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Abstract We consider parameterized Mathematical Programs with Complementarity Con-
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introduce the second-order limiting coderivative of mappings and provide formulas for this
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1 Introduction

In [18], the authors have coined the currently used terminology for various stationarity con-
cepts arising in mathematical programs with complementarity constraints (MPCCs) and
studied their mutual relationships. This issue has then been taken up in [4], where the notions
of M(Mordukhovich)- and S(Strong)-stationarity have been extended to and analyzed in
the setting of general mathematical programs, and the results have then been applied to
optimization problems with a disjunctive constraint structure. Nowadays these stationar-
ity concepts are widely used in the MPCC and MPEC literature and have found a lot of
applications not only in optimality/stationarity conditions but also in numerics, cf. e.g., [5].

All types of stationarity conditions in MPCCs and MPECs belong to the area of second-
order variational analysis because one differentiates the normal-cone mapping and so the
resulting conditions contain a second-order generalized derivative. Consider now an MPCC,
where both the objective as well as the complementarity system depend on a joint parameter.
Similarly as in stability analysis of parameterized mathematical programs or parameterized
variational inequalities one could attempt to analyze the local behavior of the multifunction
assigning stationary points of a certain type to this parameter. This problem has been tackled
already in [18, Section 5], where the authors proved important results about stability of
C(Clarke)-stationary points and the associated multipliers. The proof is based on the famous
Kojima’s result from [11] combined with the theory of PC1-functions. In this connection one
should mention also the papers [8, 12, 13], where one examines the value function generated
by a parameterized MPEC. An upper estimate of its limiting subdifferential is expressed in
terms of multipliers and also first- and second-order directional derivatives are computed.
Sensitivity analysis of the value functions of MPCCs and bilevel optimization problems has
also been conducted in [1]. On the other hand, in [10] the authors discuss local stability
(homeomorphy invariance) of the feasible set of MPCCs with respect to small perturbations.

In this paper we will concentrate on the local behavior of M-stationary points and the
associated multipliers with respect to small changes of the parameter around a certain refe-
rence value. Our main workhorse is the second-order limiting coderivative and the graphical
derivative of the limiting coderivative which are amenable for polyhedral multifunctions
and enable us to describe the analyzed mappings via standard limiting coderivatives and
graphical derivatives. This technique paves the way to some useful stability statements.

The primary motivation for our analysis comes from the following class of problems.
Consider a collection of parameterized MPECs, such that the control variable in each
particular MPEC plays a role of a parameter in all other MPECs from this collection.
Such problems are often referred to as equilibrium problems with equilibrium constraints
(EPECs) and may be used, e.g., for modeling of the so called multi-leader-follower games.
In this way one can describe, e.g., bidding auctions in deregulated electricity markets, where
each energy producer in the market plays a role of the upper-level decision maker while
the so called Independent System Operator (ISO), in some sense responsible for the effec-
tive use of electricity network and demand satisfaction, plays a role of a single lower-level
decision-maker. Each day the producers bid supply functions to the ISO and then, taking
into account the demand and the structure of the electricity network, ISO announces pro-
duction of each producer for each hour of the following day. The procedure is repeated next
day with different input data.

Since the producers do not know exactly the true production costs of their concurrents
and so they only guess their actual bids, one can hardly expect that some overall noncooper-
ative equilibrium in this hierarchical game can be found. On the other hand, each producer
may consider the concurrents’ bids as a parameter in his own MPEC, and hence respective
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On Stability of M-stationary Points in MPCCs 577

qualitative (or even quantitative) stability information is essential in the decision making
process. If we now reformulate the ISO problem as a nonlinear complementarity problem,
we arrive exactly at the model studied in the present paper.

The structure of the paper is as follows. Section 2 contains the problem formulation
and some background from variational analysis needed throughout the whole sequel. In
Section 3 we analyze the graph of a polyhedral multifunction in order to efficiently compute
the tangent and limiting normal cones to this set. This is the basic tool for the computation
of the second-order coderivative of the normal-cone mapping in the case of MPCCs. The
results are collected in Section 4, where we obtain, in particular, upper approximations of
the graphical derivative and the limiting coderivative of the stationarity map assigning the
parameter the corresponding M-stationary points and associated multipliers. Finally, in the
last Section 5, we state several stability statements, illustrated by academic examples.

Our notation is basically standard. B denotes the closed unit ball. We use R+,R−,R++
and R−− to denote nonnegative, nonpositive, positive and negative reals, respectively. For a
set �, � denotes its closure, and for a closed cone D with vertex at the origin, D◦ denotes

its negative polar cone. By x
�−→ x̄ we mean that x → x̄ with x ∈ �. T�(x) signifies the

contingent (Bouligand-Severi, tangent) cone to � at x.
For the readers’ convenience we now state the definitions of several basic notions from

modern variational analysis. For a set � and a point x̄ ∈ �, the regular (Fréchet) normal
cone to � at x̄ is defined by

̂N�(x̄) :=
⎧

⎨

⎩

x∗ ∈ R
n

∣

∣

∣

∣

∣

∣

limsup

x
�−→x̄

〈x∗, x − x̄〉
‖ x − x̄ ‖ ≤ 0

⎫

⎬

⎭

= (T�(x̄))
◦ .

The limiting (Mordukhovich) normal cone to � at x̄ is given by

N�(x̄) = Lim sup

x
�−→x̄

̂N�(x),

where the “Lim sup” stands for the Painlevé-Kuratowski upper (or outer) limit. This limit is
defined for a set-valued mapping M[Rn ⇒ R

m] at a point x̄ by

Lim sup
x→x̄

M(x) := {

y ∈ R
m | ∃xk → x̄, ∃yk → y with yk ∈ M(xk)

}

.

For a convex set �, both normal cones N� and ̂N� amount to the normal cone of convex
analysis, for which we use simply the notation N�.

Given a set-valued mapping M[Rn ⇒ R
m] and a point (x̄, ȳ) from its graph

Gph M := {

(x, y) ∈ R
n × R

m|y ∈ M(x)
}

,

the graphical derivative DM(x̄, ȳ)
[

R
n ⇒ R

m
]

of M at (x̄, ȳ) is defined by

DM(x̄, ȳ)(h) := {

k ∈ R
m|(h, k) ∈ TGphM(x̄, ȳ)

}

,

the regular (Fréchet) coderivative ̂D∗M(x̄, ȳ)
[

R
m ⇒ R

n
]

of M at (x̄, ȳ) is defined by

̂D∗M(x̄, ȳ)(y∗) := {

x∗ ∈ R
n|(x∗,−y∗) ∈ ̂NGphM(x̄, ȳ)

}

,
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578 M. Červinka et al.

and the limiting (Mordukhovich) coderivative D∗M(x̄, ȳ)
[

R
m ⇒ R

n
]

of M at (x̄, ȳ) is
defined by

D∗M(x̄, ȳ)(y∗) := {

x∗ ∈ R
n|(x∗,−y∗) ∈ NGphM(x̄, ȳ)

}

.

Finally, throughout the paper we employ the notions of Aubin property, isolated calmness
and calmness.

A set-valued mapping M
[

R
n ⇒ R

m
]

is said to have the Aubin (pseudo-Lipschitz,
Lipschitz-like) property around (x̄, ȳ) ∈ Gph M with modulus � ≥ 0 if there are
neighborhoods U of x̄ and V of ȳ such that

M(x) ∩ V ⊂ M(u)+ �||x − u||B
for all x, u ∈ U , where B is closed unit ball. The Mordukhovich criterion [14] provides a
characterization of the Aubin property through knowledge of the respective coderivative: a
set-valued mapping M has Aubin property around (x̄, ȳ) if and only if

D∗M(x̄, ȳ)(0) = {0}.
A multifunction M

[

R
n ⇒ R

m
]

is said to have the isolated calmness (calmness on
selections) property (to be isolatedly calm) at (x̄, ȳ) ∈ Gph M , provided there exist
neighborhoods U of x̄ and V of ȳ and a constant κ ≥ 0 such that

M(x) ∩ V ⊂ {ȳ} + κ||x − x̄||B when x ∈ U .

It has been proved (see e.g. [3, Theorem 4C.1]) that M possesses the isolated calmness
property at (x̄, ȳ) if and only if

DM(x̄, ȳ)(0) = {0}.
A set-valued mapping M

[

R
n ⇒ R

m
]

is said to be calm (pseudo upper Lipschitz) at
(x̄, ȳ) ∈ Gph M with modulusL ≥ 0 if there are neighborhoodsU of x̄ and V of ȳ such that

M(x) ∩ V ⊂ M(x̄)+ L‖x − x̄‖B for all x ∈ U .

Clearly, both the Aubin and the isolated calmness properties imply calmness, whereas
neither converse is true. There does not exist any relationship between these two properties
of a multifunction. In the sequel, calmness will be utilized as a suitable qualification con-
dition in the used rules of generalized differential calculus, cf. [6, 9], whereas the Aubin
and the isolated calmness properties will be considered as valuable stability concepts for the
behavior of M-stationary points with respect to the parameter.

2 Problem Statement and Preliminaries

Throughout the whole paper, we shall be concerned with the following parameter-dependent
MPCC:

minimize f (p, x, y)

subject to

0 ∈ F(p, x, y)+ NR
m+ (y),

(1)

where f
[

R
s × R

n ×R
m → R

]

and F
[

R
s × R

n × R
m → R

m
]

are at least twice con-
tinuously differentiable functions. For simplicity, we do not consider here the so-called
non-equilibrial geometric constraints (x, y) ∈ �.
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The M-stationarity conditions of (1) may be written down as follows [16, Theorem 3.1]:

0 = ∇xf (p, x, y)+ (∇xF (p, x, y))�ν,
0 ∈ ∇yf (p, x, y)+ (∇yF (p, x, y))�ν +D∗NR

m+ (y,−F(p, x, y))(ν),
(2)

where ν ∈ R
m is the so-called MPCC-multiplier.

Stationarity conditions in the form (2) originate from [20, Theorem 3.2]. The terminol-
ogy “M-stationarity” comes from the fact that these conditions are obtained by means of
generalized differential calculus of Mordukhovich applied to the limiting normal cone to the
graph of the generalized equation in the constraints of (1). Here, however, we do not address
any constraint qualification guaranteeing that, at a local minimum of (1), there exists a ν

satisfying these necessary optimality conditions, which has been extensively discussed in
the literature, see, e.g., [16, 19]. Rather, we are interested in analysis of local behavior of
solutions to (2) around the reference point (p̄, x̄, ȳ, ν̄) and so the existence of this reference
point is assumed.

To unburden the notation in the formulas which will be derived in the sequel, let us
replace (2) by the following generalized equation system:

0 = a(p, x, y)+ A�(p, x, y)ν
0 ∈ b(p, x, y)+ B�(p, x, y)ν +D∗NR

m+ (y,−F(p, x, y))(ν),
(3)

where the vectors and matrices a, b,A and B correspond to ∇xf,∇yf,∇xF and ∇yF ,
respectively. The multifunction in the second line of (3) is the composition of the map
(u, v,w) ⇒ D∗NR

m+ (u, v)(w) with the smooth single-valued mapping
⎡

⎣

u

v

w

⎤

⎦ =
⎡

⎣

y

−F(p, x, y)

ν

⎤

⎦ .

Denoting � := Gph D∗NR
m+ and

�(p, x, y, ν) =

⎡

⎢

⎢

⎢

⎢

⎣

a(p, x, y)+A�(p, x, y)ν
y

−F(p, x, y)

ν

−b(p, x, y)− B�(p, x, y)ν

⎤

⎥

⎥

⎥

⎥

⎦

,

we can rewrite (3) to

�(p, x, y, ν) ∈ {0} ×� (4)

and associate it with a stationarity map S

S(p) = {(x, y, ν)|�(p, x, y, ν) ∈ {0} ×�} . (5)

Now assume that for each triple (p, x, y) close to (p̄, x̄, ȳ) there is a unique multiplier
ν satisfying (4). This holds in particular if mapping A is surjective at (p̄, x̄, ȳ). Set C =
(

AA�)−1
A. Hence, ν = −Ca. Define

�r(p, x, y) =

⎡

⎢

⎢

⎣

y

−F(p, x, y)

−C(p, x, y)a(p,x, y)

−b(p, x, y)− d(p, x, y)

⎤

⎥

⎥

⎦

,
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580 M. Červinka et al.

where d(p, x, y) = −(B(p, x, y))�C(p, x, y)a(p,x, y). Then we can reduce the M-
stationarity conditions (3) to

�r(p, x, y) ∈ �

and consider the following “reduced” stationarity map Sr

Sr (p) = {

(x, y)|�r(p, x, y) ∈ �
}

.

Example 1 Let p, x, y ∈ R and consider the following perturbed MPCC

minimize (x + 1)2 + y

subject to

0 ∈ p + x + NR+ (y).

Clearly, the M-stationarity conditions (2) can be formulated in the reduced form as
⎡

⎢

⎢

⎣

y

−x − p

−2x − 2
−1

⎤

⎥

⎥

⎦

∈ Gph D∗NR+ ,

where A = C = (1)1×1, B = (0)1×1, a(p, x, y) = 2x + 2, b(p, x, y) = 1, d(p, x, y) = 0.
It is easy to check that for p̄ ≤ 1 the conditions (2) have a unique solution x̄ = −p̄, ȳ = 0
with the associated MPCC-multiplier ν̄ = 2p̄ − 2, while for p̄ ≥ 1 the conditions (2) have
a unique solution x̄ = −1, ȳ = 0 with the corresponding MPCC-multiplier ν̄ = 0.

As the main tool for investigation of the local behavior of stationarity maps S and Sr we
introduce the second-order limiting coderivative of mappings.

Definition 1 (Second-order limiting coderivative)
Let Q be a multifunction with a closed graph. Assume that (u, v) ∈ Gph Q and
z ∈ D∗Q(u, v)(w) and put Gph D∗Q = {(u, v,w, z)|z ∈ D∗Q(u, v)(w)}. Then the
second-order limiting coderivative of Q at (u, v,w, z) is defined by

D∗∗Q(u, v,w, z)(z∗) = {

(u∗, v∗, w∗)|(u∗, v∗, w∗,−z∗) ∈ NGph D∗Q(u, v,w, z)
}

.

Similarly, one can define other types of second-order coderivatives, e.g. via limiting nor-
mal cone to the graph of the regular coderivative. In the sequel we work only with the one
introduced in Definition 1 and thus for brevity we omit the word “limiting”. The following
example illuminates the relationship between the second-order limiting coderivate and the
third-order limiting subdifferential analogous to the one between limiting coderivate and
the second-order limiting subdifferential, cf. [15, Definitions 1.77, 1.118] for definitions of
limiting subdifferential ∂ϕ and second-order limiting subdifferential ∂2ϕ of a single-valued
function ϕ.

Example 2 Consider a function ϕ : R
n → R̄ and set Q = ∂ϕ, v ∈ ∂ϕ(u) and

z ∈ ∂2ϕ(u, v)(w). Then the second-order limiting coderivative D∗∗∂ϕ(u, v,w, z) can be
understood as the third-order limiting subdifferential ∂3ϕ(u, v,w, z) of ϕ at u with respect
to v ∈ ∂ϕ(u) and (w, z) such that (u, v,w, z) ∈ Gph ∂2ϕ.
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On Stability of M-stationary Points in MPCCs 581

More specifically, in our analysis of the local behavior of stationarity maps S and Sr we
will need a formula for the graph of the contingent cone TGphD∗N

R
m+

and for the graph of

D∗∗NR
m+ . In the following section we give a recipe for construction of these sets.

3 Generalized Derivatives of D∗NR
m+

We start this section with calculation of graphs of TGphD∗NR+ and D∗∗NR+ which will be
later generalized to the higher-dimensional case. Nevertheless, we propose a more general
procedure dealing with a multifunction Q

[

R
m ⇒ R

n
]

satisfying the following condition:

Gph Q =
r
⋃

i=1


i (6)

where r is finite and for all components 
i ⊂ R
m×R

n one has 
i ∈ {R,R+,R−, {0}}m+n.
This is indeed of our interest since Gph NR+ = R+ × {0} ∪ {0}×R− and also Gph D∗NR+
have such a structure.

For computation of the normal cone to general polyhedral set we refer an interested
reader to [2]. For a more general case of a union of polyhedral sets, we can use the theory
developed in [7]. However, it does not exploit the simple structure of the polyhedral multi-
function Q we deal with here. On that account, we develop a new procedure to construct the
graph of generalized derivatives of such multifunction. Moreover, we will observe that the
same procedure may be used to calculate even higher-order generalized derivatives of Q.

We work in three steps: first, we obtain a formula for GphTGph Q, then, based on this
result, we compute Gph D̂∗Q, and finally we will proceed with a formula for Gph D∗Q.

To find Gph TGph Q we need to evaluate TGph Q(u, v) for any u, v such that v ∈ Q(u).
To this end, we partition Gph Q following [7] as follows

Gph Q =
⋃

∅�=I⊂{1,...,r}

I , (7)

where for any ∅ �= I ⊂ {1, . . . , r} we define


I =
(

⋂

i∈I

i

)

\
⎛

⎝

⋃

i∈{1,...,r}\I

i

⎞

⎠ . (8)

To ease the evaluation of 
I in higher dimensions, we propose the following lemma.

Lemma 1 Consider D = Xk
i=1 Di , E = Xk

i=1 Ei with k finite and Di,Ei ⊂ R
di . Then, it

holds

D\E =
⎛

⎝

k

X
i=1

Di

⎞

⎠\
⎛

⎝

k

X
i=1

Ei

⎞

⎠ =
⋃

i:(Di\Ei) �=∅
D1×. . .×Di−1×(Di \ Ei)×Di+1×. . .×Dk.

In particular, we have D\E = D whenever there exists j ∈ {1, . . . , k} such that Dj ∩Ej =
∅.

Proof For k = 2 we observe (D1 × D2) \ (E1 × E2) = ((D1 \ E1)×D2) ∪
(D1 × (D2 \ E2)), for a general k > 2 the statement may be shown by induction.
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582 M. Červinka et al.

With regards to this lemma we see that each 
I defined by (8) has to be a finite union
of sets from {R,R+,R−, {0},R−−,R++,R \ {0}}m+n, since this is a closure of set system
{R,R+,R−, {0}}m+n with respect to set complements. Further, we will observe that 
I may
be represented also by a finite union of sets from {R,R−−,R++, {0}}m+n with a straight
impact on the calculation of the tangent cone. Recall, that R++ and R−− stands for the set
of positive and negative reals, respectively.

Lemma 2 Consider ∅ �= I ⊂ {1, . . . , r} and 
I defined as above. Then, there exists a finite
number q and a finite partition {
I,k}qk=1 of 
I such that 
I,k ∈ {R,R++,R−−, {0}}m+n.
Moreover, for any k ∈ {1, . . . , q}, i ∈ I and x, y ∈ 
I,k ⊂ 
I it holds T
i

(x) = T
i
(y).

We denote this constant value by T
i
(
I,k). For q we further use notation q(I) since it

generally depends on I .

Proof We know that 
I is a finite union of sets from the system
{R,R+,R−, {0},R−−,R++,R \ {0}}m+n. Expressing each involved R+, R−, and R \ {0}
in terms of R++ ∪ {0}, R−− ∪ {0} and R−− ∪ R++, respectively, we have shown the first
part of the statement. Next, we prove the second part only in one dimension for simplicity.
For any x, y ∈ 
I,k ⊂ 
I we may verify T
i

(x) = T
i
(y) by direct evaluation of all the

possible combinations of 
i and 
I,k . For example, for the case of 
i = R+ we may have
either 
I,k = R++ or 
I,k = {0}. Then, we observe that TR+ (R++) and TR+({0}) are
indeed well-defined. Finally we note that the proof goes in a similar way even in a higher
dimension.

Now, for any ∅ �= I ⊂ {1, . . . , r} and k ∈ {1, . . . , q(I)} we show that even TGph Q(x)

is constant with respect to x ∈ 
I,k . Indeed, we see that there exists a neighborhood V of
x such that Gph Q ∩ V =

⋃

i∈I 
i ∩ V owing to the definition of 
I . Next, with regards to
Lemma 2, we may write

TGph Q(
I,k) = T⋃
i∈I 
i

(
I,k) =
⋃

i∈I
T
i

(
I,k), (9)

where TGph Q(
I,k) is used to denote the constant value of TGph Q(x) with respect to x ∈

I,k . Now, we may directly construct the whole Gph TGph Q, but some more effort is needed
to construct also Gph D∗Q. On that account, we introduce a set operator to ease the further
notation.

Definition 2 For m,n finite we define set-valued operator Tmn : Rm × R
n ⇒ R

n × R
m in

such a way that for set D ⊂ R
m × R

n we have

Tmn [D] = {

(−y, x) ∈ R
n × R

m|(x, y) ∈ D
}

.

We introduce this operator in order to establish equivalence of (u, v,w, z) ∈ Gph D∗Q
with (w, z) ∈ Tmn

[

NGph Q(u, v)
]

.

Theorem 1 Let Q
[

R
m ⇒ R

n
]

be a multifunction such that Gph Q = ⋃r
i=1 
i and 
i ∈

{R,R+,R−, {0}}m+n. Then

Gph TGphQ =
⋃

∅�=I⊂{1,...,r}

q(I)
⋃

k=1

(


I,k ×
⋃

i∈I
T
i

(
I,k)

)

. (10)
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and

Gph D∗Q =
⋃

∅�=I⊂{1,...,r}

q(I)
⋃

k=1

(


I,k × Tmn

[

⋂

i∈I
N̂
i

(
I,k)

])

. (11)

where {
I,k}q(I)k=1 is the finite partition of 
I from Lemma 2.

Proof First, observe that formula (10) stems directly from (9) and the fact that Gph Q =
⋃

∅�=I⊂{1,...,r}
⋃q(I)

k=1 
I,k . Then, one can easily find a formula for Gph N̂GphQ; it reads

Gph N̂Gph Q =
⋃

∅�=I⊂{1,...,r}

q(I)
⋃

k=1

(


I,k ×
⋂

i∈I
N̂
i

(
I,k)

)

, (12)

where the fact that also N̂
i
(x) is constant with respect to x ∈ 
I,k is used. Now, according

to the definition of the regular coderivative, we have

(u, v,w, z) ∈ Gph D̂∗Q ⇔ (z,−w) ∈ N̂Gph Q(u, v)

with (u, v) ∈ Gph Q. Thus, applying operator Tmn in (12), we obtain

Gph D̂∗Q =
⋃

I⊂{1,...,r}

q(I)
⋃

k=1

(


I,k × Tmn

[

⋂

i∈I
N̂
i

(
I,k)

])

.

Now, since Gph D∗Q is simply the closure of Gph D̂∗Q, and since all N̂
i
(
I,k) are closed,

we have proved (11).

Using Theorem 1, we shall now compute the graphs of TGph D∗NR+ and D∗∗NR+ .

Example 3 Set Q = NR+ . It is easy to verify that Gph NR+ = 
1 ∪ 
2, where 
1 =
R+ × {0} and 
2 = {0} × R−. We observe that 
{1}, 
{2}, and 
{12} are already subsets of
{R,R++,R−−, {0}}2, and so there is no need to use Lemma 2. Thus, to find D∗NR+ we
may compute regular normal cones directly as follows.

N̂Gph NR+ (
{12}) = N̂
1∪
2(
1 ∩ 
2) = N̂
1 ({0} × {0}) ∩ N̂
2({0} × {0}) = R− ×R+,

N̂Gph NR+ (
{1}) = N̂
1 (
1 \ 
2) = N̂
1 (R++ × {0}) = {0} ×R,

N̂Gph NR+ (
{2}) = N̂
2 (
2 \ 
1) = N̂
2 ({0} × R−−) = R× {0}.
Next, involving the Tmn-operator according to (11) we obtain

Gph D̂∗NR+ = ({0} × {0} × R− × R−)
⋃

(R++ × {0} × R× {0})
⋃

({0} × R−− × {0} ×R) ,

and finally we conclude that Gph D∗NR+ = �1 ∪�2 ∪�3 with

�1 = {0} × {0} ×R− × R−,
�2 = R+ × {0} ×R× {0},
�3 = {0} × R− × {0} × R.

We note that Gph D∗NR+ may be constructed even without an explicit knowledge of
Gph TGph NR+ .
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Now, we see that also Gph D∗NR+ satisfies the assumptions of Theorem 1 and so we
may find Gph D∗∗NR+ analogously. First we find the partition

Gph D∗NR+ =
⋃

∅�=I⊂{1,2,3}
�I

using Lemma 1 and the partitions of the relevant �I ’s according to Lemma 2. One obtains

�{123} = {0} × {0} × {0} × {0},
�{12} = {0} × {0} × R−− × {0},
�{13} = {0} × {0} × {0} × R−−,
�{23} = ∅,
�{1} = {0} × {0} × R−− × R−−,

�{2},1 = R++ × {0} × R× {0},
�{2},2 = {0} × {0} × R++ × {0},
�{3},1 = {0} ×R−− × {0} × R,

�{3},2 = {0} × {0} × {0} × R++,

and by virtue of (10) one has

Gph TGph D∗NR+ =

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎩

{0} × {0} × {0} × {0} × {0} × {0} × R− ×R−
⋃

{0} × {0} ×R× {0} ×R+ × {0} × R× {0}
⋃

{0} × {0} × {0} × R× {0} × R− × {0} × R

⋃

{0} × {0} ×R−− × {0} × {0} × {0} × R×R−
⋃

{0} × {0} × {0} × R−− × {0} × {0} × R− × R

⋃

{0} × {0} ×R−− × R−− × {0} × {0} × R×R

⋃

R++ × {0} × R× {0} ×R× {0} ×R× {0}
⋃

{0} × R−− × {0} × R× {0} × R× {0} ×R.

(13)

Finally, we employ (11) and conclude that

Gph D∗∗NR+ =

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎩

{0} × {0} × {0} × {0} × {0} × R− ×R+ × {0}
⋃

{0} × {0} × R− × {0} × R− × R− × R× {0}
⋃

{0} × {0} × {0} × R− × {0} × R×R+ × R+
⋃

{0} × {0} × R− × R− × {0} × R×R× {0}
⋃

R+ × {0} × R× {0} × R× {0} × R× {0}
⋃

{0} × {0} × R+ × {0} × R× R− ×R× {0}
⋃

{0} ×R− × {0} × R× {0} × R× {0} × R

⋃

{0} × {0} × {0} × R+ × {0} × R×R+ × R.

(14)
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In order to handle the general case where Q = NR
m+ we will associate with each pair

(u, v) = (y,−F(p, x, y)) ∈ Gph NR
m+ the index sets

L(p, x, y) := {i ∈ {1, . . . , m}|(yi,−Fi(p, x, y)) ∈ R++ × {0}} ,
I+(p, x, y) := {i ∈ {1, . . . , m}|(yi,−Fi(p, x, y)) ∈ {0} × R−−},
I0(p, x, y) := {i ∈ {1, . . . , m}|(yi,−Fi(p, x, y)) ∈ {0} × {0}}.

These index sets are related to the complementarity constraints in (1) and they are
frequently called index sets of inactive, strongly active and weakly active inequalities,
respectively. Similarly, we shall introduce the following disjunctive decomposition of the
set of indices of weakly active inequalities associated with quadruple (u, v,w, z) =
(y,−F(p, x, y), ν, μ) ∈ Gph D∗NR

m+ :

I−−
0 (p, x, y) := {i ∈ I0(p, x, y)|(νi, μi) ∈ R−− × R−−},
I−0

0 (p, x, y) := {i ∈ I0(p, x, y)|(νi, μi) ∈ R−− × {0}},
I 0−

0 (p, x, y) := {i ∈ I0(p, x, y)|(νi, μi) ∈ {0} × R−−},
I+0

0 (p, x, y) := {i ∈ I0(p, x, y)|(νi, μi) ∈ R++ × {0}},
I 0+

0 (p, x, y) := {i ∈ I0(p, x, y)|(νi, μi) ∈ {0} × R++},
I 00

0 (p, x, y) := {i ∈ I0(p, x, y)|(νi, μi) ∈ {0} × {0}}.

Note that these sets cover all possibilities for values of (y,−F(p, x, y), ν, μ) with respect
to Gph D∗NR

m+ . We shall omit the arguments of these index sets whenever it cannot cause
any confusion.

Consider (α, β, γ, δ) ∈ TGphD∗N
R
m+
(y,−F(p, x, y), ν, μ) and (u∗, v∗, w∗,−z∗) ∈

NGph D∗N
R
m+
(y,−F(p, x, y), ν, μ); then for each i ∈ {1. . . . ,m}

for i ∈ L αi ∈ R, βi = 0, γi ∈ R, δi = 0 u∗i = 0, v∗i ∈ R, w∗
i = 0, z∗i ∈ R

for i ∈ I+ αi = 0, βi ∈ R, γi = 0, δi ∈ R u∗i ∈ R, v∗i = 0, w∗
i ∈ R, z∗i = 0

for i ∈ I−−
0 αi = 0, βi = 0, γi ∈ R, δi ∈ R u∗i ∈ R, v∗i ∈ R, w∗

i = 0, z∗i = 0

for i ∈ I−0
0

{

αi = 0, βi = 0, γi ∈ R, δi ∈ R− or

αi ∈ R+, βi = 0, γi ∈ R, δi = 0

⎧

⎪

⎪

⎨

⎪

⎪

⎩

u∗i = 0, v∗i ∈ R, w∗
i = 0, z∗i ∈ R or

u∗i ∈ R, v∗i ∈ R, w∗
i = 0, z∗i = 0 or

u∗i ∈ R−, v∗i ∈ R, w∗
i = 0, z∗i ∈ R−

for i ∈ I 0−
0

{

αi = 0, βi = 0, γi ∈ R−, δi ∈ R or

αi = 0, βi ∈ R−, γi = 0, δi ∈ R

⎧

⎪

⎪

⎨

⎪

⎪

⎩

u∗i ∈ R, v∗i = 0, w∗
i ∈ R, z∗i = 0 or

u∗i ∈ R, v∗i ∈ R, w∗
i = 0, z∗i = 0 or

u∗i ∈ R, v∗i ∈ R+, w∗
i ∈ R+, z∗i = 0

for i ∈ I+0
0 αi ∈ R+, βi = 0, γi ∈ R, δi = 0

{

u∗i = 0, v∗i ∈ R, w∗
i = 0, z∗i ∈ R or

u∗i ∈ R−, v∗i ∈ R, w∗
i = 0, z∗i ∈ R

for i ∈ I 0+
0 αi = 0, βi ∈ R−, γi = 0, δi ∈ R

{

u∗i ∈ R, v∗i = 0, w∗
i ∈ R, z∗i = 0 or

u∗i ∈ R, v∗i ∈ R+, w∗
i ∈ R, z∗i = 0
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for i ∈ I 00
0

⎧

⎪

⎪

⎨

⎪

⎪

⎩

αi = 0, βi = 0, γi ∈ R−, δi ∈ R− or

αi ∈ R+, βi = 0, γi ∈ R, δi = 0 or

αi = 0, βi ∈ R−, γi = 0, δi ∈ R

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎩

u∗i = 0, v∗i ∈ R, w∗
i = 0, z∗i ∈ R, or

u∗i ∈ R, v∗i = 0, w∗
i ∈ R, z∗i = 0 or

u∗i ∈ R, v∗i ∈ R, w∗
i = 0, z∗i = 0 or

u∗i ∈ R−, v∗i ∈ R, w∗
i = 0, z∗i ∈ R− or

u∗i ∈ R, v∗i ∈ R+, w∗
i ∈ R+, z∗i = 0, or

u∗i ∈ R−, v∗i ∈ R, w∗
i = 0, z∗i ∈ R, or

u∗i ∈ R, v∗i ∈ R+, w∗
i ∈ R, z∗i = 0, or

u∗i ∈ R−, v∗i ∈ R+, w∗
i = 0, z∗i = 0

(15)

To illuminate the computation of generalized derivatives in the case of m > 1, we
conclude this section with the following example.

Example 4 Let m = 2, y = (0, 1), F (p, x, y) = (0,0), ν = (0,−1),μ =
(−1,0) and z∗ = (0,1). Then, clearly, I 0−

0 = {1}, L = {2}. Thus (u∗, v∗, w∗) ∈
D∗∗NR

m+ (y,−F(p, x, y), ν, μ)(z∗) whenever

u∗ ∈ R× {0},
v∗ ∈ {0} ×R,

w∗ ∈ R× {0},
or

u∗ ∈ R× {0},
v∗ ∈ R×R,

w∗ ∈ {0} × {0},
or

u∗ ∈ R× {0},
v∗ ∈ R+ × R,

w∗ ∈ R+ × {0}.

4 Generalized Derivatives of Stationarity Maps

This section is devoted to computation of the graphical derivative and the coderivative of
both stationarity and reduced stationarity maps S and Sr , respectively. In what follows,
(x̄, ȳ) is called the M-stationary pair with a corresponding MPCC-multiplier ν̄.

To justify the need for the corresponding formulas for both types of the stationarity maps,
we give an example of an MPCC for which the reduction of the stationarity map S into Sr

is not possible.

Example 5 Consider p, x, y ∈ R and the following parameter-dependent MPCC

minimize
1

2
x2 + y(p + 1)

subject to

0 ∈ p + y(p + 1)− 1

2
x2 +NR+ (y).

The stationarity map S is thus given by map �

�(p, x, y, ν) =

⎛

⎜

⎜

⎜

⎜

⎝

x(1 − ν)

y

−p − y(p + 1)+ 1
2x

2

ν

−(p + 1)(ν + 1)

⎞

⎟

⎟

⎟

⎟

⎠

.
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For p̄ ≤ −1 the corresponding M-stationarity conditions do not have any solution while

for p̄ ∈ (−1,0) there is a unique M-stationary pair x̄ = 0, ȳ = − p

p + 1
with ν̄ = −1;

for p̄ = 0 there is a unique M-stationary pair x̄ = 0, ȳ = 0 with ν̄ ∈ [−1, 0];
for p̄ > 0 there is a unique M-stationary pair x̄ = 0, ȳ = 0 with ν̄ = 0.

Thus, due to multiplicity of MPCC-multipliers for p̄ = 0 the reduction to Sr is not possible.
Note that our assumption for reducibility of the stationarity map is violated for all feasible
values of p.

By using the standard rules of the generalized differential calculus we can now com-
pute upper approximations of the graphical derivative and the limiting coderivative of the
stationarity map S. Let us first introduce the perturbation mapping associated with S

M(z) := {(p, x, y, ν)|�(x,y, p, ν)+ z ∈ {0} ×�}.

Lemma 3 Let (x̄, ȳ) be the M-stationary pair of MPCC(p̄) with a corresponding MPCC-
multiplier ν̄. Then

TGph S(p̄, x̄, ȳ, ν̄) ⊂ {h|(∇�(x̄, ȳ, p̄, ν̄))h ∈ T{0}×�(�(p̄, x̄, ȳ, ν̄)). (16)

Proof The statement follows from [17, Theorem 6.31].

Lemma 4 Let (x̄, ȳ) be the M-stationary pair of MPCC(p̄) with a corresponding MPCC-
multiplier ν̄. Further, let M be calm at (0, p̄, x̄, ȳ, ν̄). Then

NGphS(p̄, x̄, ȳ, ν̄) ⊂ (∇�(x̄, ȳ, p̄, ν̄))�N{0}×�(�(p̄, x̄, ȳ, ν̄)), (17)

where

N{0}×�(�(p̄, x̄, ȳ, ν̄))=R
n×NGph D∗N

R
m+
(ȳ,−F(p̄, x̄, ȳ), ν̄,−b(p̄, x̄, ȳ)−B�(p̄, x̄, ȳ)ν̄).

Proof The statement follows from [6, Theorem 4.1].

In our case we have (for simplicity, we do not state the arguments of maps in the
formulas)

∇� =

⎛

⎜

⎜

⎜

⎜

⎝

∇pa +∇p(A
�ν̄) ∇xa + ∇x(A

�ν̄) ∇ya +∇y(A
�ν̄) A

0 0 I 0
−∇pF −∇xF −∇yF 0

0 0 0 I

−∇pb −∇p(B
�ν̄) −∇xb −∇x(B

�ν̄) −∇yb −∇y(B
�ν̄) −B

⎞

⎟

⎟

⎟

⎟

⎠

.

Thus the graphical derivative of S can be approximated as follows

DS(p̄, x̄, ȳ, ν̄)(hp) ⊂
⎧

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎩

(hx, hy, hν)

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

(∇a + ∇(A�ν̄))h = 0
⎛

⎜

⎜

⎝

hy
−(∇F)h

hν
−(∇b−∇(B�ν̄))h

⎞

⎟

⎟

⎠

∈ TGph D∗N
R
m+
(ȳ,−F, ν̄,−b− B�ν̄)

⎫

⎪

⎪

⎪

⎪

⎪

⎬

⎪

⎪

⎪

⎪

⎪

⎭

.

(18)
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If M is calm at (0, p̄, x̄, ȳ, ν̄), then we get the following upper approximation of the
coderivative of the stationarity map S.

D∗S(p̄, x̄, ȳ, ν̄)(x∗, y∗, ν∗)

⊂

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎩

p∗

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

p∗ = (∇pa +∇p(A
�ν̄))�q∗ − (∇pF)�v∗ − (∇pb +∇p(B

�ν̄))�z∗

−x∗ = (∇xa +∇x(A
�ν̄))�q∗ − (∇xF )�v∗ − (∇xb +∇x(B

�ν̄))�z∗

−y∗ = (∇ya +∇y(A
�ν̄))�q∗ + u∗ − (∇yF )�v∗ − (∇xb +∇x(B

�ν̄))�z∗

−ν∗ = A�q∗ +w∗ − B�z∗

q∗ ∈ R
m, (u∗, v∗, w∗) ∈ D∗∗NR

m+ (ȳ,−F, ν̄,−b − B�ν̄)(−z∗)

⎫

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎬

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎭

.

(19)

Moreover, (16), (17) and thus also (18) and (19) become equalities, whenever ∇� is
surjective at (p̄, x̄, ȳ, ν̄), cf. [17, Exercise 6.7].

Whenever mapping M has the Aubin property around the reference point, the calmness
condition stated in the Lemma 4 is satisfied. The standard constraint qualification (CQ) that
implies the Aubin property of M can be formulated as follows

0 = (∇�(p̄, x̄, ȳ, ν̄))�u
u ∈ R

m ×NGph D∗N
R
m+
(ȳ,−F(p̄, x̄, ȳ), ν̄,−b(p̄, x̄, ȳ)− (B(p̄, x̄, ȳ))�ν̄)

}

⇒ u = 0. (20)

Analogously to Lemmas 3 and 4, using [17, Theorem 6.31] and [6, Theorem 4.1] we can
obtain upper approximations to the contingent and the limiting normal cone to the graph of
Sr . This time, the corresponding chain rules contain

∇�r =

⎛

⎜

⎜

⎝

0 0 I

−∇pF −∇xF −∇yF

−∇p(Ca) −∇x(Ca) −∇y(Ca)

−∇pb− ∇pd −∇xb −∇xd −∇yb −∇yd

⎞

⎟

⎟

⎠

.

We can thus provide upper approximations of the graphical derivative and the coderivative
of Sr . One obtains that

DSr (p̄, x̄, ȳ)(h′p) ⊂

⎧

⎪

⎪

⎨

⎪

⎪

⎩

(h′x, h′y)

∣

∣

∣

∣

∣

∣

∣

∣

⎛

⎜

⎜

⎝

h′y
−(∇F)h′

−(∇(Ca))h′
−(∇b−∇d)h′

⎞

⎟

⎟

⎠

∈ TGph D∗N
R
m+
(�r(p̄, x̄, ȳ))

⎫

⎪

⎪

⎬

⎪

⎪

⎭

(21)
and, under calmness of the multifunction Mr given by

Mr(z′) = {(p, x, y)|�r(x, y, p)+ z′ ∈ �}
at (0, p̄, x̄, ȳ),

D∗Sr (p̄, x̄, ȳ)(x∗, y∗) ⊂
⎧

⎪

⎪

⎨

⎪

⎪

⎩

p∗

∣

∣

∣

∣

∣

∣

∣

∣

p∗ = −(∇pF )�v∗ − (∇p(Ca))�w∗ − (∇pb +∇pd)
�z∗

−x∗ = −(∇xF )�v∗ − (∇x(Ca))�w∗ − (∇xb +∇xd)
�z∗

−y∗ = u∗ − (∇yF )�v∗ − (∇y(Ca))�w∗ − (∇yb +∇yd)
�z∗

(u∗, v∗, w∗) ∈ D∗∗NR
m+ (�

r(p̄, x̄, ȳ))(−z∗)

⎫

⎪

⎪

⎬

⎪

⎪

⎭

. (22)
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Again, whenever ∇�r is surjective at (p̄, x̄, ȳ), inclusions (21) and (22) become equalities,
cf. [17, Exercise 6.7].

Analogously to the non-reduced case, the following standard CQ implies the Aubin
property (and thus also the calmness) of mapping Mr at (p̄, x̄, ȳ):

0 = (∇�r(p̄, x̄, ȳ))�u′

u′ ∈ NGph D∗N
R
m+
(ȳ,−F(p̄, x̄, ȳ),−C(p̄, x̄, ȳ)a(p̄, x̄, ȳ),−b(p̄, x̄, ȳ)− d(p̄, x̄, ȳ))

}

⇒ u′ = 0.

(23)

We close this section with a continuation of Example 1 and provide upper approximations
for both graphical derivative and coderivative of the respective reduced stationarity map.

Example 1 (continued)
In our case for any (p, x, y) ∈ R× R×R

∇�r(p, x, y) =

⎛

⎜

⎜

⎝

0 0 1
−1 −1 0

0 −2 0
0 0 0

⎞

⎟

⎟

⎠

,

hence

DSr (p, x, y)(h′p) ⊂

⎧

⎪

⎪

⎨

⎪

⎪

⎩

(h′x, h′y)

∣

∣

∣

∣

∣

∣

∣

∣

⎛

⎜

⎜

⎝

h′y
−h′p − h′x
−2h′x

0

⎞

⎟

⎟

⎠

∈ TGph D∗N
R
m+
(�r(p, x, y))

⎫

⎪

⎪

⎬

⎪

⎪

⎭

.

Thus, by virtue of (15)

1. for p̄ < 1, I−−
0 = {1} and for h′p ∈ R, we have DSr (p̄,−p̄, 0)

(

h′p
)

⊂
{

(−h′p, 0)
}

.

2. for p̄ = 1, I 0−
0 = {1} and for h′p ≤ 0, we have DSr (1,−1, 0)

(

h′p
)

⊂
{

(−h′p, 0)
}

,

while for h′p ≥ 0 we have DSr (1,−1, 0)
(

h′p
)

⊂ {(0, 0)}.
3. for p̄ > 1, I+ = {1} and for h′p ∈ R, we have DSr (p̄,−1, 0)

(

h′p
)

⊂ {(0, 0)}.
The CQ (23) has the form:

−u′2 = 0

−u′2 − 2u′3 = 0

u′1 = 0
(

u′1, u
′
2, u

′
3

) ∈ D∗∗NR+ (y,−x,−2x + 2p,−2y + 2p)
(−u′4

)

⎫

⎪

⎪

⎪

⎬

⎪

⎪

⎪

⎭

⇒ u′ = 0,

Clearly, the equality conditions imply u′1 = u′2 = u′3 = 0, while u′4 = 0 follows for all

values of p from the last condition as we are interested only in index sets I−−
0 , I 0−

0 and I+,
recall the formula (15). Thus, the CQ (23) is satisfied at each point from the graph of Sr .

So, we obtain

D∗Sr (p, x, y)(x∗, y∗)⊂

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

p∗

∣

∣

∣

∣

∣

∣

∣

∣

∣

p∗=−v∗

−x∗=−v∗ − 2w∗

−y∗=u∗

(u∗,v∗, w∗)∈D∗∗NR+ (y,−x − p,−2x − 2,−1)(−z∗)

⎫

⎪

⎪

⎪

⎬

⎪

⎪

⎪

⎭

.
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Using formula (15), one can easily obtain the following results.

1. For p̄ < 1, D∗Sr (p̄,−p̄, 0)(x∗, y∗) ⊂ {−x∗} for x∗, y∗ ∈ R.
2. For p̄ = 1, taking into account all three possibilities for values of (u∗, v∗, w∗, z∗), the

inclusion (22) gives D∗Sr (1,−1, 0)(x∗, y∗) ⊂ [−x∗, 0] with x∗, y∗ ∈ R.
3. For p̄ > 1, D∗Sr (p̄,−1,0)(x∗, y∗) ⊂ {0} for x∗, y∗ ∈ R.

5 Qualitative Stability of Stationarity Maps

In the last section we provide sufficient (and sometimes also necessary) conditions for iso-
lated calmness and Aubin property for both types of stationarity maps. As in the previous
section, we start first with the stationarity map S.

Theorem 2 The stationarity map S has the isolated calmness property at (p̄, x̄, ȳ, ν̄) if the
following condition holds true:

(∇a +∇(A�ν̄))h = 0
⎛

⎜

⎜

⎝

hy
−(∇F)h

hν
−(∇b−∇(B�ν̄))h

⎞

⎟

⎟

⎠

∈ TGph D∗N
R
m+
(ȳ,−F, ν̄,−b− B�ν̄)

hp = 0

⎫

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎬

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎭

⇒

⎧

⎪

⎨

⎪

⎩

hx = 0,

hy = 0,

hν = 0.

(24)

Proof Using the upper approximation (18), the condition (24) implies that

DS(p̄, x̄, ȳ, ν̄)(0) ⊂ {0}.
The statement then follows from [3, Theorem 4C.1]).

Theorem 3 Let M be calm at (0, p̄, x̄, ȳ, ν̄). The stationarity map S has the Aubin property
around (p̄, x̄, ȳ, ν̄) if the following condition holds true:

p∗ = (∇pa +∇p(A
�ν̄))�q∗ − (∇pF )�v∗ − (∇pb+ ∇p(B

�ν̄))�z∗

0 = (∇xa + ∇x(A
�ν̄))�q∗ − (∇xF )�v∗ − (∇xb +∇x(B

�ν̄))�z∗

0 = (∇ya + ∇y(A
�ν̄))�q∗ + u∗ − (∇yF )�v∗ − (∇xb +∇x(B

�ν̄))�z∗

0 = A�q∗ +w∗ − B�z∗

q∗ ∈ R
m, (u∗, v∗, w∗) ∈ D∗∗NR

m+ (ȳ,−F, ν̄,−b − B�ν̄)(−z∗)

⎫

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎬

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎭

⇒ p∗ = 0.

(25)

Proof Using the upper approximation (19), the condition (25) implies that

D∗S(p̄, x̄, ȳ, ν̄)(0) ⊂ {0}.
The statement then follows from the Mordukhovich criterion.

Note that both Theorems 2 and 3 provide just the sufficient conditions for the respective
properties of S. In the case when ∇� is surjective at the reference point, these conditions
become also necessary.
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Replacing calmness condition on M by stronger CQ (20) we can obtain alternative con-
dition on Aubin property of S which combines conditions for the Aubin property of M and
S into one.

Corollary 1 The stationarity map S has the Aubin property around (p̄, x̄, ȳ, ν̄) if

0 = (∇xa +∇x(A
�ν̄))�q∗ − (∇xF )�v∗ − (∇xb +∇x(B

�ν̄))�z∗

0 = (∇ya +∇y(A
�ν̄))�q∗ + u∗ − (∇yF )�v∗ − (∇xb +∇x(B

�ν̄))�z∗

0 = A�q∗ +w∗ − B�z∗

q∗ ∈ R
m, (u∗, v∗, w∗) ∈ D∗∗NR

m+ (ȳ,−F, ν̄,−b − B�ν̄)(−z∗)

⎫

⎪

⎪

⎪

⎪

⎪

⎬

⎪

⎪

⎪

⎪

⎪

⎭

⇒

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎩

q∗ = 0,

u∗ = 0,

v∗ = 0,

w∗ = 0,

z∗ = 0.

Analogously, we can derive conditions for isolated calmness and Aubin property of the
reduced stationarity map Sr .

Theorem 4 The reduced stationarity map Sr is isolatedly calm at (p̄, x̄, ȳ) if the following
condition holds true:

(∇�r(p̄, x̄, ȳ))

⎛

⎝

0
h′x
h′y

⎞

⎠ ∈ TGph D∗N
R
m+
(�r(p̄, x̄, ȳ)) ⇒

{

h′x = 0,

h′y = 0.

Based on the inclusion (22) we can formulate the condition for the Aubin property of the
reduced stationarity map.

Theorem 5 Let Mr be calm at (0, p̄, x̄, ȳ). The reduced stationarity map Sr has the Aubin
property around (p̄, x̄, ȳ) if the following condition holds true:

p∗ = −(∇pF )�v∗ − (∇p(Ca))�w∗ − (∇pb +∇pd)
�z∗

0 = −(∇xF )�v∗ − (∇x(Ca))�w∗ − (∇xb + ∇xd)
�z∗

0 = u∗ − (∇yF )�v∗ − (∇y(Ca))�w∗ − (∇yb +∇yd)
�z∗

(u∗, v∗, w∗) ∈ D∗∗NR
m+ (�

r(p, x, y))(−z∗)

⎫

⎪

⎪

⎪

⎪

⎬

⎪

⎪

⎪

⎪

⎭

⇒ p∗ = 0.

Both conditions become necessary and sufficient whenever ∇�r is surjective at
(p̄, x̄, ȳ). Replacing calmness condition on Mr by stronger CQ (23) we can derive an
alternative condition ensuring the Aubin property of Sr .

Corollary 2 The stationarity map Sr has the Aubin property around (p̄, x̄, ȳ) if

0 = −(∇xF )�v∗ − (∇x(Ca))�w∗ − (∇xb +∇xd)
�z∗

0 = u∗ − (∇yF )�v∗ − (∇y(Ca))�w∗ − (∇yb +∇yd)
�z∗

(u∗,v∗, w∗) ∈ D∗∗NR
m+ (�

r(p̄, x̄, ȳ))(−z∗)

⎫

⎪

⎬

⎪

⎭

⇒

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

u∗ = 0,

v∗ = 0,

w∗ = 0,

z∗ = 0.

We conclude this section with illustrative examples. First we proceed with Example 1
and show that we can verify the isolated calmness and the Aubin properties of the respective
reduced stationarity map Sr using the conditions derived above.
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Example 1 (continued)
According to results derived in the previous sections,

(∇�r(p, x, y))

⎛

⎝

0
h′x
h′y

⎞

⎠ =

⎛

⎜

⎜

⎝

h′y
−h′x
−2h′x

0

⎞

⎟

⎟

⎠

.

Thus, invoking formula (15),

1. for p̄ < 1, we clearly have h′x = h′y = 0, hence the reduced stationarity map Sr is
isolatedly calm at (p̄,−p̄, 0). Also, D∗Sr (p̄,−p̄, 0)(0,0) ⊂ {0} and thus the reduced
stationarity map Sr also has the Aubin property at (p̄,−p̄, 0).

2. for p̄ = 1, h′x = h′y = 0, and the reduced stationarity map Sr is isolatedly calm
also at (1,−1, 0). Also in this case, D∗Sr (1,−1, 0)(0,0) ⊂ {0} and thus the reduced
stationarity map Sr has the Aubin property at (1,−1, 0).

3. for p̄ > 1, analogously to previous cases, the reduced stationarity map Sr has both the
isolated calmness and the Aubin properties at (p̄,−1, 0).

As can be seen in Example 6 below, our sufficient conditions may be far from necessity
when ∇�r is not surjective. Our sufficient conditions for the Aubin property may very well
be violated at some point despite the fact that the stationarity map has the Aubin property
there.

Example 6 Let p, x, y ∈ R and consider the following perturbed MPCC

minimize (x − p)2 + (y − p)2

subject to

0 ∈ x +NR+ (y).

The solution to this problem is the projection of the point (p, p) onto the boundary of the
positive orthant in R

2.
Clearly, the M-stationarity conditions can be formulated in the reduced form as

⎡

⎢

⎢

⎣

y

−x

−2x + 2p
−2y + 2p

⎤

⎥

⎥

⎦

∈ Gph D∗NR+ ,

where A = C = (1)1×1, B = (0)1×1, a(p, x, y) = 2x − 2p, b(p, x, y) = 2y −
2p, d(p, x, y) = 0.

The CQ (23) has the form:

(∇�r(p, x, y))�u′ = 0

(u′1, u′2, u′3) ∈ D∗∗NR+ (y,−x,−2x + 2p,−2y + 2p)(−u′4)

}

⇒ u′ = 0,

where for any (p, x, y)

∇�r(p, x, y) =

⎛

⎜

⎜

⎝

0 0 1
0 −1 0
2 −2 0
2 0 −2

⎞

⎟

⎟

⎠

.
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The solution of (∇�r(p, x, y)�u′ = 0 is ū′ = (2t,2t,−t, t), t ∈ R. It remains to check
that for each of the M-stationary points of the MPEC (which coincide with solution), the
second condition of the CQ implies that at least one of the components of u′ vanishes. Recall
the formula (15).

1. For p̄ < 0, the unique solution is the origin (x̄, ȳ) = (0,0). I−−
0 = {1} and the second

condition of CQ implies that u′3 and u′4 vanish. Thus t = 0 and ultimately u′ = 0.
2. For p̄ = 0, the unique solution is the origin (x̄, ȳ) = (0,0). In this case I 00

0 = {1} thus
there are eight possible combinations of values of components of u′. Note that in each
of them at least one component of u′ vanishes. Hence t = 0 and ultimately u′ = 0.

3. For p̄ > 0, the MPCC has two solutions

(a) (x̄, ȳ) = (p̄, 0). In this case I+ = {1} and the second condition of CQ implies that
u′2 and u′4 vanish. Thus t = 0 and ultimately u′ = 0.

(b) (x̄, ȳ) = (0, p̄). In this case L = {1} and the second condition of CQ implies that
u′1 and u′3 vanish. Thus t = 0 and ultimately u′ = 0.

Thus the CQ (23) holds for all values of p.
So, we obtain

D∗S r (p̄, x̄, ȳ)(x∗, y∗) ⊂

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

p∗

∣

∣

∣

∣

∣

∣

∣

∣

∣

p∗ = 2w∗ + 2z∗

−x∗ = −v∗ − 2w∗

−y∗ = u∗ − 2z∗

(u∗,v∗, w∗) ∈ D∗∗NR+(ȳ,−x̄,−2x̄ + 2p̄,−2ȳ + 2p̄)(−z∗)

⎫

⎪

⎪

⎪

⎬

⎪

⎪

⎪

⎭

.

Using formula (15), one can easily obtain the following results.

1. For p̄ < 0, D∗Sr (p̄, 0, 0)(x∗, y∗) ⊂ {0} for x∗, y∗ ∈ R. Thus the reduced stationarity
map Sr has the Aubin property at (p̄, 0, 0).

2. For p̄ = 0, taking into account all eight possibilities for values of (u∗, v∗, w∗, z∗), the
inclusion (22) gives D∗Sr (0, 0, 0)(x∗, y∗) ⊂ (−∞,max{x∗, y∗}] with x∗, y∗ ∈ R.
Hence, we are unable to check the Aubin property of Sr at (0,0, 0) since the condition
of Theorem 5 is violated.

3. For p̄ > 0, the MPCC has two solutions

(a) (x̄, ȳ) = (p̄, 0). In this case D∗Sr (p̄, p̄, 0)(x∗, y∗) ⊂ {x∗} for x∗, y∗ ∈ R.
(b) (x̄, ȳ) = (0, p̄). In this case D∗Sr (p̄, 0, p̄)(x∗, y∗) ⊂ {y∗} for x∗, y∗ ∈ R.

The reduced stationarity map Sr has the Aubin property at points (p̄, p̄, 0) as well as
at points (p̄, 0, p̄).

In this example, taking into account the exact analytic form of Sr , one can compute pre-
cisely also its coderivative D∗Sr (0, 0, 0)(x∗, y∗) = [0,min{x∗, y∗}]. The Mordukhovich
criterion is thus satisfied at this point too and the Aubin property of Sr follows.

We conclude this section with an example of a parameterized MPCC, where the station-
arity map is single-valued for nonpositive values of the parameter p ≤ 0 while it is empty
for p > 0. By means of this example we show effectiveness of our sufficient condition for
the isolated calmness property of the stationarity map at p = 0.
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Example 7 Let p, x, y ∈ R and consider the following parameterized MPCC

minimize − x − (y + p)2

subject to

0 ∈ x + NR+ (y).

It is easy to check that the corresponding reduced M-stationarity conditions
⎡

⎢

⎢

⎣

y

−x

1
2(y + p)

⎤

⎥

⎥

⎦

∈ Gph D∗NR+ ,

have a unique solution (x̄, ȳ) = (0,−p̄) with multiplier ν̄ = 1 for p̄ ≤ 0 while it does
not have a solution for p̄ > 0. From (21) we get the following upper approximation of the
graphical coderivate of the reduced stationarity map

DSr (0, 0, 0)(h′p) ⊂

⎧

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎩

(h′x, h′y)

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

h′y ≥ 0

−h′x = 0

0 ∈ R

2h′p + 2h′y = 0

⎫

⎪

⎪

⎪

⎪

⎬

⎪

⎪

⎪

⎪

⎭

= {(h′x, h′y)|h′x = 0, h′y = −h′p ≥ 0}.

Clearly, by means of Theorem 4, the reduced stationarity map is isolatedly calm at (0, 0, 0).

6 Conclusion

Various stability properties of multifunctions can be ensured or even characterized by appro-
priate generalized derivatives. In the case of stationarity maps of standard optimization
problems (containing subdifferentials/normal-cone operators) one can exploit the methods
and tools of second-order analysis, but in the case of MPECs/MPCCs or bilevel programs
one has to differentiate also second-order terms (typically coderivatives of normal-cone
mappings). To this end we have introduced the second-order limiting coderivative and
shown how this notion and the graphical derivative of the limiting coderivative can be used
in analysis of M-stationarity points of parameterized MPCCs.
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