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Abstract. In this paper we consider discounted Markov decision processes
with finite state space and compact actions spaces. We present formulas for
the variance of total expected discounted rewards along with its partial Laurent
expansion. This enables to compare the obtained results with similar results
for undiscounted models.
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1 Introduction

The usual optimization criteria examined in the literature on stochastic dynamic programming, such as
a total discounted or mean (average) reward structures, may be quite insufficient to characterize the
problem from the point of a decision maker. To this end it may be preferable if not necessary to select
more sophisticated criteria that also reflect variability-risk features of the problem. Perhaps the best
known approaches stem from the classical work of Markowitz on mean variance selection rules, i.e. we
optimize the weighted sum of the expected total (or average) reward and its variance.

In the present paper we restrict attention on unichain models with finite state space. At first we
rederive recursive formulas for total undiscounted and discounted reward variance. The heart of this
article is the partial Laurent expansion of the variance of discounted rewards and analysis of this behaviour
for the discount factor tending to unity.

2 Notation and Preliminaries

In this note, we consider at discrete time points Markov decision process X = {Xn, n = 0, 1, . . .} with
finite state space I = {1, 2, . . . , N}, and compact set Ai = [0,Ki] of possible decisions (actions) in state
i ∈ I. Supposing that in state i ∈ I action a ∈ Ai is chosen, then state j is reached in the next transition
with a given probability pij(a) and one-stage transition reward rij will be accrued to such transition.

A (Markovian) policy controlling the decision process, π = (f0, f1, . . .), is identified by a sequence of
decision vectors {fn, n = 0, 1, . . .} where fn ∈ F ≡ A1× . . .×AN for every n = 0, 1, 2, . . ., and fn

i ∈ Ai is
the decision (or action) taken at the nth transition if the chain X is in state i. Let πm = (fm, fm+1, . . .),
hence π = (f0, f1, . . . , fm−1, πm), in particular π = (f0, π1). The symbol Eπ

i denotes the expectation if
X0 = i and policy π = (fn) is followed, in particular, Eπ

i (Xm = j) =
∑

ij∈I pi,i1(f
0
i ) . . . pim−1,j(f

m−1
m−1 );

P(Xm = j) is the probability that X is in state j at time m.

Policy π which selects at all times the same decision rule, i.e. π ∼ (f), is called stationary, hence
X is a homogeneous Markov chain with transition probability matrix P (f) whose ij-th element equals
pij(fi); E

π
i (Xm = j) = [Pm(f)]ij (symbol [A]ij denotes the ij-th element of the matrix A) and ri(fi) :=∑

j∈I pij(fi)rij is the expected reward obtained in state i. Similarly, r(f) is an N -column vector of
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one-stage rewards whose i-the elements equals ri(fi). The symbol I denotes an identity matrix and e is
reserved for a unit column vector.

Recall that (the Cesaro limit of P (f)) P ∗(f) := lim
n→∞

1
n

∑n−1
k= P k(f) (with elements p∗ij(f)) exists,

and if P (f) is aperiodic then even P ∗(f) = lim
k→∞

P k(f) and the convergence is geometrical. Moreover, if

P (f) is unichain, i.e. P (f) contains a single class of recurrent states, then p∗ij(f) = p∗j (f), i.e. limiting
distribution is independent of the starting state.

It is well-known (cf. e.g. [1], [6]) that also Z(f) (fundamental matrix of P (f)), and H(f) (the
deviation matrix) exist, where

Z(f) := (I − P (f) + P ∗(f))−1, H(f) := Z(f) (I − P ∗(f)) satisfy

P ∗(f)Z(f) = Z(f)P ∗(f) = P ∗(f), H(f) = Z(f)− P ∗(f)

P ∗(f)H(f) = H(f)P ∗(f) = 0, (I − P (f))Z(f) = Z(f) (I − P (f)) = I − P ∗(f).

As it is known from the literature (see e.g. [3],[12]), when λ is not an eigenvalue of P (f), there exists
R(λ, P (f)) = (λI−P (f))−1 (called the resolvent of P (f)) and for λ sufficiently close to 1 R(λ, P (f)) has
the following Laurent series expansion:

R(λ, P (f)) =
1

λ− 1
P ∗(f) +H(f) +

∞∑
k=1

(−1)k(λ− 1)kHk+1(f). (1)

Observe that the infinite series on the RHS of (1) converges if |λ−1| < 1/ρ(H(f)) where ρ(H(f)) denotes
the spectral radius of H(f).

Furthermore, if P (f̄) is another N ×N transition probability matrix then for any λ sufficiently close
to 1, the so-called second Laurent expansion holds

R(λ, P (f̄))− R(λ, P (f)) = R(λ, P (f̄)) (P (f̄)− P (f))R(λ, P (f)). (2)

3 Reward Variance Under Stationary Policies

Let ξαn (π) =
∑n−1

k=0 α
krXk,Xk+1

with α ∈ (0, 1), resp. ξn(π) =
∑n−1

k=0 rXk,Xk+1
, be the stream of α-

discounted, resp. undiscounted, rewards received in the n next transitions of the considered Markov
chain X if policy π = (fn) is followed. Supposing that X0 = i, on taking expectation we get for the first
and second moments of ξαn (π),

v
α(1)
i (π, n) := Eπ

i (ξ
α
n (π)) = Eπ

i

n−1∑
k=0

αkrXk,Xk+1
, v

α(2)
i (π, n) := Eπ

i (ξ
α
n (π))

2 = Eπ
i (

n−1∑
k=0

αkrXk,Xk+1
)2. (3)

If policy π ∼ (f) is stationary, the process X is time homogeneous and for m < n we write for
undiscounted, resp. α-discounted, random reward ξn = ξm + ξn−m, resp. ξαn = ξαm + αmξαn−m (here
we delete the symbol π and tacitly assume that P(Xm = j) and ξn−m starts in state j). Hence
[ξαn ]

2 = [ξαm]2 + α2m · [ξαn−m]2 + 2 · αm · ξαm · ξαn−m. Then for n > m we can conclude that

Eπ
i [ξ

α
n ] = Eπ

i [ξ
α
m] + αmEπ

i

{∑
j∈I

P(Xm = j) · Eπ
j [ξ

α
n−m]

}
. (4)

Eπ
i [ξ

α
n ]

2 = Eπ
i [ξ

α
m]2 + α2mEπ

i

{∑
j∈I

P(Xm = j) · Eπ
j [ξ

α
n−m]2

}
+2 · αm · Eπ

i [ξ
α
m]

∑
j∈I

P(Xm = j) · Eπ
j [ξ

α
n−m]. (5)

Using the more appealing notation introduced in (3), from (4) and (5) we conclude for m = 1

v
α(1)
i (f, n+ 1) = r

(1)
i (fi) + α

∑
j∈I

pij(fi) · v
α(1)
j (f, n) (6)

v
α(2)
i (f, n+ 1) = r

(2)
i (fi) + 2 · α ·

∑
j∈I

pij(fi) · rij · vα(1)j (f, n) + α2 ·
∑
j∈I

pij(fi) v
α(2)
j (f, n) (7)



where r
(1)
i (fi) :=

∑
j∈I pij(fi) rij , r

(2)
i (fi) :=

∑
j∈I pij(fi)[rij ]

2.

Since the variance σα
i (f, n) = v

α(2)
i (f, n)− [v

α(1)
i (f, n)]2 from (6),(7) we get

σα
i (f, n+ 1) = r

(2)
i (fi) + α2

∑
j∈I

pij(fi) · σα
j (f, n) + 2 · α

∑
j∈I

pij(fi) · rij · vα(1)j (f, n)

−[v
α(1)
i (f, n+ 1)]2 + α2

∑
j∈I

pij(fi)[v
α(1)
j (f, n)]2 (8)

=
∑
j∈I

pij(fi)[rij + α · vα(1)j (f, n)]2 − [v
α(1)
i (f, n+ 1)]2 + α2

∑
j∈I

pij(fi) · σα
j (f, n). (9)

Using matrix notations equations (6), (7) can be written as:

vα(1)(f, n+ 1) = r(1)(f) + αP (f) · vα(1)(f, n) (10)

vα(2)(f, n+ 1) = r(2)(f) + 2 · α · P (f) ◦R · vα(1)(f, n) + α2 · P (f) vα(2)(f, n) (11)

where R = [rij ]i,j is an N ×N -matrix, and

r(2)(f) = [ r
(2)
i (fi)], vα(2)(f, n) = [v

α(2)
i (f, n)], vα(1)(f, n) = [(v

α(1)
i (f, n))2] are column vectors.

The symbol ◦ is used for Hadamard (entrywise) product of matrices.

On iterating (10) we easily conclude that there exists vα(1)(f) := lim
n→∞

vα(1)(f, n) such that

vα(1)(f) = r(1)(f) + αP (f) · vα(1)(f) ⇐⇒ vα(1)(f) = [I − αP (f)]−1r(1)(f). (12)

Finally, for discounted models on letting n → ∞ there also exists vα(2)(f) = lim
n→∞

vα(2)(f, n) and by (11)

vα(2)(f) = r(2)(f) + 2 · α · P (f) ◦R · vα(1)(f) + α2 · P (f) vα(2)(f), (13)

hence
vα(2)(f) = [I − α2 · P (f)]−1

{
r(2)(f) + 2 · α · P (f) ◦R · vα(1)(f)

}
. (14)

On letting n → ∞ from (8), (9) we get for σα
i (f) := lim

n→∞
σα
i (f, n)

σα
i (f) = r

(2)
i (fi) + α2

∑
j∈I

pij(fi) · σα
j (f) + 2 · α

∑
j∈I

pij(fi) · rij · vα(1)j (f)

−[v
α(1)
i (f)]2 + α2

∑
j∈I

pij(fi)[v
α(1)
j (f)]2 (15)

=
∑
j∈I

pij(fi)[rij + α · vα(1)j (f)]2 − [v
α(1)
i (f)]2 + α2

∑
j∈I

pij(fi) · σα
j (f). (16)

Hence in matrix notation

σα(f) = r(2)(f)+α2 ·P (f) · σα(f)+ 2 ·α ·P (f) ◦R · vα(1)(f)− [vα(1)(f)]2 +α2 ·P (f) · [vα(1)(f)]2. (17)

After some algebra (17) can be also written as

σα(f) = [I − α2 · P (f)]−1 · { r(2)(f) + 2 · α · P (f) ◦R · vα(1)(f)− [vα(1)(f)]2}. (18)

(18) is similar to the formula for the variance of discounted rewards obtained by Sobel [11] by different

methods.

4 Laurent Expansions of Discounted Variance

To begin with, first observe that for α := λ−1 we have (λI − P (f))−1 = α(I − αP (f))−1 and (1) takes
on the form

α(I − αP (f))−1 =
α

1− α
P ∗(f) +H(f) +

∞∑
k=1

(−1)k
(
1− α

α

)k

Hk+1(f) (19)



Introducing ρ := 1−α
α ⇔ α = 1

1+ρ from (19) we get

α(I − αP (f))−1 = ρ−1P ∗(f) +H(f) +
∞∑
k=1

(−1)kρkHk+1(f). (20)

For what follows we shall also need Laurent expansion of (I − α2P (f))−1. To this end, let β := α2 and
ρ̄ := 1−β

β ⇔ β = 1
1+ρ̄ . Then, in analogy of (19) Laurent expansion of (I − βP (f))−1 takes on the form

β(I − βP (f))−1 =
β

1− β
P ∗(f) +H(f) +

∞∑
k=1

(−1)k
(
1− β

β

)k

Hk+1(f) (21)

(I − βP (f))−1 =
(ρ̄+ 1)

ρ̄
P ∗(f) + (ρ̄+ 1)H(f) + (ρ̄+ 1)

∞∑
k=1

(−1)kρ̄kHk+1(f) (22)

Assumption A. There exists state i0 ∈ I that is accessible from any state i ∈ I for every f ∈ F , i.e.
for every f ∈ F the transition probability matrix P (f) is unichain.

Lemma 3.1. If Assumption A holds then

α vα(1)(f) = ρ−1 ḡ(1)(f) · e+ w(1)(f) +
∞∑
k=1

(−ρ)k w(k,1)(f) (23)

where ḡ(1)(f) = p∗(f)·r(1)(f), w(1)(f) = H(f)·r(1)(f), and w(k,1)(f) = Hk+1(f)·r(1)(f), for k = 1, 2, . . . .
In particular, for the ith element of vα(1)(f) it holds

αv
α(1)
i (f) = ρ−1ḡ(1)(f) + w

(1)
i (f) +

∞∑
k=1

(−ρ)k w
(k,1)
i (f), hence

v
α(1)
i (f) = (1 + ρ)

[
ρ−1ḡ(1)(f) + w

(1)
i (f)− ρw

(1,1)
i (f) + ρ2w

(2,1)
i (f) + o(ρ2)

]
(24)

where lim
ρ↓0

o(ρ2) = 0.

In what follows we construct partial Laurent expansion of discounted variance σα
i (f). To this end

from (16),(17) we conclude that

σα
i (f)− α2

∑
j∈I

pij(fi) · σα
j (f) =

∑
j∈I

pij(fi)[rij + α · vα(1)j (f)]2 − [v
α(1)
i (f)]2 (25)

To simplify the RHS of (25) the following facts will be extremely useful. Observe that (26), (27) follow
from (24), and (28) follows from (24), (26) and (27) after some algebraic manipulations.

Lemma 3.2. If Assumption A holds then

α2[v
α(1)
i (f)]2= [ρ−1 · ḡ(1)(f) + w

(1)
i (f)]2 − 2 · ḡ(1)(f) · w(1,1)

i (f)

+2ρ · [ḡ(1)(f) · w(2,1)
i (f) + w

(1)
i (f) · w(1,1)

i (f)] + o(ρ2) (26)

(v
α(1)
i (f))2= ρ−2[ḡ(1)(f)]2 + 2ρ−1ḡ(1)(f)[ḡ(1)(f) + w

(1)
i (f)] + [ḡ(1)(f)]2 + [w

(1)
i (f)]2 +

ḡ(1)(f)[4w
(1)
i (f)− 2w

(1,1)
i (f)] + 2ρ · [ḡ(1)(f) · w(2,1)

i (f)− w
(1)
i (f) · w(1,1)

i (f)

+[w
(1)
i (f)]2 − 2 · ḡ(1)(f) · w(1,1)

i (f) + ḡ(1)(f) · w(1)
i (f)] + o(ρ2) (27)

[rij + αv
α(1)
j (f)]2= [rij ]

2 + 2 · α · vα(1)j (f) · rij + α2[v
α(1)
j (f)]2

= [ρ−1ḡ(1)(f) + w
(1)
j (f)]2 − 2 · ḡ(1)(f) · w(1,1)

j (f) + [rij ]
2 + 2ρ · [ḡ(1)(f) · w(2,1)

j (f)

+w
(1)
j (f) · w(1,1)

j (f)] + 2 · rij · [ρ−1ḡ(1)(f) + w
(1)
j (f) + ρw

(1,1)
j (f)] + o(ρ2) (28)



Lemma 3.3. If Assumption A holds then∑
j∈I

pij(fi)
[
rij + α · vα(1)j (f)

]2
−[v

α(1)
i (f)]2 =

∑
j∈I

pij(fi)[rij+wj ]
2−[ḡ(1)(f))−wi]

2+O(ρ)+o(ρ2) (29)

where

O(ρ) = 2ρ
∑
j∈I

pij(fi)w
(1,1)
j (f)[w

(1)
j (f) + rij ] + [w

(1)
i (f) + ḡ(1)(f)]w

(1,1)
i (f) + [w

(1)
i (f)− ḡ(1)(f)]w

(1)
i (f). (30)

Proof. In virtue of (27),(28) we can conclude that∑
j∈I

pij(fi)
[
rij + α · vα(1)j (f)

]2
− [v

α(1)
i (f)]2 =

∑
j∈I

pij(fi)

{[
rij + α · vα(1)j (f)

]2
− [v

α(1)
i (f)]2

}
=

∑
j∈I

pij(fi)
{
[ρ−1ḡ(1)(f) + w

(1)
j (f)]2 − 2 · ḡ(1)(f) · w(1,1)

j (f) + [rij ]
2

+2ρ · [ḡ(1)(f) · w(2,1)
j (f) + w

(1)
j (f) · w(1,1)

j (f)] + 2 · rij · [ρ−1ḡ(1)(f) + w
(1)
j (f) + ρw

(1,1)
j (f)]

−ρ−2[ḡ(1)(f)]2 − 2ρ−1ḡ(1)(f)[ḡ(1)(f) + w
(1)
i (f)]− [ḡ(1)(f)]2 − [w

(1)
i (f)]2

−ḡ(1)(f)[4w
(1)
i (f)− 2w

(1,1)
i (f)]− 2ρ · [ḡ(1)(f) · w(2,1)

i (f)− w
(1)
i (f) · w(1,1)

i (f)

+[w
(1)
i (f)]2 − 2 · ḡ(1)(f) · w(1,1)

i (f)− ḡ(1)(f) · w(1)
i (f)]

}
+ o(ρ2) (31)

Since
∑
j∈I

pij(fi)[rij + w
(1)
j (f)− w

(1)
i (f)− ḡ(1)(f)] = 0

∑
j∈I

pij(fi)[−w
(1)
i (f) + w

(1,1)
j (f)− w

(1,1)
i (f)] = 0,

∑
j∈I

pij(fi)[w
(1,1)
i (f) + w

(2,1)
j (f)− w

(2,1)
i (f)] = 0

(29) follows from (31) after some algebra.

From (25),(29),(30) we immediately get the following lemma.

Lemma 3.4. If Assumption A holds then

σα
i (f)− α2

∑
j∈I

pij(fi) · σα
j (f) = si(fi) +O(ρ) + o(ρ) for i = 1, 2, . . . , N (32)

where
si(fi) :=

∑
j∈I

pij(fi)
{
[rij + w

(1)
j (f)]2 − [ḡ(1)(f) + w

(1)
i (f)]2

}
+O(ρ) + o(ρ)

For what follows it will be useful to rewrite (32) in matrix notation. On introducing column vector
s(f) = [si(fi)]i=1,...,N (32) can written as

σα(f) = (I − α2P (f))−1s(f) +O(ρ) + o(ρ) (33)

Next lemma adapts Laurent expansion of (I − αP (f))−1 to (I − α2P (f))−1. Recall that ρ̄ := 1−α2

α2 .

Lemma 3.5. If Assumption A holds then

(I − α2P (f))−1 =
(ρ̄+ 1)

ρ̄
P ∗(f) + (ρ̄+ 1)H(f) + o(ρ̄) (34)

Observe that α → 1 ⇒ ρ̄ → 0. In particular, limα→1(1− α2)(I − α2P (f))−1 = P ∗(f).

Proof. The proof follows immediately from (22).

From (33), (34) we immediately get



Theorem 3.6. If Assumption A holds then

σα(f) =
(ρ̄+ 1)

ρ̄
P ∗(f) + (ρ̄+ 1)s(f) +O(ρ) + o(ρ2). (35)

Moreover, from the well-known Tauberian theorems it holds for undiscounted variance obtain after n
transitions

lim
n→∞

n−1
n−1∑
k=0

σ(f, n) = lim
α→1

(1− α)σα(f) = P ∗(f)s(f).

5 Conclusions

We have received formulas for the variance of discounted rewards in Markov decision chains along with
it partial Laurent expansions. Attention was focused only on unichain models and initial terms of the
corresponding Laurent expansion that also enables to find formulas for mean variances of undiscounted
rewards.
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