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Abstract This note deals with Markov decision chains evolving on a denumerable
state space. Under standard continuity-compactness requirements, an explicit exam-
ple is provided to show that, with respect to a strong sample-path average reward
criterion, the Lyapunov function condition does not ensure the existence of an opti-
mal stationary policy.

Keywords Strong sample-path optimality · Lyapunov function condition ·
Stationary policy · Expected average reward criterion

1 Introduction

This work is concerned with discrete-time Markov decision processes (MDPs) with
denumerable state space, compact action sets, and endowed with a long-run average
criterion. It is assumed that the reward function and the transition law depend con-
tinuously on the applied action, and that the so-called Lyapunov function condition
holds. Within this framework, the optimal expected average reward does not depend
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on the initial state and is characterized in terms of the corresponding optimality equa-
tion, whose solution renders an expected average optimal stationary policy; see [1].
The expected average reward index arises naturally when the controller runs the un-
derlying dynamical system a large number of times, but such an expected criterion
does not look appropriate if the system is going to be observed just a few times. In this
latter case, it is natural to analyze the behavior of a control policy from a sample-path
perspective, and the following notion will be used in this note:

A policy π∗ is average optimal in the sample-path sense if there exists a con-
stant, say g∗, such that under the action of π∗ and regardless the initial state,
the average of the observed rewards over a finite horizon t converges to g∗ as
t → ∞ with probability 1, whereas under any other policy the superior limit of
such averages is always bounded above by g∗ almost surely.

Under the mild continuity-compactness conditions in this note, it was recently shown
in [2] that if the existence of a Lyapunov function is complemented with an additional
requirement, which is described in Sect. 3, then an expected average optimal station-
ary policy obtained from the optimality equation is also sample-path average optimal
in the sense described above, a result that naturally leads to consider the following
question:

• Can the existence of a sample-path optimal stationary policy be ensured under the
sole assumption that the decision model admits a Lyapunov function?

The main objective of this work is to exhibit an explicit example showing that the
answer to this question is negative, a conclusion that establishes an interesting con-
trast between the expected and sample-path average criteria. The organization of the
subsequent material is as follows. In Sect. 2 the decision model and the Lyapunov
function condition are briefly discussed, whereas in Sect. 3 the notion of (strong)
sample-path average optimal policy and the main question considered in this note are
formally stated. Next, in Sect. 4 an MDP admitting a Lyapunov function and satisfy-
ing the standard continuity-compactness requirements is introduced and, for such a
particular model, it is shown that there is not any stationary policy which is sample-
path average optimal in the strong sense of Definition 3.1. Finally, the exposition
concludes in Sect. 5 with some brief comments.

2 Decision Model

Throughout the remainder N stands for the set of all nonnegative integers and
the indicator function of an event A is denoted by I [A]; given sequence of
events {An}, the corresponding superior limit is denoted by [An i.o.], that is,
[An i.o.] := ⋂∞

m=1
⋃∞

k=m Ak , whereas the class of all real-valued and continu-
ous functions defined on a topological space K is denoted by C(K). Now, let
M = (S,A, {A(x)}x∈S,R,P ) be an MDP, where the state space S is a denumer-
able set endowed with the discrete topology, the action set A is a metric space and,
for each x ∈ S, A(x) ⊂ A is the nonempty subset of admissible actions at x, whereas
R ∈ C(K) is the reward function, where K : = {(x, a)|x ∈ S,a ∈ A(x)} is the space
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of admissible pairs. On the other hand, P = [pxy(·)] is the controlled transition law
on S given K, that is, for all (x, a) ∈ K and y ∈ S, the relations pxy(a) ≥ 0 and∑

y∈S pxy(a) = 1 are satisfied. This model M is interpreted as follows: At each time
t ∈ N the decision maker knows the previous states and actions and observes the
current state, say Xt = x ∈ S. Using that information, the controller selects an action
(control) At = a ∈ A(x) and two things happen: a reward R(x, a) is obtained by
the controller, and the system moves to a new state Xt+1 = y ∈ S with probability
pxy(a).

Assumption 2.1

(i) For each x ∈ S, A(x) is a compact subset of A.
(ii) For every x, y ∈ S, the mappings a �→ R(x, a) and a �→ pxy(a) are continuous

in a ∈ A(x).

Policies A policy π is a (measurable) rule for choosing actions which, at each time
t ∈ N, may depend on the current state and on the record of previous states and
actions; see, for instance, [3] for details. The class of all policies is denoted by P
and, given the initial state x ∈ S and the policy π being used for choosing actions,
the distribution of the state-action process {(Xt ,At )} is uniquely determined; such a
distribution is denoted by P π

x , whereas Eπ
x stands for the corresponding expectation

operator. Next, define F := ∏
x∈S A(x) and notice that F is a compact metric space,

which consists of all functions f : S → A such that f (x) ∈ A(x) for each x ∈ S.
A policy π is stationary iff there exists f ∈ F such that the equality At = f (Xt )

is always valid under π ; in this case π and f are naturally identified and, with this
convention, F⊂ P .

Expected Average Criterion and Lyapunov Function Condition Assume that
R(Xt ,At ) has finite expectation with respect to every distribution P π

x . The (long-
run superior limit) expected average reward criterion corresponding to π ∈P at state
x ∈ S is defined by

J (x,π) := lim sup
k→∞

1

k
Eπ

x

[
k−1∑

t=0

R(Xt ,At )

]

, (1)

whereas the corresponding optimal value function is

J ∗(x) := sup
π∈P

J (x,π), x ∈ S; (2)

a policy π∗ ∈ P is (expected) average optimal if J (x,π∗) = J ∗(x) for every x ∈ S.
A fundamental instrument to analyze the above criterion is the following optimality
equation:

g + h(x) = sup
a∈A(x)

[

R(x, a) +
∑

y∈S

pxy(a)h(y)

]

, x ∈ S, (3)
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where g ∈ R and h ∈ C(S) is a given function. Suppose that the pair (g,h(·)) satis-
fies (3) and that the following properties are valid: For each x ∈ S and π ∈ P ,

(i) Eπ
x

[|h(Xn)|
]
< ∞ for each n ∈ N, and Eπ

x

[|h(Xn)|
]
/n → 0 as n → ∞;

(ii) The mapping a �→
∑

y∈S

pxy(a)h(y), a ∈ A(x) is continuous. (4)

Using Assumption 2.1, these requirements yield that

(a) J ∗(x) = g for each x ∈ S, and
(b) There exists a stationary policy f ∈ F satisfying

g + h(x) = R
(
x,f (x)

) +
∑

y∈S

pxy

(
f (x)

)
h(y), x ∈ S, (5)

and such a stationary policy f is average optimal [1, 2].

The existence of a solution (g,h(·)) of the optimality equation satisfying the prop-
erties (i) and (ii) in (4) and, consequently, rendering the above conclusions (a) and (b),
requires some connectedness condition [4]. The following is a general requirement
in this direction.

Assumption 2.2 (Lyapunov Function Condition [1]) There exists z ∈ S and a func-
tion � : S → [1,∞) satisfying the properties (i)–(iii) below:

(i) 1 + |R(x, a)| + ∑
y 	=z pxy(a)�(y) ≤ �(x) for all (x, a) ∈ K;

(ii) For each x ∈ S, a �→ ∑
y pxy(a)�(y) is a continuous function of a ∈ A(x);

(iii) For every f ∈ F and x ∈ S, E
f
x [�(Xn)I [T > n]] → 0 as n → ∞, where

T := min
{
n > 0|Xn = z

}

is the first return time to state z.

Given a state z ∈ S, a function � satisfying the conditions (i)–(iii) in the above
assumption is referred to as a Lyapunov function for the model M.

Lemma 2.1 [1] Under Assumptions 2.1 and 2.2, assertions (i)–(iii) below hold:

(i) Eπ
x [|R(Xn,An)|] is finite for every x ∈ S and π ∈P ;

(ii) There exists a pair (g,h(·)) ∈R×C(S) satisfying the optimality equation (3) as
well as the two conditions in (4);

(iii) There exists a policy f ∈ F satisfying (5) and such a stationary policy is expected
average optimal; moreover, J ∗(·) = g.

3 Sample-Path Optimality

The expected average criterion in (1) is quite appropriate if the controller repeats the
underlying random dynamical experiment many times under similar conditions, but
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not for a single trial. In this latter case, it is interesting to study the average reward
from a sample-path point of view.

Definition 3.1 A policy π∗ ∈ P is (strong) sample-path average optimal with optimal
value g∗ ∈ R if the following conditions (i) and (ii) hold:

(i) For each state x ∈ S, limn→∞ 1
n

∑n−1
t=0 R(Xt ,At ) = g∗ P π∗

x -a.s., and

(ii) For every π ∈P and x ∈ S, lim supn→∞ 1
n

∑n−1
t=0 R(Xt ,At ) ≤ g∗ P π

x -a.s..

The above notion is stronger than the idea of sample path optimality that was
employed in [5], where the second property in the above definition was replaced by
the weaker requirement lim infn→∞

∑n−1
t=0 R(Xt ,At )/n ≤ g∗ P π

x -a.s.. With respect
to this weaker notion of sample-path optimality, it was proved in Theorem 4.1 of the
aforementioned paper that the policy f ∈ F satisfying (5) is sample-path optimal with
optimal sample-path average reward g∗ = J ∗(·). On the other hand, it was recently
shown in [2] that, under Assumptions 2.1 and 2.2, if the Lyapunov function � is such
that, regardless of the initial state and the policy employed, the expected average re-
ward corresponding to �β is finite for some β > 2, then the stationary policy f in
(5) is sample-path average optimal in the strong sense. In short, the following re-
sults are presently available for MDPs satisfying Assumptions 2.1 and 2.2: (a) There
exists a stationary policy which is sample-path optimal with respect to a criterion
that is weaker than the one specified above; and (b) With respect to the strong idea of
sample-path optimality in Definition 3.1, the existence of an optimal stationary policy
has been established when the Lyapunov function satisfies an additional requirement.
These facts naturally lead to the following question:

Are Assumptions 2.1 and 2.2 sufficient to ensure the existence of a stationary
policy that is sample-path optimal in the sense of Definition 3.1?

The main contribution of this note consists in showing that the answer to this ques-
tion is negative, a conclusion that will be established using an explicit example; for
additional results on sample-path optimality in other contexts see, for instance, [6]
and [7].

4 The Counterexample

In this section an example will be given to show that Assumptions 2.1 and 2.2 do not
generally ensure the existence of a sample-path optimal stationary policy in the sense
of Definition 3.1.

Example 4.1 Let the state space S and the action set A be the topological subspaces
of the real line given by

S = N, A = {0} ∪ {
1/k|k = 1,2,3, . . .

}
,

and define the sets of admissible actions by

A(0) = A, and A(x) = {1}, x = 1,2,3, . . . .
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Next, let the transition law be determined by

px0(1) = 1, x = 1,2,3, . . . , (6)

p00(0) = 1, and p0x(1/x) = 1

x log(12 + x)
= 1 − p00(1/x), x = 1,2, . . . (7)

and, finally, let the reward function R : K → R be given by

R(x, a) = ax, x ∈ S, a ∈ A(x), (8)

that is, R(0, a) = 0 for every a ∈ A(0) = A, and R(x,1) = x for every x ∈ S.

It is not difficult to see that the continuity-compactness conditions in Assump-
tion 2.1 are satisfied for the model in the above example, and it will be shown below
that Assumption 2.2 also holds. First, using that A(x) is the singleton {1} for each
state x 	= 0, observe that

F = {f0, f1, f2, . . .}, (9)

where the policies fk are determined by fk(x) = 1 for every x = 1,2,3, . . . and
k ∈N, and

f0(0) = 0, fk(0) = 1/k, k = 1,2,3, . . . . (10)

Proposition 4.1 Consider the model M in Example 4.1, set z = 0 and define the
function � : S →R as follows:

�(0) = 1 + 2

log(12)
, and �(x) = x + 1, x = 1,2,3, . . . . (11)

With this notation, the following assertions (a) and (b) hold:

(a) The mapping � is a Lyapunov function for the model M;
(b) The optimal expected average reward is

g = 1

log(16) + 1/4
, (12)

and f4 is the unique (expected) average optimal stationary policy; see (10).

Proof (a) The three requirements in Assumption 2.2 will be verified.

(i) Note that (6)–(8) and (11) together yield that

1 + ∣
∣R(x,1)

∣
∣ +

∑

y 	=0

pxy(1)�(y) = 1 + x = �(x), x = 1,2,3, . . . ,

1 + ∣
∣R(0,0)

∣
∣ +

∑

y 	=0

p0y(0)�(y) = 1 ≤ �(0), and
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1 + ∣
∣R(0,1/k)

∣
∣ +

∑

y 	=0

p0y(1/k)�(y) = 1 + k + 1

k log(12 + k)

≤ 1 + 2

log(12)
= �(0), k = 1,2,3, . . . ;

from the specification of the action sets, these relations yield that the first condition
in Assumption 2.2 is satisfied by �.

(ii) Since A(x) is a singleton for x 	= 0 and zero is the unique accumulation point of
A(0) = {0} ∪ {1/k|k = 1,2,3, . . .}, it is sufficient to show that

lim
k→∞

∑

y∈S

p0y(1/k)�(y) =
∑

y∈S

p0y(0)�(y) = �(0),

a convergence that is valid, since (6), (7) and (11) together imply that

∑

y∈S

p0y(1/k)�(y) = k + 1

k log(12 + k)
+

(

1 − 1

k log(12 + k)

)

�(0), k = 1,2,3, . . . .

(iii) The specification of the transition law yields that, for every x ∈ S and f ∈ F, the
inequality T ≤ 2 holds P

f
x -a.s., so that E

f
x [�(Xn)I [T > n]] = 0 for n ≥ 2.

(b) Using the existence of a Lyapunov function established in the previous part,
Lemma 2.1 yields that the optimal expected average reward is constant, say g, and
that

g = sup
f ∈F

J (0, f ) = sup
{
J (0, fk)|k = 0,1,2,3, . . .

}
, (13)

where (9) was used to set the second equality. Now, observe that under f0 the state 0
is absorbing and then, since R(0,0) = 0, it follows that

J (0, f0) = 0. (14)

Suppose now that the system is driven by policy fk with k > 0. In this case, the
specification of the transition law yields that X1 = 0 or X1 = k with probability 1,
and the following assertions hold:

(i) On the event [X1 = 0] the equalities T = 1 and
∑T −1

t=0 R(Xt ,At ) = 0 are valid

P
fk

0 -a.s.;

(ii) On [X1 = k], the events [T = 2] and [∑T −1
k=0 R(Xk,Ak) = 0 + k = k] occur

P
fk

0 -a.s.

These facts and the relations P
fk

0 [X1 = k] = 1/[k log(12 + k)] = 1 − P
fk

0 [X1 = 0]
together yield, via the theory of renewal-reward processes [8], that

J (0, fk) = E
fk

0 [∑T −1
k=0 R(Xk,Ak)]
E

f

0 [T ]

= k(1/[k log(12 + k)])
(1 − 1/[k log(12 + k)]) + 2(1/[k log(12 + k)])
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= 1/ log(12 + k)

1 + 1/[k log(12 + k)]
= 1

log(12 + k) + 1/k
≤ 1

log(16) + 1/4
= J (0, f4),

where the inequality is strict for k 	= 4. The conclusion follows combining this last
display with (13) and (14). �

If (g,h(·)) is a solution of the optimality equation for the MDP in Example 4.1,
then f4 is the unique stationary policy satisfying (5), where the optimal expected
average reward g is given in (12). Also, notice that the standard ergodic theorem for
Markov chains yields that, for every initial state x ∈ S and k = 0,1,2,3, . . . (see [8]),

lim
n→∞

1

n + 1

n∑

k=0

R(Xt ,At ) = J (0;fk) ≤ g = 1

log(16) + 1/4
<

1

2
, P

fk
x -a.s. (15)

This relation will be used to show that a sample-path average optimal stationary pol-
icy in the sense of Definition 3.1 does not exist. To achieve this goal, it is convenient
to introduce some notation: For each t ∈ N let Nt be the number of visits to state 0
up to time t , i.e.,

Nt(X0,A0, . . . ,Xt−1,At−1,Xt ) ≡ Nt : =
t∑

k=0

I [Xk = 0]. (16)

Using that A(w) = {1} when w ∈ S \ {0}, the Markov property yields that, for every
x ∈ S, δ ∈P and t ∈N,

P δ
x

[
Xt 	= 0,Xt+1 	= 0|X0,A0, . . . ,Xt

] = I [Xt 	= 0]
∑

y∈S\{0}
pXty(1) = 0,

where (6) was used to set the second equality. Thus,

P δ
x [Xt 	= 0,Xt+1 	= 0] = 0, (17)

i.e., P δ
x [Xt = 0 or Xt+1 = 0] = 1, an equality that via (16) yields the following con-

clusion.

Proposition 4.2 For each initial state x ∈ S and δ ∈ P ,

P δ
x

[
Nt ≥ [t/2]] = 1, t = 0,1,2,3, . . . .

Next, let the policy π ∈ P be determined as follows: At each time t ∈N, under the
action of π the control At is given by

At = 1/Nt if Xt = 0, and At = 1 if Xt 	= 0. (18)

Proposition 4.3 The policy π determined by (18) satisfies the following properties:
For each x ∈ S,
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(i) P π
x [Xt 	= 0 i.o.] = 1,

and then

(ii) P π
x [Xt = 0,Xt+1 	= 0 i.o.] = 1.

Proof For each integer m ∈ N, the specification of the policy π yields that

P π
x

[ ∞⋂

k=m

[Xk = 0]|Xs,0 ≤ s ≤ m

]

= I [Xm = 0]
∞∏

k=0

p00
(
1/[k + Nm])

= I [Xm = 0]
∞∏

k=0

(

1 − 1

(k + Nm) log(12 + k + Nm)

)

= 0,

where the last equality is due to the relation
∑∞

r=1 1/[r log(12 + r)] = ∞. Thus,

P π
x

[ ∞⋂

k=m

[Xk = 0]
]

= 0, x ∈ S, m = 0,1,2,3, . . . ,

a property that is equivalent to the first conclusion. Next, note that

P π
x

[[Xt+1 	= 0] \ [Xt = 0,Xt+1 	= 0]] = P π
x [Xt 	= 0,Xt+1 	= 0] = 0,

where the second equality is due to (17); so, assertion (ii) follows from part (i). �

To conclude, the two previous propositions will be used to show that the MDP in
Example 4.1 does not admit a sample path optimal stationary policy in the sense of
Definition 3.1.

Proposition 4.4 In Example 4.1 the assertions (i) and (ii) below are valid:

(i) The policy π in (18) satisfies the following property: For each x ∈ S,

lim sup
t→∞

∑t−1
k=0 R(Xk,Ak)

t
≥ 1

2
P π

x -a.s.

Consequently,
(ii) A sample-path average optimal stationary policy does not exist.

Proof (i) Let x ∈ S be arbitrary and observe that (7) and (18) together imply that

P π
x

[
Xt = 0,Xt+1 	= 0|X0,X1, . . .Xt

] = I [Xt = 0]
∑

y 	=0

p0y(1/Nt)

= I [Xt = 0]p0Nt (1/Nt)

= P π
x

[
Xt = 0,Xt+1 = Nt |X0,X1, . . .Xt

]
,
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so that P π
x [Xt = 0,Xt+1 	= 0] = P π

x [Xt = 0,Xt+1 = Nt ]; combining this equality
with the inclusion

[Xt = 0,Xt+1 = Nt ] ⊂ [Xt = 0,Xt+1 	= 0]
it follows that the events [Xt = 0,Xt+1 	= 0] and [Xt = 0,Xt+1 = Nt ] differ by a null
set with respect to P π

x , and then

P π
x [Xt = 0,Xt+1 = Nt, i.o.] = 1,

by Proposition 4.3(ii). Next, observe that the specification of the nonnegative reward
function in (8), yields that

[Xt = 0,Xt+1 = Nt ] ⊂ [
R(Xt+1,At+1) = Nt

] ⊂
[∑t+1

k=0 R(Xk,Ak)

t + 2
≥ Nt

t + 2

]

,

a relation that combined with the previous display leads to

P π
x

[∑t+1
k=0 R(Xk,Ak)

t + 2
≥ Nt

t + 2
i.o.

]

= 1,

and part (i) follows from this equality via Proposition 4.2.

(ii) Assume that fk ∈ F is sample-path average optimal with optimal value g∗. In this
case, the first part of Definition 3.1 and (15) together imply that g∗ ≤ g, and then
the second condition in Definition 3.1 applied to the policy π in (18) yields that, for
every x ∈ S,

lim sup
n→∞

1

n + 1

n∑

k=0

R(Xt ,At ) ≤ g∗ ≤ g P π
x -a.s.,

a statement that, since g < 1/2, contradicts part (i). Therefore, a sample-path average
optimal stationary policy in the sense of Definition 3.1 does not exist. �

5 Conclusion

This work considered discrete-time Markov decision chains on a denumerable state
space. Besides standard continuity-compactness requirements, the main feature of
the models analyzed in this note is that they admit a Lyapunov function. As already
noted, in that context there exists a stationary policy which is optimal with respect
to the expected average reward index; however, it was shown in Sect. 4 that As-
sumptions 2.1 and 2.2 do not imply the existence of a sample-path optimal stationary
policy as specified in Definition 3.1, a conclusion that signals an interesting contrast
between the expected and sample-path perspectives to the average criterion.
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