established in a fairly general setting in [9].

Proposition 4.16. Let u be finite continuous monotone measure. If u is weakly null-additive, then for each A € F and each € > 0,
there exist a compact set K. € K and an open set G¢ € O such that

KccAcGe and u(Ge—Ke) <e
When X is a complete and separable metric space, from Corollary 4.15 and Proposition 4.16, we can obtain the following
result:

Theorem 4.17. Let u be finite continuous monotone measure, and let u satisfies at least one of the following conditions:

(i) w is weakly null-additive;

(ii) p is null-additive;
(iii) w is weakly asymptotic null-additive;
(iv) w has (p.g.p.).

If A is an atom of u, then the conclusions of Theorem 4.6, Corollaries 4.9, 4.10, 4.11, 4.13 and 4.14 hold.

Remark 4.18. When X is a regular space (cf.[23]), we can easily know that Theorem 4.6, Corollaries 4.7-4.15 remain valid.



192 J. Li et al. /Information Sciences 257 (2014) 183-192

5. Concluding remarks

We have introduced and discussed some properties of atoms of weakly null-additive monotone measures and their im-
pact on Sugeno and Choquet integrals. Our results from Section 3 and 4 can be extended for any universal integral [12] in the
following sense: for any n-ary operation H : [0, c]" — [0 oo], non-decreasing in each component, left distributive over a pseu-
do-multiplication ® (i.e., H(ai,...,a,) ® b=H(a; ®b,...,a, ® b)) and any universal integral linked to ®, it holds

) [ HG o) b= H( ) [[f... ,<U>/Afndu),

where fi,...,f, € F, (note that f; can be a constant function, too). In particular, Benvenuti integral introduced and discussed
in [2] satisfies the left distributivity of the applied pseudo-addition @ : [0, o0]* — [0, o] over the corresponding pseudo-mul-
tiplication ® and thus this integral is pseudo-linear.
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