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Abstract.

We propose a new dynamic model of the Merton type, based on the Vasicek
model. We generalize Vasicek model in three ways: we add model for loss given
default (LGD), we add dynamics to the model and we allow non-normal distri-
butions of risk factors. Then we add a retrospective interaction of underlying
factors and found a non-linear behaviour of these factors.

In particular, the evolution of factors underlying the DR and the LGD is as-
sumed to be ruled by a non-linear vector AR process with lagged DR and LGD
and their non-linear transformations.

We apply our new model on real US mortgage data and demonstrate its sta-
tistical significance.
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1 Introduction

Asking a question ”Why do we do this?” the answer could be: because the risk which follows from the
real estate market is bigger than what was expected. This was shown in a recent crisis a few years ago.

Our study is based on the famous Vasicek model. Modifications of the Vasicek model are in plentiful
supply (for example [2], [5] or [1] etc.). In [1] is quite huge literature review for more details see there.
But on the other hand just a few of these modifications are dynamic ones (for example [3]). So we will
focus on a rising new dynamic model of the Merton type, based on the Vasicek model.

There is a vast amount of literature in this area of interest. By far the most famous and most
frequently used model is the Vasicek model for default rate, see [6]. The Vasicek assuming a fixed LGD.
There are many models for random LDG, see [5], [1], [2], [3] and references therein. The model in [3] is
a dynamic one based on the Vasicek model.

Now we will mention several studies which react on recent crisis. In [7], [9] and [4] is shown that LGD
non-linearly depends on house price index and its history, which is not surprising. In [8] is summary of
current state of art at the mortgage risk modelling.

Our model is based on [3]. We use the same structure: models for the default rate and for the LGD
are same. Our original contribution is the creation of sub-models for underlying factors. We want to
model the situation when bank losses retrospectively affect the default rate. Then we obtain a non-linear
model.

2 Definition of the model

We want to model a situation when we have one creditor (for example a bank) with a countable number
n of debtors (clients). The value of the i-th debtor’s assets at time t is Ai,t. We assume that each debtor
pays a regular instalment b.
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The default of the i-th debtor is a state when the value of assets decrease under a given threshold Bi.
Then the definition of the probability of default at time t is P [Ai,t < Bi]. We will use DRt – the default
rate – very frequently. The default rate is a simple ratio

DRt =
number of defaults

number of loans
(1)

2.1 Model for DR – default rate

We assume that
logAi,t = logAi,t−1 +ΔYt +ΔVi,t, i ≤ n (2)

where n is a number of debtors, Ai,t is a value of assets of i-th debtor at time t, and ΔYt := Yt − Yt−1,
Yt is a common factor following the stochastic process.

We assume that the duration of the debt is just one period and that the value of assets in each period
is

logAi,t−1 = Yt−1 + Vi,t−1 i ≤ n, (3)

where Vi,t is r. v. specific to the i-th debtor. We assume that {Vi,t}i≤n, t∈N are mutually independent
and independent with respect to ΔYt, t ∈ N.

From (2) and (3), and from the assumption of independence, we can obtain that conditional probability
of the default of the i-th debtor at time t for a given Y t := (ΔY1, . . . ,ΔYt−1) is

P [Ai,t < Bi|Yt] = P [ΔVi,t + Vi,t−1 < logBi − Yt|Yt] = Ψ(logBi − Yt), (4)

where Ψ is the distribution function of r. v. Vi,t which is identically distributed with EVi,t = 0 and
varVi,t = σ2, σ > 0.

If we assume that the debts are identical for all periods - logBi,t = b, if we approximate DRt =
limn

number of defaults at time t
n we may apply the Law of Large Numbers to the conditional probabilities

from (3) (we can do this when A1,t, A2,t, . . . are conditionally independent with respect to Yt), then we
obtain DRt = P [Ai,t < b|Yt]

.
= Ψ(b − Yt) t ∈ N, further implying that (under assumption that function

Ψ is monotonic)
ΔYt

.
= Ψ−1(DRt−1)−Ψ−1(DRt). (5)

Let us note that Ψ is a general distribution function but for our valuation we will assume that Ψ(x) =
Φ(x), where Φ is a distribution function of a standard normal distribution.

2.2 Model for loss

Now we will introduce our model for loss of the bank. From formula (14) in [3] we have that

Lt = DRt · h(It), (6)

where Lt is the realised bank loss, DRt is the default rate and It represents the price index of properties.
From formula (17) in [3] we directly obtain

h(t) = Φ(
−t

σ
)− exp{t+ 1

2
σ2}Φ(−t

σ
− σ). (7)

Justification (under the assumption that a property price follows geometric Brownian motion and h(t) =
1−RR(t), where RR is a recovery rate) and valuation of the function h is in Appendix in [3].

2.3 Analysis of function h

The function h is one of the main pillars of our model; so the behaviour of this function is very important
to us. The function h is a convex-concave function, so its inflexion point is the most important to us
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because changes in house price index has the biggest impact to loss in neighbourhood of its inflexion
point. After some algebra we obtain the first and second derivations:

h(t) = Φ(
−t

σ
)− exp{t+ 1

2
σ2}Φ(−t

σ
− σ), (8)

h�(t) = − exp t+
1

2
σ2Φ(

−t

σ
− σ), (9)

h��(t) =
−1

σ
√
2π

exp
t2

2σ2
− exp t+

1

2
σΦ(

−t

σ
− σ). (10)

But we can’t obtain the inflexion point analytically because of the Equation (11), which is equivalent to
h��(t) = 0.

Φ(
−t

σ
− σ) =

1

σ
ϕ(

−t

σ
− σ). (11)

We can obtain it only numerically. We know that the inflexion point is unique from the graphical solution.

2.4 Evolution of factors

When we consider about evolution of underlining factors we try to model situation that default rate
depend on house price index, loss of the bank and theirs previous values and itself lagged values. Thus
we assume that the number of people who are not able to pay their loan is growing significantly, the ratio
of unpaid loans increases in all banks. Banks have their investments covered by real properties so they
are losing part of their liquidity. If a bank wants to recover lost liquidity it must sell some of its real
properties, if all banks chose this strategy, the value would decrease, equity would not be sufficient and
the LGD would increase.

We assume that common factors Yt and It are driven by these equations:

ΔYt = C1 + a1ΔYt−1 + b1ΔYt−2 + c1ΔLt−3 + d1ΔLt−4� �� �
retrospective interaction

+

+e1ΔIt−2 + ε1,t (12)

ΔIt = C2 + a2ΔYt−2 + b2ΔYt−3 + c2ΔDRt−3 + d2ΔDRt−4+

+e2ΔIt−1 + f2It−2 + g2ΔIt−3 + ε2,t (13)

where εt are iid independent, non-correlated and normally distributed.

3 Empirical results

We tested our proposed model on a real dataset which is described below.

3.1 Description of the data set

The dataset for our empirical work contains quarterly delinquency rates1 on mortgage loans from the
US economy, which are provided by the US Department of Housing and Urban Development and the
Mortgage Bankers Association.2 We used the Standard & Poor Price Index of properties. The data for
the default rate starts in the first quarter of 1979 and ends in the first quarter of 2012. The data for
house price index starts in the first quarter 1987 and ends in the third quarter of 2012. We will use our
data only from the first quarter 1987 forward (due to missing values for the house price index prior to
that date).

In Figure 1 we can see a peak in 2008 which corresponds to the recent crisis in 2009. That is quite
interesting, because in Figure 2 we can see a peak in 2010 (values of foreclosures are in percent); so the
peak in the house price index should indicate a peak in delinquency rates.

1The 90+ deliquency rate is the proportion of all receivables 90 or more days past in a given quarter
2The Mortgage Bankers Association is the largest US society representing the US real estate market, with over 2,400

members(banks, mortgage brokers, mortgage companies, life insurance companies, etc.)
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Figure 1 The house price index - underlying factor It

Figure 2 The US 90+ Delinquency Rates - factor DRt

3.2 Estimation

We took default rate DRt as the delinquency rate from the dataset; the factor It was taken as the house
price index from the dataset. Then we evaluated ΔYt according to Equation (5), where Ψ(x) = Φ(x)
is a distribution function of a standard normal distribution. Then we evaluated the difference of It and
Lt = DRt · h(ΔIt). Finally, we were fitted our model.

In Table 1 and Table 2 we can see estimation of coefficients from Equation 12 and Equation 13 (all
coefficients are significant) with standard deviation and p-value obtained by t-test.

Coefficient Standard dev. p-value

const −0.0030 0.0026 0.2406

ΔLt−3 173.5630 32.5078 0.0000 ***

ΔLt−4 −46.4339 24.5574 0.0619 *

ΔIt−2 0.0023 0.0009 0.0095 ***

ΔYt−1 −0.6236 0.0923 0.0000 ***

ΔYt−2 −0.6092 0.1011 0.0000 ***

Table 1 Fitting of Equation 12 - dependent variable ΔYt

4 Forecast

We have forecast the default rate DRt, the loss given default LGDt = h(ΔIt) and the loss of the bank
Lt = h(ΔIt) ·DRt for the following quarter, i.e., 2013Q3. The data for the default rate ends in 2012Q1
but the data for the house price index ends in 2012Q3. We constructed the forecast in two steps. In the
first step we forecast the default rate up to 2012Q3 and in the second step we simultaneously forecast
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Coefficient Standard dev. p-value

const 0.0989 0.1483 0.5066

ΔDRt−3 520.2640 183.2700 0.0056 ***

ΔDRt−4 −557.7900 192.9140 0.0048 ***

ΔYt−2 12.2806 5.5212 0.0286 **

ΔYt−3 29.4992 8.7178 0.0011 ***

ΔIt−1 1.0413 0.0971 0.0000 ***

ΔIt−2 −0.3774 0.1370 0.0071 ***

ΔIt−3 0.2122 0.0989 0.0347 **

Table 2 Fitting of Equation 13 - dependent variable: ΔIt

the house price index and the default rate. The forecast is shown in Figure 3. The default rate is ratio
form Equation 1, values of LGD and Loss are under assumption that exposure at default is unit.

Figure 3 Forecast of DRt, LGDt and Lt for 2013Q3
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5 Conclusions

We generalised [3] model, changed a linear sub-model into non-linear one, showed the statistical signif-
icance of non-linear dynamics. We applied our model to the real data and construct the forecast. We
think that non-linearity is the key property of our model.

There are several topic for future research the main one is study of properties of functional AR process,
especially existence of stationary distribution.
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